Fluctuation theorems, Jarzynski relation, and non-equilibrium entropy:

A coherent approach within stochastic dynamics

Udo Seifert
II. Institut für Theoretische Physik, Universität Stuttgart

- Second law for small systems $\quad\left(k_{B} T=1\right)$

- for small systems a distribution of work spent: $\quad p(W ; \lambda(\tau))$
- Second law:

$$
\langle W\rangle_{\mid \lambda(\tau)} \geq \Delta G \equiv G\left(\lambda_{t}\right)-G\left(\lambda_{0}\right)
$$

* equality for infinitly slow processes $p(W)=\delta(W-\Delta G)$
* Gaussian for slow pulling
- Jarzynski relation (1997)

- start with initial thermal distribution
- valid for any protocol $\lambda(\tau)$
- valid beyond linear response
- allows to extract free energy differences from non-eq data
- "implies" the second Iaw (since $\left\langle e^{x}\right\rangle \geq e^{\langle x\rangle}$)
- Dissipated work $W_{d} \equiv W-\Delta G$
$-\left\langle\exp \left[-W_{d}\right]\right\rangle \equiv \int_{-\infty}^{+\infty} d W_{d} p\left(W_{d}\right) \exp \left[-W_{d}\right]=1$

- red events "violate the second law" (??)
- Special case: Gaussian distribution

$$
p\left(W_{d}\right) \sim \exp \left[-\left(W_{d}-\left\langle W_{d}\right\rangle\right)^{2} / 2 \sigma^{2}\right] \quad \text { with } \quad\left\langle W_{d}\right\rangle=\sigma^{2} / 2
$$

Paradigm: Colloidal particle

- Langevin equation

$\dot{x}=\mu F(x, \lambda)+\zeta$,
- Gaussian noise: $\quad\left\langle\zeta(\tau) \zeta\left(\tau^{\prime}\right)\right\rangle=2 D \delta\left(\tau-\tau^{\prime}\right)$ with $D=k_{B} T \mu$
- Total force
$F(x, \lambda)=-\partial_{x} V(x, \lambda)+f(\lambda)$ depends on external driving or protocol $[\lambda(\tau)]$
- First Iaw: $d w=d u+d q \quad$ [(Sekimoto, 1997)]:
- applied work: $\quad d w=f d x+\partial_{\lambda} V(x, \lambda) d \lambda$
- internal energy: $\quad d u=d V$
- dissipated heat: $\quad d q=d w-d u=F d x=(1 / \mu)(\dot{x}-\zeta) d x=T \Delta s \mathrm{~m}$
- Towards a refinement of the second law: Stochastic entropy
[U.S., PRL 95, 040602, 2005]
- Fokker-Planck equation

$$
\partial_{\tau} p(x, \tau)=-\partial_{x} j(x, \tau)=-\partial_{x}\left(\mu F(x, \lambda)-D \partial_{x}\right) p(x, \tau)
$$

- Non-eq ensemble entropy $S(\tau) \equiv-\int d x p(x, \tau) \ln p(x, \tau)$
- Stochastic entropy for a single trajectory $x(\tau)$

$$
s(\tau) \equiv-\ln p(x(\tau), \tau) \quad \text { with }\langle s(\tau)\rangle=S(\tau)
$$

- equation of motion

$$
\dot{s}(\tau)=\underbrace{-\frac{\partial_{\tau} p(x, \tau)}{p(x, \tau)}{ }_{\mid x(\tau)}+\frac{j(x, \tau)}{D p(x, \tau)}{ }_{\mid x(\tau)}}_{\dot{s} \text { tot }} \dot{x}-\underbrace{\left.\frac{\mu F(x, \lambda)}{D} \right\rvert\, x(\tau)}_{\dot{s} \mathrm{~m}}{ }_{x} .
$$

- "Time reversal"

$$
\tilde{x}(\tau) \equiv x(t-\tau) \text { and } \tilde{\lambda}(\tau) \equiv \lambda(t-\tau)
$$

- Ratio of forward to reversed path

$$
\frac{p\left[x(\tau) \mid x_{0}\right]}{\tilde{p}\left[\tilde{x}(\tau) \mid \tilde{x}_{0}\right]}=\exp \beta \int_{0}^{t} d \tau \dot{x} F=\exp \beta q[x(\tau)]=\exp \Delta s_{m}
$$

- General fluctuation theorem (cf. Jarzynski, Crooks, Maes)

$$
\begin{aligned}
1 & =\sum_{\tilde{x}(\tau), \tilde{x}_{0}} \tilde{p}\left[\tilde{x}(\tau) \mid \tilde{x}_{0}\right] p_{1}\left(\tilde{x}_{0}\right) \\
& =\sum_{x(\tau), x_{0}} p\left[x(\tau) \mid x_{0}\right] p_{0}\left(x_{0}\right) \frac{\tilde{p}\left[\tilde{x}(\tau) \mid \tilde{x}_{0}\right] p_{1}\left(\tilde{x}_{0}\right)}{p\left[x(\tau) \mid x_{0}\right] p_{0}\left(x_{0}\right)} \\
& =\langle\exp [\underbrace{-\beta q[x(\tau)]}_{-\Delta s_{\mathrm{m}}}+\ln p_{1}\left(x_{t}\right) / p_{0}\left(x_{0}\right)]\rangle
\end{aligned}
$$

- for any (normalized) $p_{1}\left(x_{t}\right)$
- with $p_{1}\left(x_{t}\right)=p(x, t)=\exp [-s(\tau)]$
- $\left\langle\exp \left[-\Delta s_{\text {tot }}\right]\right\rangle=1 \Rightarrow\left\langle\Delta s_{\text {tot }}\right\rangle \geq 0$
- integral fluctuation theorem for total entropy production
- arbitrary initial state, driving, length of trajectory
- Jarzynski relation (1997)
$-f=0$, drive potential from λ_{0} to λ_{t}
- detailed balance for any fixed λ

$$
1=\langle\exp [\underbrace{-\beta q[x(\tau)]}_{-\Delta s_{\mathrm{m}}}+\ln p_{1}\left(x_{t}\right) / p_{0}\left(x_{0}\right)]\rangle
$$

$-p_{0}\left(x_{0}\right) \equiv \exp \left[-\beta\left(V\left(x_{0}, \lambda_{0}\right)-G\left(\lambda_{0}\right)\right]\right.$
$-p_{1}\left(x_{t}\right) \equiv \exp \left[-\beta\left(V\left(x_{t}, \lambda_{t}\right)-G\left(\lambda_{t}\right)\right]\right.$
$-\langle\exp [-\beta W]\rangle=\exp [-\beta \Delta G]$

- within stochastic dynamics an identity!

Generalization to many coupled Langevin equations obvious

- Gaussian distribution for W_{d} for slow driving of any process ($\dot{\lambda} t_{\text {rel }} \ll 1$) [T. Speck and U.S., Phys. Rev E 70, 066112, 2004]
- Stretching of Rouse polymer [T. Speck and U.S., EPJ B 43, 521, 2005]

- different protocols

* linear: $\lambda(\tau)=\tau L / t \quad \Rightarrow \quad\left\langle W_{d}\right\rangle=(N \gamma / 3) L^{2} / t$
* periodic: $\lambda(\tau)=L \sin \pi \tau / 2 t \quad \Rightarrow\left\langle W_{d}\right\rangle=\left[\pi^{2} / 8\right](N \gamma / 3) L^{2} / t$
- Probing energy profiles by periodic loading
[O. Braun, A. Hanke and U.S., PRL 93, 158105, 2004]

$-H(z, \tau)=G(z)+(k / 2)(\lambda(\tau)-z)^{2}$
- Simulation using a Langevin equation $\dot{z}=\mu(-d H / d z)+\zeta$
- Reconstruction of energy profile by z-resolved Jarzynski relation

$$
e^{-G\left(z_{0}\right)}=\left\langle\delta\left[z_{0}-z(t)\right] e^{-W(t)}\right\rangle \quad e^{(k / 2)\left(z_{0}-\lambda(\tau)\right)^{2}}
$$

- linear loading: $\quad \lambda(\tau)=x_{0}+v t$
- periodic loading: $\lambda(\tau)=x_{0}+a \sin \omega t$
- Comparison: periodic forcing significantly better than linear
- Non-equilbrium steady states
$-f=\mathrm{const} \neq 0$

- broken detailed balance
- detailed fluctuation theorem:

$$
p\left(-\Delta s_{\text {tot }}\right) / p\left(\Delta s_{\text {tot }}\right)=\exp \left(-\Delta s_{\text {tot }}\right)
$$

- generalization of Evans et al (1993), Gallavotti \& Cohen (1995), Lebowitz \& Spohn (1999) ... to finite times

Probability of Second Law Violations in Shearing Steady States

Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2600, Australia
E. G. D. Cohen

The Rockefeller Unicersity, 1230 York Avenue, New York, New York 10021
G. P. Morriss

School of Physics, University of South Wales, Kensington, New South Wales, Australia (Received 26 March 1993)

- Transitions between different NESS

- $V(x)$ time-independent, $f=f(\lambda(\tau))$ switches from f_{1} to f_{2}
$-\phi(x, \lambda) \equiv-\ln p^{s}(x, \lambda) \quad(\neq s(\tau))$
- Hatano + Sasa, PRL 2001: $\quad \Delta s_{\mathrm{m}}=q_{\mathrm{tot}} \equiv q_{\mathrm{ex}}+q_{\mathrm{hk}}$
$*\left\langle\exp \left[-\left(q_{\mathrm{ex}}+\Delta \phi\right)\right]\right\rangle=1$
* $S \equiv-\int d x p^{s}(x, \lambda) \ln p^{s}(x, \lambda) \Rightarrow \Delta S \geq-\left\langle q_{\mathrm{ex}}\right\rangle \quad$ ("2nd law for NESSs")
- Further FTs: (T. Speck, U.S, J Phys A 38, L581, 2005)
$*\left\langle\exp \left(-q_{\mathrm{hk}}\right)\right\rangle=1$
$*\langle\exp (-\Delta s \mathrm{~m}+\Delta \phi)\rangle=1 \quad$ (generalized JR)
- Stochastic dynamics on discrete states

$-\partial_{t} p_{n}=\sum_{m}\left[w_{m n}(\lambda) p_{m}-w_{n m}(\lambda) p_{n}\right]$
- solution $p_{n}(\tau)$ depends on initial $p_{n}(0)$
- stationary solution $p_{n}^{s}(\lambda)$ for any fixed λ
- Stochastic trajectory

Stochastic entropy

- Non-equilibrium ensemble entropy

$$
S(\tau) \equiv-\sum_{n} p_{n}(\tau) \ln p_{n}(\tau)=-\left\langle\ln p_{n}(\tau)\right\rangle
$$

- Stochastic (trajectory-dependent) entropy of the system

$$
s(\tau) \equiv-\ln p_{n(\tau)}
$$

- equation of motion

$$
\begin{aligned}
\dot{s}(\tau) & =-\frac{\partial_{\tau} p_{n}(\tau)}{p_{n}(\tau)}{ }_{\mid n(\tau)}-\sum_{j} \delta\left(\tau-\tau_{j}\right) \ln \frac{p_{n_{j}^{+}}\left(\tau_{j}\right)}{p_{n_{j}^{-}}\left(\tau_{j}\right)} \\
& =\underbrace{\left.-\frac{\partial_{\tau} p_{n}(\tau)}{p_{n}(\tau)} \right\rvert\, n(\tau)}_{\equiv \dot{s}_{\text {tot }}(\tau)}-\sum_{j} \delta\left(\tau-\tau_{j}\right) \ln \frac{p_{n_{j}^{+}} w_{n_{j}^{+} n_{j}^{-}}}{p_{n_{j}^{-}} w_{n_{j}^{-} n_{j}^{+}}}
\end{aligned} \underbrace{\sum_{j} \delta\left(\tau-\tau_{j}\right) \ln \frac{w_{n_{j}^{+} n_{j}^{-}}}{w_{n_{j}^{-} n_{j}^{+}}}}_{\equiv-\dot{s_{\mathrm{m}}(\tau)}} .
$$

- Two fluctuation theorems [U.S., PRL 95, 040602, 2005]
- Integral FT for total entropy production for arbitrary driving

$$
\left\langle\exp \left(-\Delta s_{\text {tot }}\right)\right\rangle=1
$$

- Detailed FT for total entropy production in a NESS

$$
p\left(-\Delta s_{\mathrm{tot}}\right) / p\left(\Delta s_{\mathrm{tot}}\right)=\exp \left(-\Delta s_{\mathrm{tot}}\right)
$$

Illustration: F_{1}-ATPase [U.S., Europhys. Lett. 70, 36, 2005]

- $\partial_{\tau} p_{1}=-\left(k^{+}+k^{-}\right) p_{1}+k^{+} p_{2}+k^{-} p_{3} \quad \& \quad$ сус
- $\Delta s_{\text {tot }}=n \ln \left(k^{+} / k^{-}\right)=n\left[\mu_{A T P}-\mu_{A D P}-\mu_{P}\right] / T$
- $p(-n) / p(n)=\exp \left[-n \ln \left(k^{+} / k^{-}\right)\right]$
- More complex schemes:
- Intermediate steps

- Michaelis Menten kinetics

Periodically driven system: Optically active defect center in diamond [S.Schuler, T. Speck, C. Tietz, J. Wrachtrup and U.S., PRL 94, 180602, 2005]
bright state

- Trajectories
- Integral theorem:

$$
\langle\exp [-R]\rangle=1 \quad \text { for } \quad R[n(\tau)] \equiv-\int_{o}^{t} d \tau \dot{\lambda} \partial_{\lambda} \ln p_{n(\tau)}^{s}(\lambda) \quad\left(=W_{d} \sim \Delta s_{\mathrm{tot}}\right)
$$

$p(R)$

- Detailed theorem for symmetric protocols $\lambda(\tau)=\lambda(t-\tau)$:

$$
p(-R) / p(R)=\exp (-R) \Rightarrow\left\langle R^{k}\right\rangle=(-1)^{k}\left\langle R^{k} \exp (-R)\right\rangle
$$

Perspectives

- Stochastic dynamics as a unifying concept for FT and JR
- Stochastic entropy leads (at least) to nice theorems for finite times
- Isothermal non-eq dynamics as emerging paradigm for small driven systems
- mechanically driven: colloids, polymers, proteins
- biochemically driven: single enzyms, motors, switches, networks

