Cycles in Random Graphs

Valery Van Kerrebroeck

Enzo Marinari, Guilhem Semerjian

[Phys. Rev. E 75, 066708 (2007)]
[J. Phys. Conf. Series 95, 012014 (2008)]

Outline

- Introduction
- Statistical Mechanics Approach
- Application 1: Finding Long Cycles
- Application 2: Vertex and Edge Ranking
- Conclusions and Future Perspectives

Definitions

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Definitions

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length L is a sequence $\left(i_{0}, i_{1}, \ldots, i_{L}\right)$ where each one of the vertices i_{k} is adjacent to i_{k+1} for all $k=0,1, \ldots, L-1$

Definitions

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length L is a sequence $\left(i_{0}, i_{1}, \ldots, i_{L}\right)$ where each one of the vertices i_{k} is adjacent to i_{k+1} for all $k=0,1, \ldots, L-1$
Path of length L is a non self-intersecting walk passing through L edges of a graph.

Definitions

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length L is a sequence $\left(i_{0}, i_{1}, \ldots, i_{L}\right)$ where each one of the vertices i_{k} is adjacent to i_{k+1} for all $k=0,1, \ldots, L-1$
Path of length L is a non self-intersecting walk passing through L edges of a graph.
Cycle (loop) of length L is a closed path along L edges of a graph which visits each vertex at most once.

Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges $\{i, j\}$

Walk of length L is a sequence $\left(i_{0}, i_{1}, \ldots, i_{L}\right)$ where each one of the vertices i_{k} is adjacent to i_{k+1} for all $k=0,1, \ldots, L-1$
Path of length L is a non self-intersecting walk passing through L edges of a graph.
Cycle (loop) of length L is a closed path along L edges of a graph which visits each vertex at most once.
Hamiltonian cycle $=$ cycle covering all vertices of a graph

Definitions

Simple, Undirected Graph G(N,M)
 has N vertices i and M edges $\{i, j\}$

Walk of length L is a sequence $\left(i_{0}, i_{1}, \ldots, i_{L}\right)$ where each one of the vertices i_{k} is adjacent to i_{k+1} for all $k=0,1, \ldots, L-1$
Path of length L is a non self-intersecting walk passing through L edges of a graph.
Cycle (loop) of length L is a closed path along L edges of a graph which visits each vertex at most once.
Hamiltonian cycle $=$ cycle covering all vertices of a graph cycle cover $=$ union of vertex disjoint cycles covering all vertices of a graph

Interest?

- Graph theory:

Hamiltonian cycles (= cycles of length N): NP-complete (cfr. Traveling Salesman Problem)
Statistical properties of \# cycles on random graph ensembles

Interest?

- Graph theory:

Hamiltonian cycles (= cycles of length N): NP-complete (cfr. Traveling Salesman Problem)
Statistical properties of \# cycles on random graph ensembles

- Understanding Real World Networks (e.g. Internet, WWW, biological networks, social networks):
- local properties: degree distribution, clustering
\rightarrow short cycles
- global properties: shortest paths, network motives
\rightarrow longer cycles
- dynamics: feedback mechanism
- vertex ranking

Computational Difficulty

$\Rightarrow 3$ fundamental questions:

1. Do they exist?
2. If yes, how many?
3. Can we locate them?

Computational Difficulty depends on length L of cycle:

- short cycles $(L=3,4,5)$: exhaustive enumeration has time upper bound of $\mathcal{O}(N \times \#$ cycles $)$, where $\#$ cycles $\propto \exp N$
- intermediate cycles $\left(\lim _{N \rightarrow \infty} \frac{L}{N}=0\right)$: in limit $N \rightarrow \infty$ distribution can be computed for most random graph ensembles
- long extensive cycles ($L \propto N$), e.g., Hamiltonian cycles:
- Regular graphs: Hamiltonian with high probability (Wormald)
- Sparse graphs with minimum degree 3 and bounded maximum degree: conjectured to be Hamiltonian (Wormald)

A Constraint Satisfaction Problem for Cycles

- \forall edges $l: S_{l}=0 / 1$ if edge l is absent / present
\forall vertices $i: \underline{S}_{i}=\left\{S_{l} \mid l\right.$ is a neighboring edge of vertex $\left.i\right\}$

A Constraint Satisfaction Problem for Cycles

- \forall edges $l: S_{l}=0 / 1$ if edge l is absent / present
\forall vertices $i: \underline{S}_{i}=\left\{S_{l} \mid l\right.$ is a neighboring edge of vertex $\left.i\right\}$

- Define $\operatorname{Prob}[\underline{S}]=\left\{\begin{aligned} 0 & \text { if } \underline{S} \text { is not a cycle } \\ f(u) & \text { if } \underline{S} \text { is a cycle }\end{aligned}\right.$

A Constraint Satisfaction Problem for Cycles

- \forall edges $l: S_{l}=0 / 1$ if edge l is absent / present
\forall vertices $i: \underline{S}_{i}=\left\{S_{l} \mid l\right.$ is a neighboring edge of vertex $\left.i\right\}$

- Define $\operatorname{Prob}[\underline{S}]=\left\{\begin{aligned} 0 & \text { if } \underline{S} \text { is not a cycle } \\ f(u) & \text { if } \underline{S} \text { is a cycle }\end{aligned}\right.$
$\operatorname{Prob}[\underline{S}]=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right)$ where $f_{i}\left(\underline{S}_{i}\right) \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\ 0 & \text { otherwise }\end{cases}$

A Constraint Satisfaction Problem for Cycles

- \forall edges $l: S_{l}=0 / 1$ if edge l is absent / present
\forall vertices $i: \underline{S}_{i}=\left\{S_{l} \mid l\right.$ is a neighboring edge of vertex $\left.i\right\}$

- Define $\operatorname{Prob}[\underline{S}]=\left\{\begin{aligned} 0 & \text { if } \underline{S} \text { is not a cycle } \\ f(u) & \text { if } \underline{S} \text { is a cycle }\end{aligned}\right.$
$\operatorname{Prob}[\underline{S}]=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right)$ where $f_{i}\left(\underline{S}_{i}\right) \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\ 0 & \text { otherwise }\end{cases}$

A Constraint Satisfaction Problem for Cycles

- \forall edges $l: S_{l}=0 / 1$ if edge l is absent / present
\forall vertices $i: \underline{S}_{i}=\left\{S_{l} \mid l\right.$ is a neighboring edge of vertex $\left.i\right\}$

- Define $\operatorname{Prob}[\underline{S}]=\left\{\begin{aligned} 0 & \text { if } \underline{S} \text { is not a cycle } \\ f(u) & \text { if } \underline{S} \text { is a cycle }\end{aligned}\right.$
$\operatorname{Prob}[\underline{S}]=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right)$ where $f_{i}\left(\underline{S}_{i}\right) \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\ 0 & \text { otherwise }\end{cases}$
$u=1$ uniform sampling
$u \rightarrow \infty$ cycles of longest length (e.g. Hamiltonian cycles)

l. 1 Decimation \Rightarrow Hamiltonian Cycles

for $n=1$ to M

- choose l_{n} : $S_{l_{n}}$ is undefined
- draw $S_{l_{n}}$ according to $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

I. 1 Decimation \Rightarrow Hamiltonian Cycles

for $n=1$ to M

- choose $l_{n}: S_{l_{n}}$ is undefined
- draw $S_{l_{n}}$ according to $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

Problem 1: $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

Problem 2: probability law selecting set of cycles of total length L

I. 1 Decimation \Rightarrow Hamiltonian Cycles

for $n=1$ to M

- choose $l_{n}: S_{l_{n}}$ is undefined
- draw $S_{l_{n}}$ according to $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

Problem 1: $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

Problem 2: probability law selecting set of cycles of total length L

$$
\operatorname{Prob}[\underline{S}]=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right) \text { where } f_{i}\left(\underline{S}_{i}\right) \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\ 0 & \text { otherwise }\end{cases}
$$

for $u \rightarrow \infty \Rightarrow\left\{\begin{array}{r}\text { cycle cover }\end{array}\right.$ if \underline{S} consists of more than one cycle

I. 1 Decimation \Rightarrow Hamiltonian Cycles

for $n=1$ to M

- choose $l_{n}: S_{l_{n}}$ is undefined
- draw $S_{l_{n}}$ according to $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$

Problem 1: $\operatorname{Prob}\left[S_{l_{n}} \mid S_{l_{1}}, \ldots, S_{l_{n-1}}\right]$
\rightarrow approximate by means of Belief Propagation $\Leftrightarrow \operatorname{Prob}[\underline{S}]=\prod g\left(\underline{S}_{x}\right)$
Problem 2: probability law selecting set of cycles of total length L

$$
\begin{aligned}
& \operatorname{Prob}[\underline{S}]=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right) \text { where } f_{i}\left(\underline{S}_{i}\right) \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\
0 & \text { otherwise }\end{cases} \\
& \text { for } u \rightarrow \infty \Rightarrow\left\{\begin{array}{r}
\text { cycle cover if } \underline{S} \text { consists of more than one cycle } \\
\text { hamiltonian cycle if } \underline{S} \text { consists of just one cycle }
\end{array}\right.
\end{aligned}
$$

Belief Propagation

Compute partition function $Z=\sum_{\underline{x}} w(\underline{x})$
\Leftrightarrow Minimizing the corresponding Gibbs free energy functional

$$
F_{\text {Gibbs }}\left[p_{\mathrm{var}}\right]=\sum_{\underline{x}} p_{\mathrm{var}}(\underline{x}) \ln \left(\frac{p_{\mathrm{var}}(\underline{x})}{w(\underline{x})}\right)
$$

since $\min _{p_{\text {var }}} F_{\text {Gibbs }}\left[p_{\text {var }}\right]=F_{\text {Gibbs }}\left[P_{\text {Gibbs }}\right]=-\ln Z$.
Mean Field approximation: factorizable trial distributions

$$
p_{\mathrm{MF}}(\underline{x})=\prod_{i} p_{i}\left(x_{i}\right)
$$

Bethe approximation: take first order correlations into account
e.g. $p_{\text {Bethe }}(\underline{x})=\frac{\prod_{\{i, j\}} p_{i j}\left(x_{i}, x_{j}\right)}{\prod_{i} p_{i}\left(x_{i}\right)}$ demanding normalized distributions $p_{i}, p_{i j}$ and consistency
\Rightarrow Introduce Lagrange Multipliers
\Leftrightarrow Finding fixed point of the corresponding distributed Belief Propagation (BP) algorithm.

Belief Propagation

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:
$y_{i \rightarrow j}=f_{1}\left(u,\left\{y_{k \rightarrow i}\right\}_{k \in \partial i \backslash j}\right)$
$\Rightarrow p_{l}\left(S_{l}=1\right)=\frac{u y_{i \rightarrow j} y_{j \rightarrow i}}{1+u y_{i \rightarrow j} y_{j \rightarrow i}}$
On a tree-like graph:
- BP converges fast!
- $F_{\text {Bethe }}$, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations. \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}\left(10^{6}\right)$.

Belief Propagation

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:
$y_{i \rightarrow j}=f_{1}\left(u,\left\{y_{k \rightarrow i}\right\}_{k \in \partial i \backslash j}\right)$
$\Rightarrow p_{l}\left(S_{l}=1\right)=\frac{u y_{i \rightarrow j} y_{j \rightarrow i}}{1+u y_{i \rightarrow j} y_{j \rightarrow i}}$
On a tree-like graph:
- BP converges fast!
- $F_{\text {Bethe }}$, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations. \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}\left(10^{6}\right)$.

Belief Propagation

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:
$y_{i \rightarrow j}=f_{1}\left(u,\left\{y_{k \rightarrow i}\right\}_{k \in \partial i \backslash j}\right)$
$\Rightarrow p_{l}\left(S_{l}=1\right)=\frac{u y_{i \rightarrow j} y_{j \rightarrow i}}{1+u y_{i \rightarrow j} y_{j \rightarrow i}}$
On a tree-like graph:
- BP converges fast!
- $F_{\text {Bethe }}$, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations. \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}\left(10^{6}\right)$.

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Performance on sparse graphs with $N=100,200, \ldots, 1600$
- Regular graphs ($c=3,4,5$): $\forall \mathbf{H C}$
- Bimodal graphs ($q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5}$): $94-99 \% \mathbf{H C}(\pm 99 \% \mathbf{C C})$

N	$q_{3,4}^{0.5}$		$q_{3,5}^{0.5}$		$q_{4,5}^{0.5}$	
	CC	HC	CC	HC	cc	HC
		DEC		DEC		DEC
100	99.9	96.0	98.9	69.9	98.7	56.9
200	99.6	96.2	99.7	71.1	98.9	50.0
400	99.7	96.4	99.9	67.7	98.9	50.7
800	99.8	96.7	99.6	68.9	99.6	46.8
1600	99.7	97.8	99.9	68.6	99.9	52.3

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Performance on sparse graphs with $N=100,200, \ldots, 1600$
- Regular graphs ($c=3,4,5$): $\forall \mathbf{H C}$
- Bimodal graphs ($q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5}$): $94-99 \% \mathbf{H C}(\pm 99 \% \mathbf{C C})$

	$q_{3,4}^{0.5}$			$q_{3,5}^{0.5}$			$q_{4,5}^{0.5}$		
N	CC	HC	CC	HC	CC	HC			
NEC	LR		DEC	LR		DEC	LR		
100	99.9	96.0	99.6	98.9	69.9	92.9	98.7	56.9	96.0
200	99.6	96.2	99.3	99.7	71.1	95.2	98.9	50.0	96.0
400	99.7	96.4	99.2	99.9	67.7	95.4	98.9	50.7	94.2
800	99.8	96.7	98.7	99.6	68.9	95.7	99.6	46.8	94.5
1600	99.7	97.8	98.7	99.9	68.6	92.0	99.9	52.3	94.0

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Time complexity
- decimation procedure $\sim \mathcal{O}\left(M^{2}\right)$

$$
\text { e.g. } q_{c}(k)=\delta_{k, c}: c=3(+), 4(\times), 5(*)
$$

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Time complexity
- decimation procedure $\sim \mathcal{O}\left(M^{2}\right)$

$$
\text { e.g. } q_{3,4}^{0.5}(+), q_{3,5}^{0.5}(\times), q_{4,5}^{0.5}(*)
$$

slope $\simeq 0.23$

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Time complexity
- decimation procedure $\sim \mathcal{O}\left(M^{2}\right)$
- number of trials
e.g. $q_{3,4}^{0.5}$ (dotted curve), $q_{3,5}^{0.5}$ (dashed curve), $q_{4,5}^{0.5}$ (full line)

I. 1 Decimation \Rightarrow Hamiltonian Cycles

- Time complexity
- decimation procedure $\sim \mathcal{O}\left(M^{2}\right)$
- number of trials
e.g. $q_{3,4}^{0.5}$ (dotted curve), $q_{3,5}^{0.5}$ (dashed curve), $q_{4,5}^{0.5}$ (full line)

Optimization: Local rewiring $\Rightarrow \mathrm{CC} \rightarrow \mathrm{HC}$

I. 2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}^{\prime}, \underline{S}^{\prime \prime}, \ldots$, which admits $\operatorname{Prob}[\underline{S}]$ as unique stationary distribution.
\rightarrow Ergodic? Convergence time?
\rightarrow Determine appropriate transitions $\underline{S} \rightarrow \underline{S}^{\prime}$, and transition rates $W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right)$: e.g. by means of detailed balance:
$W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right) \operatorname{Prob}[\underline{S}]=W\left(\underline{S}^{\prime} \rightarrow \underline{S}\right) \operatorname{Prob}\left[\underline{S}^{\prime}\right]$

I. 2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}^{\prime}, \underline{S}^{\prime \prime}, \ldots$, which admits $\operatorname{Prob}[\underline{S}]$ as unique stationary distribution.
\rightarrow Ergodic? Convergence time?
\rightarrow Determine appropriate transitions $\underline{S} \rightarrow \underline{S}^{\prime}$, and transition rates $W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right)$: e.g. by means of detailed balance:

$$
W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right) \operatorname{Prob}[\underline{S}]=W\left(\underline{S}^{\prime} \rightarrow \underline{S}\right) \operatorname{Prob}\left[\underline{S}^{\prime}\right]
$$

$$
\operatorname{Prob}[\underline{S}]=\left\{\begin{array}{rl}
0 & \text { if } \underline{S} \text { is not a cycle } \\
f(u) & \text { if } \underline{S} \text { is a cycle }
\end{array}=\frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right)\right.
$$

I. 2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}^{\prime}, \underline{S}^{\prime \prime}, \ldots$, which admits $\operatorname{Prob}[\underline{S}]$ as unique stationary distribution.
\rightarrow Ergodic? Convergence time?
\rightarrow Determine appropriate transitions $\underline{S} \rightarrow \underline{S}^{\prime}$, and transition rates $W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right)$: e.g. by means of detailed balance:

$$
W\left(\underline{S} \rightarrow \underline{S}^{\prime}\right) \operatorname{Prob}[\underline{S}]=W\left(\underline{S}^{\prime} \rightarrow \underline{S}\right) \operatorname{Prob}\left[\underline{S}^{\prime}\right]
$$

$$
\operatorname{Prob}[\underline{S}]=\left\{\begin{array}{rl}
0 & \text { if } \underline{S} \text { is not a path } \\
f(u) & \text { if } \underline{S} \text { is a path }
\end{array}=\frac{1}{Z}\left(u^{\sum_{l} S_{l}}\right)\left(\prod_{i} \tilde{f}_{i}\left(\underline{S}_{i}\right)\right)\left(\eta^{n} \underline{S}\right)\right.
$$

$n_{\underline{S}}=$ number of disjoint paths of configuration \underline{S}
$\eta \in[0,1)$
$\tilde{f}_{i}\left(\underline{S}_{i}\right)= \begin{cases}1 & \text { if } \sum_{l \in \partial i} S_{l} \in\{0,2\} \\ \epsilon \in[0,1] & \text { if } \sum_{l \in \partial i} S_{l}=1 \\ 0 & \text { otherwise }\end{cases}$

I. 2 Monte Carlo \Rightarrow Hamiltonian Cycles

- Succes rate:
- Regular graphs of size $N=100,200,400,800: 100 \%$
- Bimodal graphs $\left(q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5}\right)$ of size $N=100,200,400,800: 100 \% \rightarrow$ Comfirmation of Wormald's conjecture on non-regular graphs

I. 2 Monte Carlo \Rightarrow Hamiltonian Cycles

- Succes rate:
- Regular graphs of size $N=100,200,400,800: 100 \%$
- Bimodal graphs $\left(q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5}\right)$ of size $N=100,200,400,800: 100 \% \rightarrow$ Comfirmation of Wormald's conjecture on non-regular graphs
- Time requirements \rightarrow optimized by means of N -fold MC (up to M times faster):
- Distribution depends on u, ϵ and η

Comparison

We find Hamiltonian Cycles for all sparse graphs with $k_{\text {min }}=3$.

	BP	MC
+	versatile	-
+	very parameter sensitive	
+	polynomial in N	-
	no garantee	+
nore reliable		

Comparison

We find Hamiltonian Cycles for all sparse graphs with $k_{\text {min }}=3$.

BP	MC	
+	versatile	-
very parameter sensitive		
+	polynomial in N	-
	exponential in N	
-	no garantee	+
more reliable		

\rightarrow CPU time: e.g. bimodal graph with $q_{3,4}^{0.5}, N=1600$
BP 30', i.e. 72 trials (70 cycle covers) (with local moves: 5')
MC 40' (with optmized parameter values)

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i)=|\partial i|$
$(+)$ easy to compute (-) very rough measure

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i)=|\partial i|$
$(+)$ easy to compute (-) very rough measure

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i)=|\partial i|$
$(+)$ easy to compute (-) very rough measure
PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_{i}^{+}} \frac{\mathcal{P}(j)}{d_{j}^{-}}$
(+) iterative algorithm, emulates behavior of a Random Walk

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i)=|\partial i|$
$(+)$ easy to compute (-) very rough measure
PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_{i}^{+}} \frac{\mathcal{P}(j)}{d_{j}^{-}}$
(+) iterative algorithm, emulates behavior of a Random Walk
Betweenness Centrality $\mathcal{B}(i)=\sum_{k, l(\neq i) \in V} \frac{\sigma_{k, l}(i)}{\sigma_{k, l}}$
$(+)$ based on shortest paths, (-) time requirements $\sim \mathcal{O}(N M)$

II. Vertex (and Edge) Ranking

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i)=|\partial i|$
$(+)$ easy to compute (-) very rough measure
PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_{i}^{+}} \frac{\mathcal{P}(j)}{d_{j}^{-}}$
(+) iterative algorithm, emulates behavior of a Random Walk
Betweenness Centrality $\mathcal{B}(i)=\sum_{k, l(\neq i) \in V} \frac{\sigma_{k, l}(i)}{\sigma_{k, l}}$
$(+)$ based on shortest paths, (-) time requirements $\sim \mathcal{O}(N M)$
Loop Ranking $\mathcal{L}(i)=\sum_{i \in \text { Cycle }} w($ Cycle $) \propto \operatorname{Prob}(i \in$ Cycle $)$
for $\operatorname{Prob}[\underline{S}]=\frac{1}{Z} \prod_{l}\left(r_{l}\right)^{S_{l}} \prod_{i} f_{i}\left(\underline{S}_{i}\right)$

Directed Small World Network

Directed Small World Network

Directed Small World Network

Loop Ranking

Betweenness Centrality

Path-based Ranking:

- capture importance of vertices on small-world networks
- allow for edge ranking
- lead to similar results for the most important vertices and edges

Conclusions and Future Perspectives

- We find Hamiltonian cycles on regular and non-regular sparse graphs,
- b.m.o. BP: faster
- b.m.o. MC: more reliable
- New path-based vertex and edge ranking captures their importance in traffic flow (on directed small world networks).

Conclusions and Future Perspectives

- We find Hamiltonian cycles on regular and non-regular sparse graphs,
- b.m.o. BP: faster
- b.m.o. MC: more reliable
- New path-based vertex and edge ranking captures their importance in traffic flow (on directed small world networks).
\rightarrow Deeper investigation of the level of approximation of BP.
\rightarrow Improve MC by finding optimal parameters in automated way.
\rightarrow Find loops or paths of intermediate length.
\rightarrow Investigate real-world networks (scale free, weighted).
\rightarrow Consider a Potts-like configuration space.

