CRITICAL EXPONENTS FROM A LANDAU-LIKE APPROACH

Sören Sanders

Carl von Ossietzky Universität, Institute of Physics, 26111 Oldenburg, Germany

Abstract

Landau's approach to continuous phase transitions provides an effective theory for the description around the critical point but falls short in correctly establishing non-trivial critical exponents. Using the example of the Mott-insulator to superfluid transition of the Bose-Hubbard model, we derive from the microscopic properties a Landau-like description not restricted by this limitation and correctly reproduce the best known value for the critical exponent β of the XY universality class.

Landau's approach

Continuous phase transitions are often described by Landau's approach [Lan69]: Assume that the thermodynamical potential Γ of a given system possesses the form

$$\Gamma = a_0 + a_2 \psi^2 + a_4 \psi^4 , \qquad (1)$$

Hypergeometric analytic continuation

The sought-after zero of the coefficient $a_2 := -1/c_2$ corresponds to the denominator's radius of convergence. This means that we have to combine our perturbation theoretical expansion of the coefficients c_{2k} with an analytic continuation. We have shown that **hypergeometric functions** are an excellent candidate for this task [SH17b]:

where the coefficients a_0 , a_2 , a_4 depend on a **control parameter** j, and the system adopts, for each fixed value of j, that value ψ_{\min} of ψ for which the potential (1) takes on its minimum. If then a_4 is positive and thus guarantees stability, and if one may further neglect the dependence of a_4 on j, while a_2 crosses zero at some value j_c , being positive for $j < j_c$ and negative for $j > j_c$, one finds $\psi_{\min} = 0$ for $j < j_c$, whereas

$$\psi_{\min} = \left(\frac{-a_2}{2a_4}\right)^{1/2} \quad \text{for} \quad j > j_c \,.$$
(2)

In particular, if a_2 varies linearly with j according to $a_2(j) = -\alpha(j - j_c)$ with $\alpha > 0$, one obtains

$$\psi_{\min} = \sqrt{\frac{\alpha}{2a_4} (j - j_c)^{1/2}} \quad \text{for} \quad j > j_c$$
 (3)

Thus, ψ_{\min} serves as an **order parameter** of the transition, emerging with the mean-field exponent $\beta = 1/2$ at the transition point j_c .

The Bose-Hubbard model

The Bose-Hubbard model is an archetypal description of Bose particles on a lattice which incorporates nearest neighbor tunneling as well as a repulsive on-site interaction and has the grand-canonical Hamiltonian

$$c_{2k} = \alpha_{2k}^{(0)} \cdot {}_{2}F_{1}\left(a, b; c; \frac{J/U}{(J/U)_{c}}\right) = \alpha_{2k}^{(0)} \sum_{\nu=0}^{\infty} \frac{(a)_{\nu} (b)_{\nu}}{\nu! (c)_{\nu}} \left(\frac{J/U}{(J/U)_{c}}\right)^{\nu}.$$

This, in particular, implies that the asymptotics of the coefficients are given by $c_{2k}(\mu/U, J/U) \sim \left(J/U - \left(J/U\right)_{c}\right)^{-\epsilon_{2k}(\mu/U)}$

at the phase boundary with divergence exponents $\epsilon_{2k}(\mu/U)$.

Results

We have found that, in contrast to the simplistic form in equation (1), we are not entitled to neglect terms of order $\mathcal{O}(\psi^6)$, and have to consider the effective potential in the form

$$\Gamma = e_0 + a_2 \psi^2 + a_4 \psi^4 + a_6 \psi^6 , \qquad (12)$$

with its minimum given by

$$\psi_{\min}^2 = \frac{-a_4}{3a_6} \left(1 \pm \sqrt{1 - \frac{3a_2a_6}{a_4^2}} \right) . \tag{13}$$

For the truncation (12) to be bounded from below, we have to ask for a_6 to be positive. Under the validity of this assumption we can deduce that $\epsilon_6 \ge 2\epsilon_4 - \epsilon_2$ [SH17a]. In case, this is indeed an equality the exponent can be written as

$$=\frac{\epsilon_4-3\epsilon_2}{2}$$

(14)

(10)

(11)

 $\widehat{H}_{\rm BH} = \frac{1}{2} \sum_{i} \widehat{n}_i (\widehat{n}_i - 1) - \mu / U \sum_{i} \widehat{n}_i - J / U \sum_{i,j} \widehat{b}_i^{\dagger} \widehat{b}_j \,.$ (4)

Derivation of the effective potential

We extend the Bose-Hubbard model by adding spatially homogeneous sources and drains, as expressed by the extended Hamiltonian

$$\hat{I} = \frac{1}{2} \sum_{i} \widehat{n}_{i}(\widehat{n}_{i} - 1) - \mu/U \sum_{i} \widehat{n}_{i} - J/U \sum_{\langle i,j \rangle} \widehat{b}_{i}^{\dagger} \widehat{b}_{j} + \sum_{i} \eta \left(\widehat{b}_{i}^{\dagger} + \widehat{b}_{i} \right) .$$
(5)

Then the linear response

$$2 \cdot \psi(\eta) := \frac{\partial \mathcal{E}}{\partial \eta} \tag{6}$$

of the intensive ground state energy $\mathcal{E} := \langle \widehat{H} \rangle_{gs} / M$ with respect to the source strength η has the characteristic of an **order parameter** and the **Legendre transformation**

$$\Gamma(\mu/U, J/U, \psi) = \mathcal{E}(\mu/U, J/U, \eta(\psi)) - 2\psi \eta(\psi) , \qquad (7)$$

allows us to derive an effective potential Γ as a function of ψ . The system then adopts, for each combination of fixed values of $(\mu/U, J/U)$, that value ψ_{\min} for which the effective potential (7) takes on its minimum; in perfect analogy to Landau's approach. To evaluate the effective potential we have expanded the intensive ground state energy

To check this premise, we have to study the coefficient $a_6 = \frac{c_6}{c_2^6} - \frac{4c_4^2}{c_2^7}$ in detail. As unfortunately, we lack reliable data for the coefficient c_6 we are restricted to the investigation of the term c_4^2/c_2^7 . The results for the two-dimensional Bose-Hubbard (left) as well as for comparison the three-dimensional Bose-Hubbard model (right), which is above the critical dimension, are displayed below.

For the two-dimensional Bose-Hubbard model only we find the intriguing equality

which inserted into relation (14) yields the simpler formula

$$\frac{\varepsilon_2}{4} \tag{16}$$

for the critical exponent β at the multicritical tips of the lobes. This enables us to obtain the following estimates to the critical exponent β and compare them to the best known estimate $\beta = 0.3485(2)$ for the three-dimensional XV universality class

[Lan69] Lew D. Landau. Collected Papers. Vol. 1. Nauka, Moscow, 1969, p. 234.

[SH17a] Sören Sanders and Martin Holthaus. "Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard model". In: New Journal of Physics 19.10 (2017), p. 103036. URL: http://stacks.iop.org/1367-2630/19/i=10/a=103036.

[SH17b] Sören Sanders and Martin Holthaus. "Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transformation and Padé approximation". In: Journal of Physics A: Mathematical and Theoretical 50.46 (2017), p. 465302. URL: http://stacks.iop.org/1751-8121/50/i=46/a=465302.