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PART I:

Basics
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• Consider (single particle/many-body) quantum system on H
with time-periodic Hamiltonian

H(t) = H(t+ T )

B TASK: Solve time-dependent Schrödinger equation

i~ d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

B Introduce time-evolution operator

|ψ(t)〉 = U(t,0)|ψ(0)〉
so that

i~ d

dt
U(t,0) = H(t)U(t,0) ; U(0,0) = id

In any case,

U(t1 + t2,0) = U(t1 + t2, t1) U(t1,0)

B But since H(t) = H(t+ T ) , we have even more:
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• Assertion 1:

If H(t) = H(t + T ) is periodic in time with period T ,
then U(t,0) obeys the identity

U(t+ T,0) = U(t,0)U(T,0)

B Proof: Consider

V (t) := U(t+ T,0) U−1(T,0)

Then one has V (0) = id = U(0,0) and

i~ d

dt
V (t) = i~ d

dt
U(t+ T,0) U−1(T,0)

= H(t+ T ) U(t+ T,0) U−1(T,0)

= H(t) V (t) .

That’s it. �
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(For safety reasons: Let H be of finite dimension.)

B Consider one-cycle evolution operator

U(T,0) ≡ exp(−iGT/~)

so that G is Hermitian.

B Define

P (t) := U(t,0) exp(+iGt/~)

Then

P (t+ T ) = U(t+ T,0) exp
(

+ iG(t+ T )/~
)

= U(t,0)
(
U(T,0) exp(+iGT/~)

)
exp(+iGt/~)

= P (t)
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• Assertion 2:

Under suitable technical propositions, the time-evolution

operator U(t,0) of a T -periodically time-dependent quan-

tum system has the form

U(t,0) = P (t) exp(−iGt/~)

where the unitary operator P (t) = P (t+T ) is T -periodic,

and the operator G is Hermitian. �

B Write eigenvalues of U(T,0) = exp(−iGT/~) as {e−iεnT/~} :

U(T,0) =
∑
n
|n〉 e−iεnT/~ 〈n|

implying

e−iGt/~|n〉 = e−iεnt/~|n〉
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B Start from

|ψ(0)〉 =
∑
n
|n〉〈n|ψ(0)〉

=
∑
n
an|n〉

and apply U(t,0) :

|ψ(t)〉 = U(t,0)|ψ(0)〉

=
∑
n
an P (t) e−iGt/~ |n〉

=
∑
n
an P (t) |n〉 e−iεnt/~

=
∑
n
an|un(t)〉 e−iεnt/~

Here we have defined the Floquet functions |un(t)〉 ≡ P (t)|n〉
which evidently are T -periodic: |un(t)〉 = |un(t+ T )〉
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B Definition:

|ψn(t)〉 = |un(t)〉e−iεnt/~

is called Floquet state

• Assertion 3:

Under suitable technical propositions, any solution |ψ(t)〉
to the time-dependent Schrödinger equation with a T -
periodic Hamiltonian H(t) can be expanded with respect
to the Floquet states,

|ψ(t)〉 =
∑
n
an |un(t)〉 e−iεnt/~

where the coefficients an do not depend on time. �

B Definition:
The quantities εn are called quasienergies
[Ya. B. Zel’dovich (1966); V. I. Ritus (1966)]
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• Interpretation:

Consider

|ψ(t)〉 = P (t)|ψ̃(t)〉

Then, after some juggling,

i~ d

dt
|ψ̃(t)〉 = G|ψ̃(t)〉

This appears to good to be true ???
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• Example 1

The linearly driven harmonic oscillator:

H(x, t) = −
~2

2M

∂2

∂x2
+

1

2
Mω2

0x
2 + Fx cos(ωt)

B Strategy of solution (goes back to Husimi [1953]):

Let ξ(t) be the T -periodic solution to the classical equation

Mξ̈ = −Mω2
0ξ − F cos(ωt)

namely

ξ(t) =
F

M(ω2 − ω2
0)

cos(ωt)

Let χn(x) be an eigenfunction with En = ~ω(n+ 1/2) , and

L(t) =
1

2
Mξ̇2 −

1

2
Mω2

0ξ
2 − Fξ cos(ωt)
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Then time-dependent wave functions are given by

ψn(x, t) = χn
(
x− ξ(t)

)
e−iEnt/~

× exp
(

i

~

[
Mξ̇(t)

(
x− ξ(t)

)
+
∫ t

0
dτ L(τ)

])
B Extracting secular contributions, one finds Floquet functions

un(x, t) = χn
(
x− ξ(t)

)
exp

(
i

~

[
Mξ̇(t)

(
x− ξ(t)

)
+
∫ t

0
dτ L(τ)−

t

T

∫ T
0

dτ L(τ)
])

and quasienergies

εn = En −
1

T

∫ T
0

dτ L(τ)

= ~ω0(n+ 1/2) +
F2

4M(ω2 − ω2
0)

• All levels are shifted equally – this is an exceptional system!
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• Example 2

The two-level system in a circularly polarized radiation field:

Hc(t) =
~ω0

2
σz +

µF

2

(
σx cosωt+ σy sinωt

)

B Transform to co-rotating frame:

P (t) = exp
(
iωt(1− σz)/2

)

This gives

P †(t)
(
Hc(t)− i~ d

dt

)
P (t) =

~ω
2

1 +
~
2

(ω0 − ω)σz +
µF

2
σx − i~ d

dt

Therefore

Gc =
~ω
2

1 +
~
2

(ω0 − ω)σz +
µF

2
σx
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Diagonalization yields quasienergies

ε± =
~
2

(ω ±Ω)

with generalized Rabi frequency

Ω =
√

(ω0 − ω)2 + (µF/~)2

B Observe: For red detuning (ω < ω0) , one has

ε+ → +~ω0/2

ε− → −~ω0/2 + ~ω

whereas for blue detuning (ω > ω0)

ε+ → −~ω0/2 + ~ω
ε− → +~ω0/2
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B Different ac-Stark shifts:

0.0 1.0 2.0

µF / h--ω
0

-1.0

0.0

1.0

ε
 /

 h-
- ω

0

Full lines: Level repulsion for red detuning (ω/ω0 = 0.5)

Dashed lines: Level crossing for blue detuning (ω/ω0 = 1.5)
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• Example 3

The two-level system in a linearly polarized radiation field:

Hl(t) =
~ω0

2
σz + µFσx cosωt

=
~ω0

2
σz +

µF

2

(
σx cosωt+ σy sinωt

)
+
µF

2

(
σx cosωt− σy sinωt

)
B Transformation to rotating frame:

P †(t)
(
Hl(t)− i~ d

dt

)
P (t) = Gc−i~ d

dt
+
µF

2

(
σx cos 2ωt−σy sin 2ωt

)

B Rotating wave approximation (RWA):

Neglect high-frequency terms

• Question: Effect of the counter-rotating component?
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• Example 4

Driven particle in a box (prototypical anharmonic oscillator):

H0(x) =
−~2

2M

d2

dx2
+ V (x)

with

V (x) =

{
0 , |x| < a
∞ , |x| ≥ a

B Consider dipole-type driving:

H(x, t) = H0(x)− F0x cos(ωt)

B Fully numerical approach:

- Truncate H
- Compute U(T,0)

- Diagonalize

- Check “convergence”
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B Use truncated basis of energy eigenstates:

Energy eigenvalues of H0 :

En =
~2π2

8Ma2
n2 ; n = 1,2,3, . . . ,

Dipole matrix elements:

〈ϕm|x|ϕn〉 =

 −
16a

π2

mn

(m2 − n2)2
, m+ n odd

0 , m+ n even ,

B Example:

~ω = 0.95 (E2 − E1)
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B Quasienergies vs. driving amplitude

0.0 5.0 10.0

F
0
a / h--ω

-0.4

0.1

0.6
ε
 /

 h-
- ω

• Question: How to interpret this figure?
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PART II:

Extended Hilbert space

and

adiabatic principle
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• Numerical experiment

B Consider pulses:

H(x, t) = H0(x)− F0(t)x cos(ωt)

with Gaussian envelope

F0(t) = Fmax exp

(
−
t2

2σ2

)

Initial state: ψ(x,−∞) = ϕ1(x)

Final state: ψ(x,+∞) (numerically)

B Compute probability for transition 1→ n :

Pf(n) =
∣∣∣〈ϕn|ψ(+∞)〉

∣∣∣2
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B Final transition probabilities for σ/T = 10

0.0 5.0 10.0

F
max

a / h--ω

0.0

0.5

1.0

P
f

Thin line: 1→ 1 ; heavy line: 1→ 2
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B Final transition probabilities for σ/T = 10

0.0 5.0 10.0

F
max

a / h--ω

0.0

0.5

1.0

P
f

Thin line: 1→ 3 ; heavy line: 1→ 4
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• Questions:

B Why is the “dipole-allowed” transition 1→ 2 suppressed,

and the “dipole-forbidden” transition 1→ 3 favored?

B What is the connection between

“avoided quasienergy crossings”

and

“multiphoton resonances”?

B The Hamiltonian is not periodic in time

— how can we apply Floquet theory?

???
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B Let Hamiltonian depend on “slowly” changing parameters:

P (t) =
(
P1(t), P2(t), . . .

)
such that

HP (t) = HP (t+ T )

for each fixed P .

B Task: Solve Schrödinger equation with “moving parameters”

i~ d

dt
|ψ(t)〉 = HP (t)(t)|ψ(t)〉

B Strategy: Invoke instantaneous Floquet states

|ψP
n (t)〉 = |uP

n (t)〉 exp(−iεPn t/~)
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B Observe: The Floquet states obey

i~ d

dt
|ψP
n (t)〉

=
(

i~ d

dt
|uP
n (t)〉+ εPn |uP

n (t)〉
)

exp(−iεPn t/~)

= HP (t)|uP
n (t)〉 exp(−iεPn t/~)

giving(
HP (t)− i~ d

dt

)
|uP
n (t)〉 = εPn |uP

n (t)〉

This is an eigenvalue equation in an extended Hilbert

space, dubbed L2[0, T ]⊗H

B In this space, t is a coordinate ! [H. Sambe (1973)]
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B Scalar product in L2[0, T ]⊗H :

〈〈u|v〉〉 =
1

T

∫ T
0

dt 〈u(t)|v(t)〉

Observe:

pt =
~
i

d

dt

is the momentum operator (!) conjugate to the t -coordinate

KP = HP (t) + pt

is the quasienergy operator

B The eigenvalue equation

KP |uP
n (t)〉〉 = εPn |uP

n (t)〉〉

adopts the role of the stationary Schrödinger equation!
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• Classical analog:

Consider Hamiltonian Hcl(p, x, t) in phase space
{

(p, x)
}

:

dx

dt
=

∂Hcl

∂p

dp

dt
= −

∂Hcl

∂x

B Introduce extended phase space
{

(p, pt, x, t)
}

,

define “Kamiltonian” Kcl(p, pt, x, t) = Hcl(p, x, t) + pt

Need new time variable τ :

dx

dτ
=

∂Kcl

∂p
=

∂Hcl

∂p

dp

dτ
= −

∂Kcl

∂x
= −

∂Hcl

∂x
dt

dτ
=

∂Kcl

∂pt
= 1

dpt
dτ

= −
∂Kcl

∂t

B Recover old system by setting τ = t !
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• Quantum system:

Introduce “extended wave function” |Ψ(τ, t)〉〉 such that

i~ d

dτ
|Ψ(τ, t)〉〉 = KP (τ)|Ψ(τ, t)〉〉

and

|ψ(t)〉 = |Ψ(τ, t)〉〉
∣∣∣∣
τ=t

B Then we find the proper Schrödinger equation:

i~ d

dt
|ψ(t)〉 = i~ d

dτ
|Ψ(τ, t)〉〉

∣∣∣∣
τ=t

+ i~ d

dt
|Ψ(τ, t)〉〉

∣∣∣∣
τ=t

=
(
HP (τ)(t)− i~ d

dt

)
|Ψ(τ, t)〉〉

∣∣∣∣
τ=t

+ i~ d

dt
|Ψ(τ, t)〉〉

∣∣∣∣
τ=t

= HP (t)(t)|ψ(t)〉

B Observe: KP (τ) remains periodic in time t for any P (τ) !
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• Adiabatic principle:

B Go to extended space L2[0, T ]⊗H : Assume

|Ψ(τ = 0, t)〉〉 = |uP (τ=0)
n (t)〉〉

Then (under appropriate conditions)

|Ψ(τ, t)〉〉 = exp
(
−

i

~

∫ τ
0

dτ ′ εP (τ ′)
n

)
eiγn(τ)|uP (τ)

n (t)〉〉

with

γ̇n(τ) = −Im 〈〈uP (τ)
n |∇Pu

P (τ)
n 〉〉 · Ṗ (τ)

Return to actual Hilbert space H :

|ψ(t)〉 = exp
(
−

i

~

∫ t
0

dt′ εP (t′)
n

)
eiγn(t)|uP (t)

n (t)〉
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• Remark: There is a Berry phase for closed contours

γn(C) = −Im
∮
C
〈〈uP

n |∇Pu
P
n 〉〉 · dP

Parallel transport in L2[0, T ]⊗H is given by

〈〈uP
n |∇Pu

P
n 〉〉 = 0

• Remark: Assume

KP |uP
n (t)〉〉 = εPn |uP

n (t)

Then, for ω = 2π/T and any integer m :

KP |uP
n (t)eimωt〉〉 = (εPn +m~ω)|uP

n (t)eimωt〉〉

Different solutions in L2[0, T ]⊗H give the same state in H :

|uP
n (t)eimωt〉 exp(−i[εPn +m~ω]t/~) = |uP

n (t)〉 exp(−iεPn t/~)
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• Keep in mind:

A quasienergy is a class of equivalent representatives,

{εn +m~ω |m = 0,±1,±2, . . .}

Each Brillouin zone of width ~ω contains one quasienergy
representative of each Floquet state

• Remark:

From the rigorous mathematical viewpoint, the quasi-
energy eigenvalue problem is extremely delicate even for
such “simple” systems as the driven particle in a box: Is
the spectrum pure point?

This is the problem of quantum stability

[J. S. Howland (1989), (1992)]
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• Back to “???”:

0.0 5.0 10.0

F
0
a / h--ω

-0.4

0.1

0.6
ε
 /

 h-
- ω

B Adiabatic-diabatic motion on “quasienergy surfaces”
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• Resolution of “???”

B Amplitude rises: The initial state is adiabatically shifted into

the “connected”Floquet state

B At avoided quasienergy crossings, Landau-Zener-type

transitions to the anticrossing state occur

B All components then again move adiabatically, each acquiring

their own dynamical phase

B Amplitude decreases: At the second traversal of the anti-

crossing, the components interfere

B Interference pattern determines final transition probabilities
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• New “?”

What decides whether there is an anticrossing or a crossing?

B von Neumann-Wigner noncrossing rule (1929)

Eigenvalues of a Hermitian operator which belong to the
same symmetry class generically do not cross.

B Here: K is invariant under generalized parity

P :

{
x → −x
t → t+ T/2

B Label Floquet functions such that |uP
n (t)〉〉 “connects” to

energy eigenstate |ϕn〉 of H0 :

|uP
n (t)eimωt〉〉 has generalized parity (−1)n+m+1
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B Assign label (n,m) to |uP
n (t)eimωt〉〉 :

Anticrossing of (1,1) and (3,−3) at F0a/(~ω) ≈ 4.0

corresponds to “4-photon resonance”

Anticrossing of (1,1) and (4,−6) at F0a/(~ω) ≈ 5.7

corresponds to “7-photon resonance”

B Keep in mind:

Selection rules for strongly driven systems are deter-

mined by symmetries of K in L2[0, T ]⊗H , not by those

of H in H !

B Major problem:

What about all the other apparent crossings?
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B Anticrossing among (1,0) and (6,−13) :

3.01607010 3.01607016

F
0
a / h--ω

-0.33405848

-0.33405847

-0.33405846
ε
 /

 h-
- ω

• There are no smooth quasienergy surfaces!
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• Keep in mind:

Ignoring (possibly infinitely many) “small” anticrossings

corresponds to coarse graining — may be justified by

the time scales of the respective experiment

Effectively adiabatic motion on coarse-grained quasienergy

surfaces actually is highly diabatic motion on “rough”

surfaces — there is no adiabatic limit

(This is a physicist’s view on the “quantum stability problem”)
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• Remark

The famous “area theorem” is an application of the
adiabatic principle for Floquet states:

Two-level system, RWA: For ω = ω0 , one has

εF± = ±
µF

2
mod ~ω

B For a resonant pulse with envelope F (t) , this gives

P−→+ = sin2
(

1

2~

∫ Tp
0

dt (εF (t)
+ − εF (t)

− )

)

= sin2
(
µ

2~

∫ Tp
0

dt F (t)

)

B “π -pulse” (yielding P−→+ = 1 ) for

µ

~

∫ Tp
0

dt F (t) = π
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• Remark

Beyond RWA: Effect of “counterrotating” terms?

B Recall transformation to rotating frame:

P †(t)
(
Hl(t)− i~ d

dt

)
P (t)

= Gc − i~ d

dt
+
µF

2

(
σx cos 2ωt− σy sin 2ωt

)

B Perform ordinary Rayleigh-Schrödinger perturbation theory
in extended Hilbert space:

E
(1)
n = 〈n|Hpert|n〉

translates into

ε
(1)
n = 〈〈un(t)|Hpert(t)|un(t)〉〉

etc.
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• Linearly driven TLS

Exact quasienergies for ω0/ω = 5.6
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• Long-time averaged transition probabilities

B RWA (dashed) misses multiphoton resonances!
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• Bloch-Siegert shift and avoided crossings

B Full line: exact; short dashes: RWA; long dashes: deg. RSPT
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PART III:

Floquet engineering with

optical lattices
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• Consider particle in spatially periodic potential

V (x) = V (x+ a)

acted on by temporally periodic force

F (t) = F (t+ T )

B Assume dipole-type coupling:

H̃(x, t) = −
~2

2M

d2

dx2
+ V (x)− xF (t)

B TASK: Solve time-dependent Schrödinger equation

i~ d

dt
ψ̃(x, t) = H̃(x, t)ψ̃(x, t)
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B Perform unitary transformation:

ψ̃(x, t) = exp
(

i

~
x
∫ t

0
dτ F (τ)

)
ψ(x, t)

This gives i~ d
dtψ(x, t) = H(x, t)ψ(x, t) with new Hamiltonian

H(x, t) =
1

2M

(
p−A(t)

)2
+ V (x)

where

A(t) = −
∫ t

0
dτ F (τ)

B Assume forcing without dc component:

1

T

∫ T
0

dt F (t) = 0

Then

H(x, t) = H(x+ a, t) = H(x, t+ T )
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B Hence, we have spatio-temporal Bloch waves:

ψn,k(x, t) = exp
[
ikx− iεn(k)t/~

]
un,k(x, t)

with doubly periodic Floquet functions

un,k(x, t) = un,k(x+ a, t) = un,k(x, t+ T )

B Build wave packet in n -th quasienergy band:

ψn(x, t) =
√
a

2π

∫
dk gn(k) exp[ikx− iεn(k)t/~] un,k(x, t)

B Quasienergy eigenvalue problem in extended Hilbert space:[
1

2M

(
p+ ~k +

∫ t
0

dτ F (τ)
)2

+ V (x)− i~ d

dt

]
un,k(x, t) = εn(k)un,k(x, t)

(Very similar to “particle in the box”, but with additional

parameter k !)
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• Experimental realization:

Ultracold atoms in shaken optical lattices

B 1d optical lattice potential: V (x) = V0
2 cos(2kLx)

B Characteristic energy scale: ER =
~2k2

L
2M
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B Laboratory frame:

H lab(x, t) =
p2

2M
+
V0

2
cos

(
2kL[x−∆L cos(ωt)]

)

B This is unitarily equivalent (and isospectral) to

H(x, t) =
1

2M

(
p+M∆Lω sin(ωt)

)2
+
V0

2
cos(2kLx)−

M

4
(∆Lω)2

Thus, F (t) = F0 cos(ωt) with F0 = M∆Lω2

• Keep in mind:

A time-periodically driven optical lattice is like a “spatio-

temporal crystal” with quasienergy-quasimomentum dis-

persion relations which can be manipulated at will!
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B ac-Stark shift of band edge k/kL = 0

0.0 1.0 2.0

F
0
 / (k

L
h--ω)

0.0

0.5

1.0
ε
 /

 h-
- ω

Lattice depth: V0/ER = 4.0 , driving frequency: ~ω/ER = 0.5
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B Destruction of quasienergy band (k/kL = 0.0, 0.1, . . . , 1.0 )

0.0 1.0 2.0

F
0
 / (k

L
h--ω)

0.0

0.5

1.0
ε
 /

 h-
- ω

Lattice depth: V0/ER = 4.0 , driving frequency: ~ω/ER = 0.5
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B Tight-binding approximation (deep lattices):

E0(k) = Ec −
W0

2
cos(ka)

B Single-band approximation (neglect interband transitions)

ε0(k) = Ec −
W0

2
J0

(
F0a

~ω

)
cos(ka) mod ~ω

(Driving effectuates renormalization of band width)

• Keep in mind:

The “quasienergy band collapse” at the zeros of J0 cor-

responds to dynamic localization, due to “prohibited

dephasing” in a flat band
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.20
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Lattice depth: V0/ER = 4.0 , driving frequency: ~ω/ER = 0.5
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.74
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Lattice depth: V0/ER = 4.0 , driving frequency: ~ω/ER = 0.5
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B Quasienergy dispersion relation for F0/(kL~ω) = 1.21
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Lattice depth: V0/ER = 4.0 , driving frequency: ~ω/ER = 0.5
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B Preservation of quasienergy band (k/kL = 0.0,0.1, . . . ,1.0 )
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Lattice depth: V0/ER = 8.0 , driving frequency: ~ω/ER = 0.5
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.20
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Lattice depth: V0/ER = 8.0 , driving frequency: ~ω/ER = 0.5
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.76
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Lattice depth: V0/ER = 8.0 , driving frequency: ~ω/ER = 0.5
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B Quasienergy dispersion relation for F0/(kL~ω) = 1.21
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Lattice depth: V0/ER = 8.0 , driving frequency: ~ω/ER = 0.5
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• In-situ measurements of expansion rate
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• Experimental data (Pisa group; 87Rb at λ = 842 nm )
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543210
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V0/ER = 6.0 , ω/(2π) = 4.0 kHz , expansion time 150 ms
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• Shaken 3d optical lattices: The Pisa setup

Zenesini et al., PRL 102, 100403 (2009)
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• SF-MI transition (and back) induced by ac forcing

Zenesini et al., PRL 102, 100403 (2009)
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.17
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Depth: V0/ER = 7.0 , frequency: ~ω/ER = 5.51
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B Quasienergy dispersion relation for F0/(kL~ω) = 0.69
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Depth: V0/ER = 7.0 , frequency: ~ω/ER = 5.51
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B Quasienergy dispersion relation for F0/(kL~ω) = 1.50
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Depth: V0/ER = 7.0 , frequency: ~ω/ER = 5.51
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B “Lowest” band for F0/(kL~ω) = 0.17, 0.35, 0.52, 0.69
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B Compare: C. V. Parker, L.-C. Ha, and C. Chin,

Nat. Phys. 9, 769 (2013)
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B Morphology of quasienergy bands: Dirac points!
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Depth: V0/ER = 7.0 , frequency: ~ω/ER = 5.51
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B Morphology of quasienergy bands: Dirac points!
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Depth: V0/ER = 7.0 , frequency: ~ω/ER = 4.15
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PART IV:

The driven Josephson

junction
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• Model: N Bose particles occupying two sites

H0 = −
~Ω

2

(
a1a
†
2 + a

†
1a2

)
+ ~κ

(
a
†
1a
†
1a1a1 + a

†
2a
†
2a2a2

)
with[
aj, ak

]
= 0 ,

[
a
†
j, a
†
k

]
= 0 ,

[
aj, a

†
k

]
= δjk

Convenient: dim H = N + 1 !

B Add site-diagonal forcing:

H1(t) = ~µ(t) sin(ωt)
(
a
†
1a1 − a

†
2a2

)

B Instantaneous quasienergy operators:

Kµ = H0 + ~µ sin(ωt)
(
a
†
1a1 − a

†
2a2

)
+

~
i

d

dt
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B Quasienergies of “lowest” three Floquet states
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N = 100 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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B Quasienergies of all Floquet states
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N = 100 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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B Details: roughness beyond coarse graining

0.825           0.828
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−0.21
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ε/
h̄
ω

N = 100 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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• Are there Floquet condensates ?

B Compute one-particle reduced density matrices

%n =

 〈a†1a1〉n 〈a
†
1a2〉n

〈a†2a1〉n 〈a
†
2a2〉n



(cf. Penrose-Onsager criterion)

B “Degree of coherence” (simplicity)

ηn = 2N−2 tr %2
n − 1

ηn = 1 for N -fold occupied single particle states

ηn = 0 for maximally fractionalized states
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B Degree of coherence for lowest energy eigenstates
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0.999
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N = 10.000 , α = Nκ/Ω
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B Degree of coherence for “lowest” Floquet states
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N = 100 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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• Adiabatic preparation of Floquet condensates

B Gaussian turn-on of driving:

µ(t) =

 µmax exp
(
− t2

2σ2

)
, t ≤ 0

µmax , t > 0

B Decompose w.r.t. instantaneous Floquet states:

|ψ(t)〉 =
∑
n
an |uµn(t)〉 exp(−iεµnt/~)

B Compute Floquet entropy:

SF (t) = −
∑
n
|an(t)|2 ln |an(t)|2
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B Floquet entropy after turn-on: µmax/Ω = 0.6, 0.8, 0.9
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F
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N = 100 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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B Floquet entropy after turn-on: σ/T = 5, 10, 20, 30, 40

  0    0.5      1
−12

   

 −8

   

 −4

   

  0

µmax/Ω

lo
g
1
0
(S

F
/
ln

N
)

N = 1000 , Nκ/Ω = 0.95 , ω/Ω = 1.0
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• Entropy production within a pulsed BEC

B Full Gaussian pulses:

µ(t) = µmax exp

(
−
t2

2σ2

)
, −∞ < t < +∞

B Monitor population imbalance:

〈Jz〉/N =
1

2N
〈ψ(t)|a†1a1 − a

†
2a2|ψ(t)〉

B Determine final occupation probabilities:

pn =
∣∣∣〈n|ψ(tf)〉

∣∣∣2
B Compute von Neumann entropy generated by pulse:

S = −
∑
n
pn ln pn
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B Adiabatic response for moderate maximum amplitude
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N = 100 , Nκ/Ω = 0.95 , µmax/Ω = 0.60 , σ/T = 5.0
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B Loss of adiabaticity for strong driving
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N = 100 , Nκ/Ω = 0.95 , µmax/Ω = 0.90 , σ/T = 5.0
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B Sharp “chaos border”: σ/T = 5, 10, 20, 30, 40
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• Universal behavior for quantum resonances

B Assume E′r ≡ Er+1 − Er ≈ ~ω

B Ansatz:

|ψ(t)〉 = e−iηt/~∑
n
bn |n〉 exp

[
−

i

~

(
Er + (n− r)~ω

)
t

]

This gives

ηbn =
(
En−Er−(n−r)~ω

)
bn+2~µ cos(ωt)

∑
m

ei(n−m)ωt〈n|Jz|m〉bm

with

Jz =
(
a
†
1a1 − a

†
2a2

)
/2

B RWA-type “resonance” approximation:

ηbn =
1

2
(n− r)2E′′r bn + ~µ〈r|Jz|r − 1〉

(
bn+1 + bn−1

)
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B Fourier representation . . .

bn =
1

2π

∫ 2π

0
dθ f(θ)e−i(n−r)θ

. . . yields

ηf(θ) = −
1

2
E′′r f

′′(θ) + 2~µ〈r|Jz|r − 1〉 cos θ f(θ)

B This is a Mathieu equation (“pendulum approximation”):(
d2

dz2
+ α− 2q cos(2z)

)
χ(z) = 0

with

α =
8η

E′′r
,

q =
4

E′′r /(~ω)

2µ

ω
〈r|Jz|r − 1〉



Institute of Physics

Condensed Matter Theory

B π -periodic solutions χ(z) require characteristic values

αk(q) =

ak(q) for k = 0,2,4, . . .

bk+1(q) for k = 1,3,5, . . . ,

B Approximation for near-resonant Floquet states:

|ψk(t)〉 = exp
(
−

i

8~
E′′rαkt

)∑
`

f`,k|r + `〉 exp
[
−

i

~

(
Er + `~ω

)
t

]

with quasienergies

εk = Er +
1

8
E′′rαk(q) mod ~ω

• Observe: New quantum number k

Resonances effectuate a nonperturbative reorganization
of the quasienergy spectrum!
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B Comparison: Exact and approximate quasienergies

N = 100 , Nκ/Ω = 1.9 , ω/Ω = 1.6 (r = 34)
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B Degree of coherence for all Floquet states at given µ
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N = 1000 , Nκ/Ω = 0.95 , ω/Ω = 1.62 , 2µ/ω = 0.3
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B Maximum degree of coherence for increasing N
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• Remarks:

Condensate-carrying Floquet state (i.e., ground state of

quantum pendulum) usually not connected to ground

state of undriven system

Only “mesoscopic” Floquet condensates possible — this

is just another manifestation of the “quantum stability

problem”

Lots of further issues to explore — e.g., connection be-

tween “quantum chaos” and destruction of macroscopic

wave function
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Thank you!

Main sources of these lectures:

• M.H.
Floquet engineering with quasienergy bands of periodically driven optical
lattices (Tutorial)
J. Phys. B 49, 013001 (2016)

• C. Heinisch, M.H.
Adiabatic preparation of Floquet condensates
J. Mod. Opt. 63, 1768 (2016)
(Special issue: 20 years of Bose-Einstein Condensates)

• B. Gertjerenken, M.H.
Trojan quasiparticles
New J. Phys. 16, 093009 (2014)

• B. Gertjerenken, M.H.
N-coherence vs. t-coherence: An alternative route to the Gross-Pitaevskii
equation
Annals of Physics 362, 482 (2015)


