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1.  Introduction 

The advent of phase shifting has greatly enhanced the capabilities of ESPI /1, 2/. However, 
temporal phase shifting (TPS) is not well suited for tasks where random time-dependent phase 
fluctuations between the phase-shifted frames, as caused by vibration, air turbulence, or rapid 
object motion, can spoil the measurement. 

The solution to these problems is the complementary technique, spatial phase shifting (SPS) 
/3/, where the phase is not shifted in time but in one spatial direction, as shown in Fig. 1. A 
conventional ESPI setup is modified by shifting the origin of the reference wave by ∆x from 
the center of the aperture; this generates a linear phase shift β(∆x) on the sensor. Thus the 
phase shifted frames can be recorded simultaneously and time-dependent errors are excluded. 
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Fig. 1: a) ESPI setup modified for SPS; b) arrangement of measuring points 1,2,3 within the 
correlation  area; line arrays indicate orientation and spacing of carrier fringes (phase shift set to 
π/2). 

However, SPS has some drawbacks to cope with in ESPI. In most phase reconstruction formu-
las, intensity and phase of the object wave are assumed to be constant for all measurements 
entering the phase calculation together. In TPS where pointwise data sets each stem from the 
same location, this is fully justified as long as temporal parameter fluctuations can be avoided. 
The data sets for SPS however are made up of adjacent pixels as indicated in Fig. 1 b) and the 
speckle size must be increased to keep the pixels within one correlation cell (i.e. speckle size). 
Even so, the spatial intensity and phase gradients of the object's speckle pattern introduce 
severe errors in the phase reconstruction. The smaller the mean speckle size is chosen, the 
larger the random noise in the reconstructed phase map will be. On the other hand, enlarging 
the speckles implies losing object light and spatial resolution. 

The latter is not a problem in ESPI where lowpass filtering is usual. Concerning the former 
however, it is desirable to tailor phase retrieval schemes for SPS that permit to keep the 
speckles as small as possible while delivering acceptable results. This paper reports on im-
provements in the phase reconstruction out of spatially phase shifted speckle interferograms. 
First a brief overview of second-order speckle statistics is given; then algorithms for improved 
phase calculation are developed. We also introduce a method of phase shifting that allows for 
multiple phase measurements at each point and finally compare the merits of each approach. 
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2. Second-order speckle statistics 

The spatial coherence of two different locations in a speckle field determines the probability 
of intensity and/or phase deviations between them /4/. The probability density functions of 
speckle intensity gradients and phase gradients, respectively, have been derived in /5/ and /6/. 
The conditional pdf's for intensity and phase given in /4/ have been extended /7/ to involve 
four quantities: I1 and ϕ1, intensity and phase at the first point of interest, and I2, ϕ2 for the 
second point. All of these are interrelated so that neither intensity nor phase may be 
considered alone. 

The conclusion of these studies is that high phase gradients are likely to occur in dark regions 
of the speckle pattern, becoming infinite in the immediate vicinity of the 'screw dislocations' 
/8, 9/ appearing at the points of zero amplitude. In contrast, the phase tends to vary more 
slowly in the bright parts of the speckle field (i.e., the speckle spots). These facts can 
intuitively be understood in the phasor representation. Fig. 2 gives an impression of the spatial 
distribution of intensities and phases in speckle patterns. The speckle size was about 45 pixels 
and the phase was measured by SPS. 

 
Fig. 2: Speckle intensities and phases (overlaid isolines) of an actual speckle pattern. 

Recently there has been some interesting work that presents the statistics in a highly useful 
manner. According to /10/, the mean phase gradient in the centers of speckle spots is about 
50° per speckle diameter: This is not to say that the phase variation in a speckle never exceeds 
that value; even higher gradients can occur. 

Hence there are good reasons to account for the speckle structure of SPS data in the phase 
evaluation. Firstly, we find high intensity gradients at the edges of the speckle spots /11/, 
spoiling data sets at those locations. Secondly, the often made assumption of constant speckle 
phase does not hold well enough when SPS is considered. 

3.  Computational methods for error reduction 

3.1  Incorporation of object intensity 

In order to limit the loss of collected light, we restrict ourselves to the smallest possible num-
ber of measurement points, which is three. Accordingly, the mean speckle size is 19 µm (2.5 
pixel distances) for all measurements shown in this paper. Superposing a reference to the ob-
ject wave and introducing the phase shift (π/2 throughout the experiments), the resulting irra-
diance in sensor column (n+m) is given by 
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 (n= 2,...,M-1 (M: column count of camera), m= -1, 0, 1; I0: mean intensity, β: phase 
shift per column, γ: visibility, Φ: phase angle over which the pixels integrate the intensity, 
C: phase offset, y-dependency omitted for clarity). For finding ϕn , we insert the pixel at nth 
place plus its left and right neighbor pixels, phase shifted by -β and β, respectively, into the 
usual phase reconstruction formula: 
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Thus, each interferogram yields a speckle phase map. Acquiring phase maps ϕn1 before and 
ϕn2 after a displacement and subtracting them gives the displacement map or sawtooth image 
of ∆ϕn. Throughout section 3 always the same couple of interferograms was used for 
evaluation. The displacement measured was the out-of-plane tilt of a flat plate. 

It is possible to account for the non-constancy of I0 and γ if (1) is rewritten as 
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 On+m: intensity in the speckle field of the object wave alone at the (n+m)th column, R : 
intensity of the reference wave. R is assumed spatially constant. On+m must be recorded before 
– and in the case of speckle decorrelation, also after – the acquisition of the interferograms 
I(n+m)1 and I(n+m)2. 

With the modified interferogram equations, the phase reconstruction formula (2) changes to 
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with Dn=In-On /12/. Fig. 3 compares the approaches of eqs. 2 and 4. A quantification of the 
improvement yielded about 19% less noise in phase map b) than in a). 

    
a)       b) 

Fig. 3: Results of phase calculations; a) with eq. 2, b) with eq. 4. 

3.2  Correction of varying speckle phase 

As the phases of speckles of the size used here cannot be measured with sufficient resolution, 
the simple assumption is made that not the phase, but the phase gradient be constant over the 
adjacent pixels used. (The interested reader may check this in Fig. 2.) This is equivalent to lo-
cal linear deviations of the phase shift from its nominal value. The problem of linear phase 
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shifting errors has been treated extensively in TPS research and there are many compensating 
algorithms. Provided the phase shift is set to π/2, we may use a 3+3 averaging algorithm as 
described in /13/: 
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This algorithm uses four intensity readings and seemingly forces the speckle size to be further 
increased. It was observed, however, that the phase map even benefits from the lowpass char-
acteristic of the formula when the speckle size is maintained. This can be seen in Fig. 4 a); the 
noise is reduced by approx. 7% compared to Fig. 3 a). No spatial resolution is lost here as the 
speckles have been enlarged anyway. 

3.3  Combination of intensity and phase correction 

The simplest way to construct a phase calculation that corrects errors by both intensity and 
phase gradients is to establish an averaging algorithm for terms in the form of (4). For β=π/2, 
(4) becomes 
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and shifting the pixel triplet by one position yields 
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The phase is now simply calculated by 
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so that the new ϕn is the mean of the old ϕn and ϕn+1. It is worth noting that this manner of 
averaging works properly only for the phase shift of π/2. The resulting phase map is shown in 
Fig.4 b) and shows about 27% less noise than that of Fig. 3 a). 

    
a)       b) 

Fig. 4: a) phase calculation with eq. 5; b) phase calculation with eq. 8. 
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4.  Experimental method for error reduction 

If the measuring points are arranged as in Fig. 1 b) and the phase shift is in x-direction only, 
the vertical extent of the correlation area is not made use of. Setting the speckle dimensions to 
3x1 pixels as advisable from the standpoint of light efficiency is ruled out because of the 
significant increase of noise. If however a full-frame camera is available, all image lines can 
be acquired simultaneously. Hence it is possible to add β(∆y), resulting in a tilt of the carrier 
fringes and allowing to arrange the set of pixels used in y- or any desired direction. This 
enables the speckle shape to be fully exploited for measurement. Fig. 5 shows a direction and 
spatial frequency for the carrier fringes that permits arranging the pixels evaluated in various 
ways. This can first be seen in Fig. 5 a) where eq. 4 may work both in x- and y-direction . It is 
also possible to obtain phase values from the pixel clusters shown in Fig. 5 b), resulting in two 
additional measurements for the central pixel. The phase maps thus obtained show higher 
noise than those out of pure x- and y-directions: although the nominal phase shifts are correct, 
the pixels involved are not on a straight line. However, taking as phase value the arithmetic 
mean of all four measurements still leads to an improvement over the x- and y-measurements 
alone. The result of the former is displayed in Fig. 6 a). Here we get a noise reduction of about 
26% compared to Fig. 3 a), necessarily with different interferograms but all experimental pa-
rameters unchanged, except for the carrier fringe orientation. 
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Fig. 5: Various pixel clusters for phase calculation. Grouping indicated by outlines and black/white 
 colour; pixels used twice are dark grey. a) and b): double 3-point arrangement; c) and d): 
double  3+3-point arrangement. 

The 3+3 algorithm as in (8) can be used for phase retrieval in the configuration of Fig. 5 c). 
According to Fig. 5 d), additional sets of points can be obtained as well and the average of 
them all indeed yields the best phase map obtained so far, which can be seen in Fig. 6 b). The 
noise there is by about 33% lower than in Fig. 3 a). 

    
a)       b) 

Fig. 6: Phase maps resulting from fourfold phase determination at each point; a) measurements as in 
 Fig. 5 a) and b) averaged; b) measurements as in Fig. 5 c) and d) averaged. 



Fringe 97 (1997) Automatic Processing of Fringe Patterns 116

5.  Conclusions 
Some phase retrieval methods specially adapted to SPS are presented. A 3-point algorithm 
accounting for the object's speckle intensities is proposed; moreover, a well-known averaging 
technique is utilized to suppress errors by speckle phase gradients. For the measuring process 
a phase shift direction is suggested that permits multiple phase measurements for any point in 
the interferogram. The approaches are tested separately and together. The inclusion of the 
object intensities into the calculation turns out to effect remarkable improvement in the calcu-
lated phase maps; however this requires additional recording of at least one speckle image of 
the object. The correction for phase shift errors due to speckle phase gradients contributes a 
smaller part to noise suppression. The averaging of multiple measurements also reduces the 
noise noticeably; here the possibilities are not yet exploited as one might incorporate a 
suitable weighting scheme for the phase values obtained, yet probably at the cost of 
computational simplicity. It is seen that some of the new algorithms outperform the old one 
distinctly. 
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