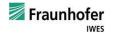
Potential of a low stratus risk product for the mitigation of irradiation and PV power production forecast error

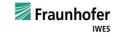
Yves-Marie Saint-Drenan (IWES) Carmen Köhler (DWD, i-EM), Andrea Steiner (DWD), Bodo Ritter (DWD)

EWeLiN



Outline

- 1) Analysis of the day-ahead PV power forecast error
- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering low stratus
- 4) Results
- 5) Next steps





Outline

1) Analysis of the day-ahead PV power forecast error

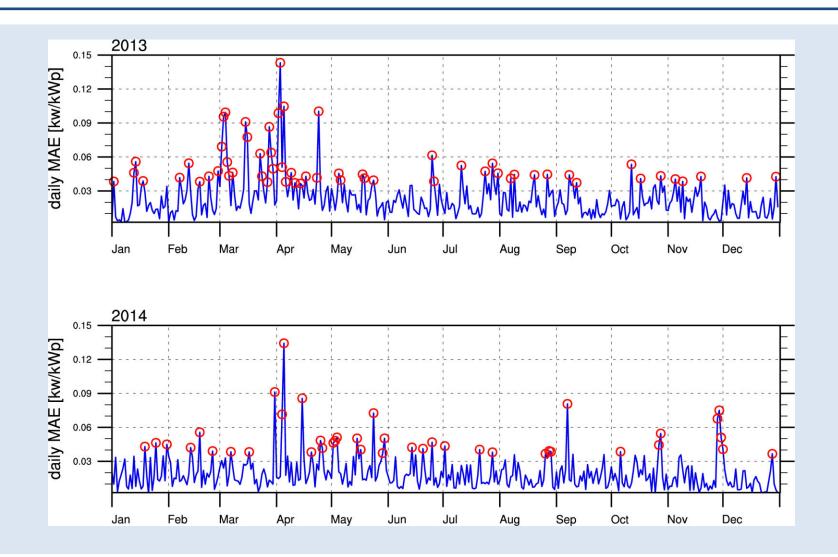
- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering low stratus
- 4) Results
- 5) Next steps

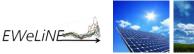
Analysis of the DA PV forecast errors

The analysis is based on the estimates and day-ahead forecast of the PV power generation provided by the German TSOs

→ The daily MAE values for Germany have been evaluated over two years (2013-2014)

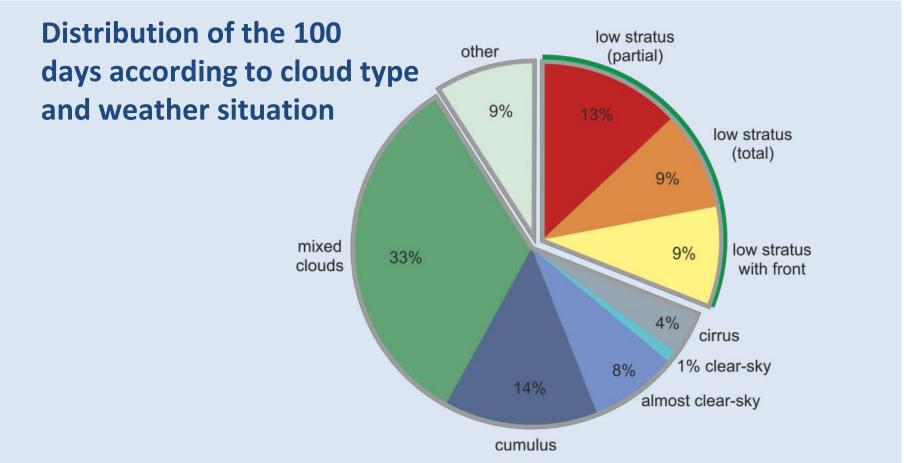
➔ The 100 days with the highest errors were identified and the prevailing weather situation manually evaluated by the DWD





Analysis of the DA PV forecast errors

23



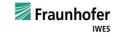
Analysis of the DA PV forecast errors

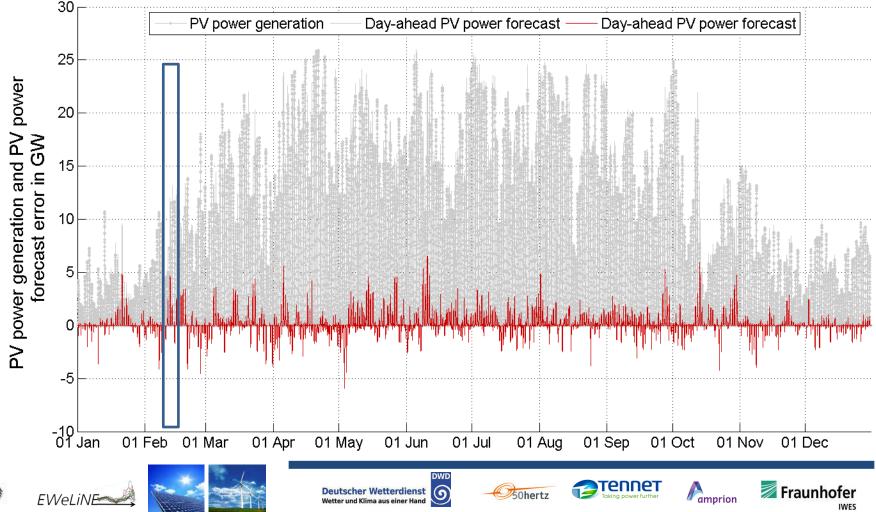
→ A large share of the days with large error are marked by the presence of low stratus

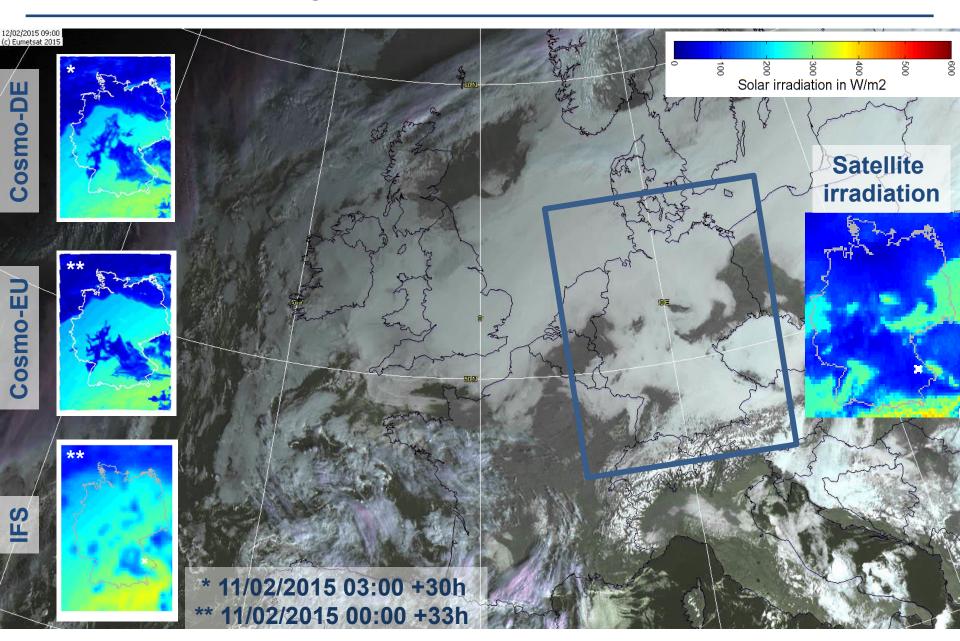
Outline

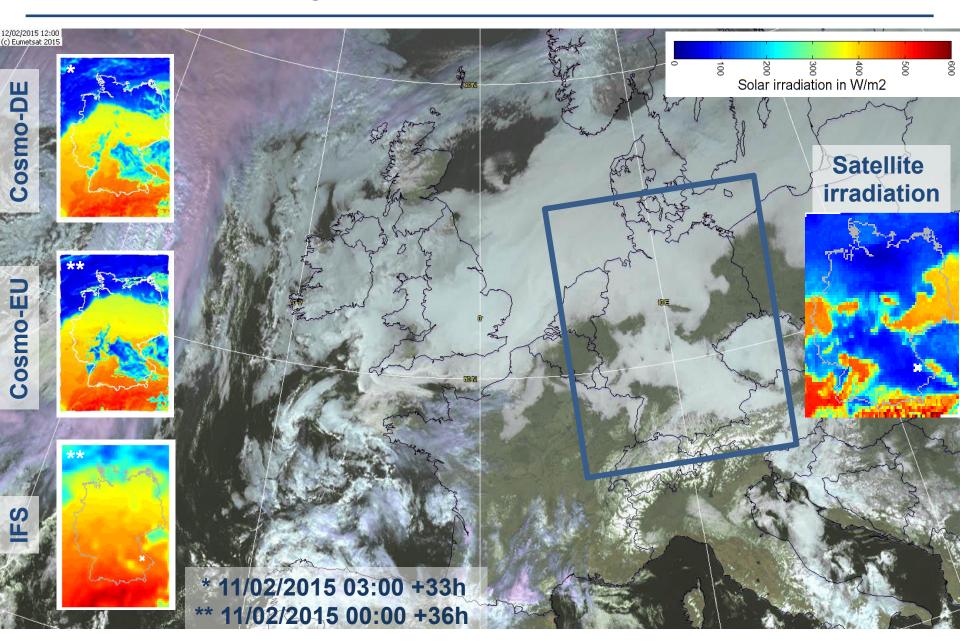
1) Analysis of the day-ahead PV power forecast error

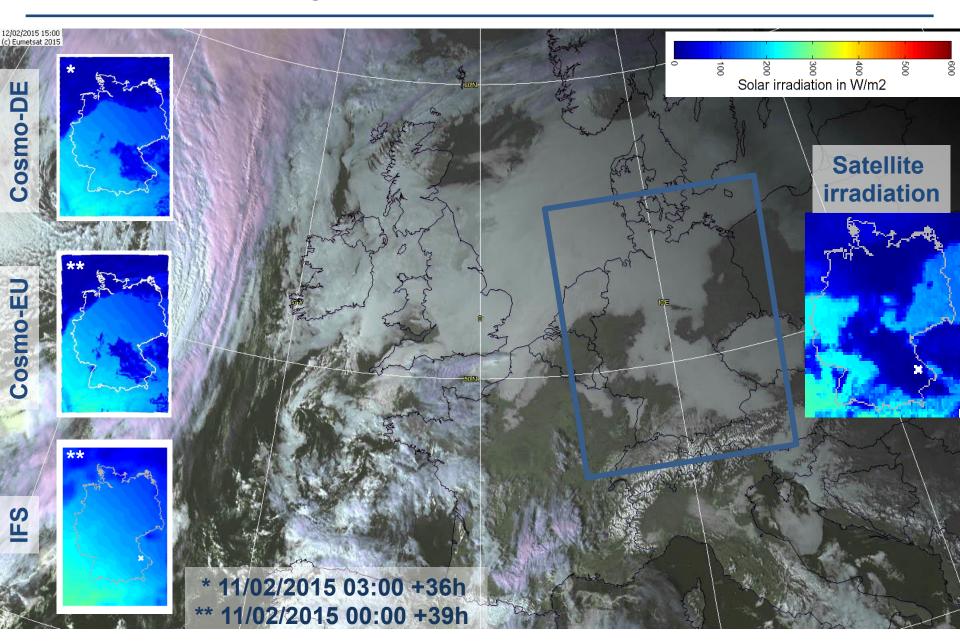
- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering low stratus
- 4) Results
- 5) Next steps

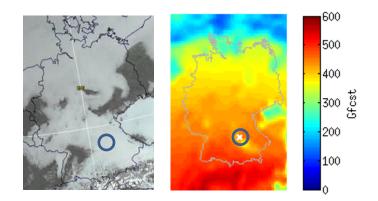




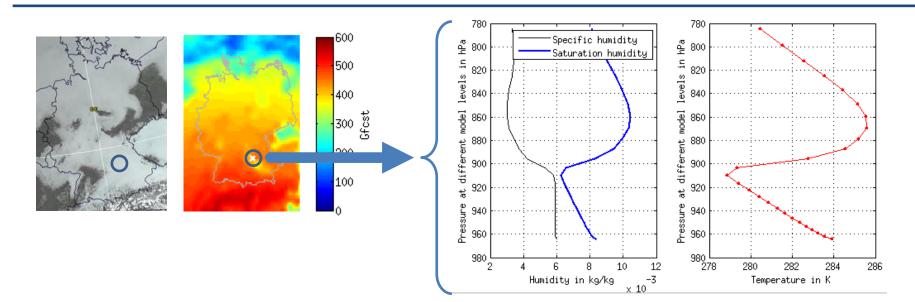


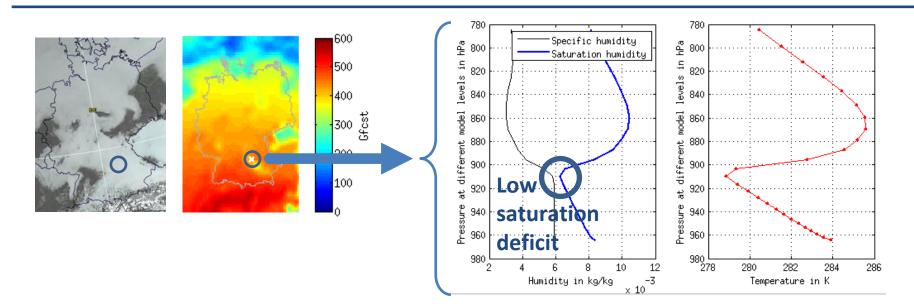


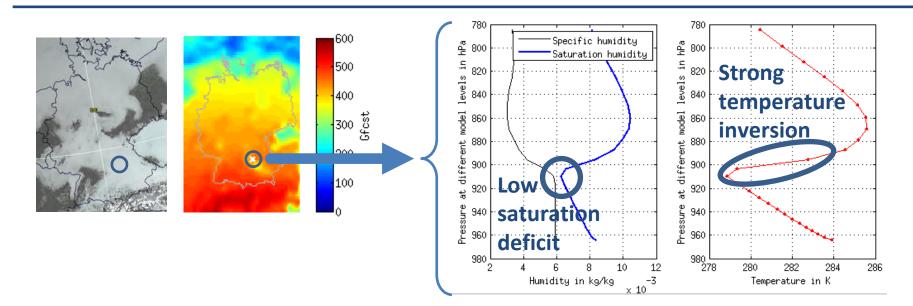

Example: TSOs reported a large PV forecast errors on 12/02/2015

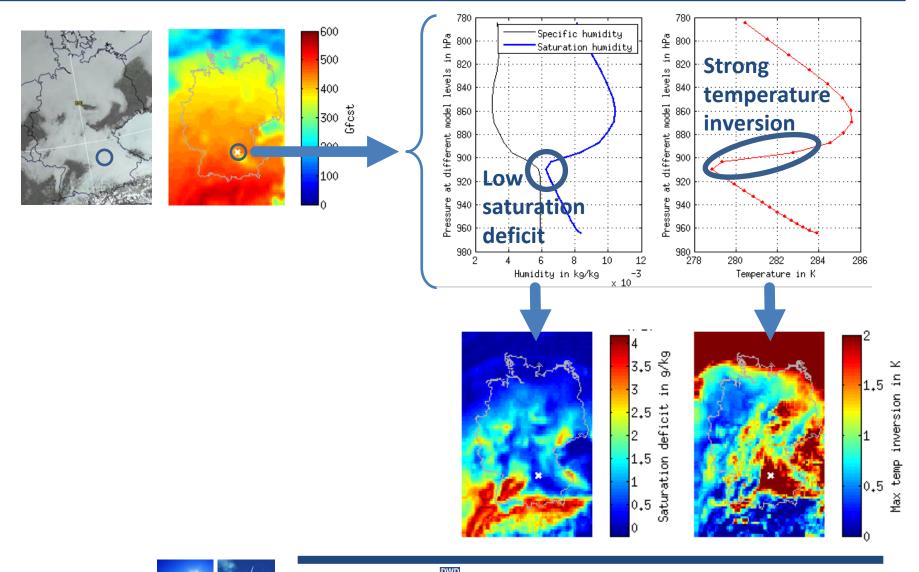


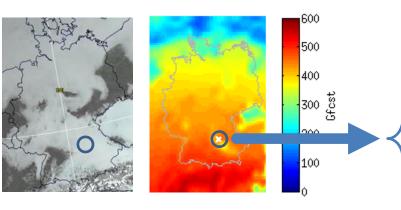
Germany - 2015










Tennet

50hertz

Amprion

💹 Fraunhofer

IWES

Adaptation of the SK-scheme^{(*)(**)} for the detection of LS:

- Strong temperature inversions below 800 hPa
- Low saturation deficit below the temperature inversion

*Seidl H., Kann A.: New approaches to stratus diagnosis in Aladin. Aladin Newsletter 22, July 2002.

** Köhler C., Steiner A., Saint Drenan Y.-M., Metzinger I., Ritter B., Critical Weather Situations for Renewable Energies - Part B: Low Stratus Risk for Solar Power, Submitted to Renewable Energy, January 2016

Specific humidity

780

820

880 different

900

920

940

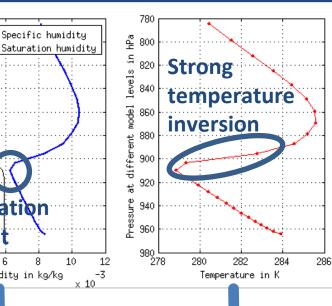
960

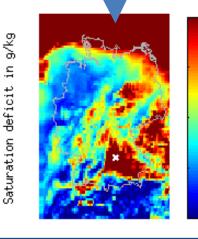
Low

deficit

saturation

ද<u>්</u> 800


က်ခြ ခုနှို 840

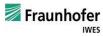

Ę.

model 860

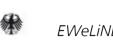
at

Pressure

EWeLiNE

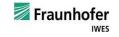


6 **Deutscher Wetterdienst** Wetter und Klima aus einer Hand



1) Analysis of the day-ahead PV power forecast error

- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering the LSR
- 4) Results
- 5) Next steps



Choice of the fit function

$$G_{corr} = \left[\left(a_{11} \tilde{T}I + a_{12} \tilde{S}D + a_{13} \tilde{T}I \cdot \tilde{S}D \right) + \left(a_{21} \tilde{T}I + a_{22} \tilde{S}D + a_{23} \tilde{T}I \cdot \tilde{S}D \right) \left(\frac{G}{G_{TOA}} \right) \right] G_{TOA}$$

with $\widetilde{S}D = \max[0, (SD_0 - SD)]$ $\widetilde{T}I = \max[0, (TI - TI_0)]$

G irradiance forecast [W/m²] G_{corr} corrected irradiance forecast [W/m²] G_{poa} extraterrestrial irradiance [W/m²] TI max temperature inversion below 800 hPa [°C] TI_0 TI above which the correction scheme is activated [°C] SD saturation deficit below the temperature inversion [kg/kg] SD_0 SD below which the correction scheme is activated [kg/kg] calibration coefficients a_{ij}

EWeLiNE

Choice of the fit function

$$G_{corr} = \begin{bmatrix} \left(a_{11}\tilde{T}I + a_{12}\tilde{S}D + a_{13}\tilde{T}I \cdot \tilde{S}D\right) + \left(a_{21}\tilde{T}I + a_{22}\tilde{S}D + a_{23}\tilde{T}I \cdot \tilde{S}D\right) \left(\frac{G}{G_{TOA}}\right) \end{bmatrix} G_{TOA}$$

$$with \quad \tilde{S}D = \max\left[0, \left(SD_0 - SD\right)\right] \qquad \tilde{T}I = \max\left[0, \left(TI - TI_0\right)\right]$$

$$Activation of the correction scheme$$

G	irradiance forecast [W/m ²]	correction sc	neme
G _{corr}	corrected irradiance forecast [W/m ²]	for TI>TI ₀ & S	D <sd<sub>0</sd<sub>
G _{poa} TI	extraterrestrial irradiance [W/m ²]		
ΤÎ	max temperature inversion below 800 hPa [°C]		
TI ₀ SD	TI above which the correction scheme is activated [°C]		
	saturation deficit below the temperature inversion [kg/kg]		
SD_0	SD below which the correction scheme is activated [kg/kg]		
a _{ij}	calibration coefficients		

Choice of the fit function

Different corrections coefficients for clear sky and overcast sky

$$G_{corr} = \left[\left(a_{11} \tilde{T}I + a_{12} \tilde{S}D + a_{13} \tilde{T}I \cdot \tilde{S}D \right) + \left(a_{21} \tilde{T}I + a_{22} \tilde{S}D + a_{23} \tilde{T}I \cdot \tilde{S}D \right) \left(\frac{G}{G_{TOA}} \right) \right] G_{TOA}$$

with $\widetilde{S}D = \max[0, (SD_0 - SD)]$ $\widetilde{T}I = \max[0, (TI - TI_0)]$

G irradiance forecast [W/m²] G_{corr} corrected irradiance forecast [W/m²] extraterrestrial irradiance [W/m²] G_{poa} TI max temperature inversion below 800 hPa [°C] TI_0 TI above which the correction scheme is activated $[^{\circ}C]$ SD saturation deficit below the temperature inversion [kg/kg] SD_0 SD below which the correction scheme is activated [kg/kg] calibration coefficients a_{ii}

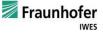
Choice of the fit function

Simple additive model with a cross term

$$G_{corr} = \left[\left(a_{11} \tilde{T}I + a_{12} \tilde{S}D + a_{13} \tilde{T}I \cdot \tilde{S}D \right) + \left(a_{21} \tilde{T}I + a_{22} \tilde{S}D + a_{23} \tilde{T}I \cdot \tilde{S}D \right) \left(\frac{G}{G_{TOA}} \right) \right] G_{TOA}$$

with $\widetilde{S}D = \max[0, (SD_0 - SD)]$ $\widetilde{T}I = \max[0, (TI - TI_0)]$

G irradiance forecast [W/m²] G_{corr} corrected irradiance forecast [W/m²] G_{poa} extraterrestrial irradiance [W/m²] TI max temperature inversion below 800 hPa [°C] TI_0 TI above which the correction scheme is activated $[^{\circ}C]$ SD saturation deficit below the temperature inversion [kg/kg] SD_0 SD below which the correction scheme is activated [kg/kg] calibration coefficients a_{ii}



EWeLiNE

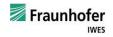
Choice of the fit function

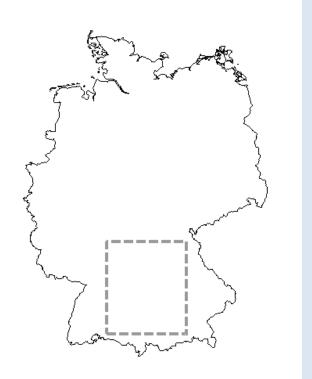
$$G_{corr} = \left[\left(a_{11} \tilde{T}I + a_{12} \tilde{S}D + a_{13} \tilde{T}I \cdot \tilde{S}D \right) + \left(a_{21} \tilde{T}I + a_{22} \tilde{S}D + a_{23} \tilde{T}I \cdot \tilde{S}D \right) \left(\frac{G}{G_{TOA}} \right) \right] G_{TOA}$$

with
$$\widetilde{S}D = \max[0, (SD_0 - SD)]$$
 $\widetilde{T}I = \max[0, (TI - TI_0)]$

Girradiance forecast
$$[W/m^2]$$

corrected irradiance forecast $[W/m^2]$ assumed constant
in time and spaceG
 G_{poa} extraterrestrial irradiance $[W/m^2]$ in time and spaceTImax temperature inversion below 800 hPa [°C]TI_0TI above which the correction scheme is activated [°C]SDsaturation deficit below the temperature inversion [kg/kg]SD_0SD below which the correction scheme is activated [kg/kg] a_{ij} calibration coefficients





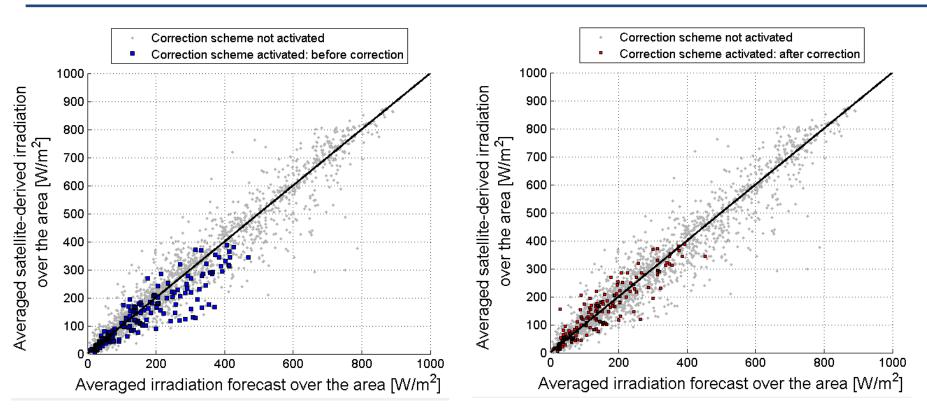
Coefficients are

- The calibration is evaluated for the south of Germany
- Satellite-derived irradiance (HC3v4) and IFS forecast are used
- The coefficients a_{ii} are evaluated by a multiple linear regression
- The correction is evaluated for the time period 01/2015 –06/2015
- The effect of the calibration is assessed for the time period 07/2015-12/2012



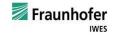
1) Analysis of the day-ahead PV power forecast error

- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering low stratus
- 4) Results
- 5) Next steps

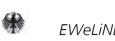


Results

- Correction scheme activated for 172 from 2046 time steps
- When the correction scheme is activated, RMSE: 56.2 -> 38.4 W/m2
- For the complete test data set, RMSE: 58.3 -> 57.0 W/m2

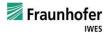


EWeLin



- 1) Analysis of the day-ahead PV power forecast error
- 2) Example of a day marked by low stratus
- 3) Approach to a calibration considering low stratus
- 4) Results
- 5) Next steps

- Train & test of the approach for a whole year
- Parameter varying in space and time
- Test of the approach with ICON-EU & Cosmo-DE
- Application of the approach to PV power forecast
- Assessment of the improvement for the TSO forecasts
- Integration of further explanatory variables



Thank you for your attention!

Questions?

Amprion

Tennet

