ENERGY METEOROLOGY

UNIT 2: Solar Geometry

- Solar constant
- Extraterrestrial radiation
- Sun-earth astronomy
- Examples

Solar Constant

$$
\begin{aligned}
& \text { Sun }=3.86 \times 10^{26} \mathrm{~W} \\
& \mathrm{BUO}^{1} \mathrm{I} .5 \times 10^{11} \mathrm{~m}
\end{aligned}
$$

Conservation of energy requires that the total energy flux coming out of the sun must also pass through a sphere at 1 AU .

The energy flux density at 1 AU is

$$
\frac{\mathrm{L}}{4 \pi \mathrm{r}^{2}}=1367 \mathrm{Wm}^{-2}
$$

This is the Solar Constant.
Area of a sphere $=4 \pi r^{2}$

ENERGY METEOROLOGY

Extraterrestrial Radiation

ENERGY METEOROLOGY

Extraterrestrial Solar Spectrum

Ecliptic

ENERGY METEOROLOGY

Ecliptic

ENERGY METEOROLOGY

Ecliptic

south celestial pole
The ecliptic is the region of sky (region of the celestial sphere) through which the Sun appears to move over the course of a year. This apparent motion is caused by the Earth's orbit around the Sun, so the ecliptic corresponds to the projection of the Earth's orbital plane on the celestial sphere. For this reason, the Earth's orbital plane is sometimes called the plane of the ecliptic.
Due to the tilt of the Earth's rotation axis with respect to its orbital plane, there is an angle of 23.5° between the ecliptic and the celestial equator.

Solar Declination

Declination angle $\delta=23.45^{\circ}$

Variation of the declination angle:
$\delta \cong 23.45$ * $\sin [360 / 365 *(284+n)]$
with $n=$ day of the year

ENERGY METEOROLOGY

Equation of Time

ENERGY METEOROLOGY

Time Zones

ENERGY METEOROLOGY

Solar Geometry: Angle of incidence θ

with:
latitude ϕ
solar declination δ
hour angle ω slope s
surface azimuth γ

