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1. INTRODUCTION 

Fluctuations of solar irradiance are known to have a significant 
influence on electric power generation by solar energy systems. 
To ensure an efficient use of the solar resource this behaviour 
has to be considered in operating strategies for this systems. 
Depending on the application, prediction of solar irradiance is 
beneficial on different time scales from less then one hour up to 
several days[1]. Examples are the optimisation of the storage 
management in stand alone systems, power management of 
solar thermal plants or  the control of electricity grids with high 
photovoltaic penetration rates. 
For daily horizons forecast, routines based on the output of 
numerical weather prediction models have been developed in 
[2]. For a short range prediction, statistical models based on the 
ground measurements of the radiation show only limited 
accuracy [3] due to the lack of spatial information about the 
cloud situation. As cloudiness is the most important parameter 
governing the insolation, forecasting of solar radiation makes 
the description of development of the cloud situation an 
essential task. 
Satellite data can provide information about cloudiness (and 
thus also about irradiance) with a high spatial (2.5km x 2.5km) 
and temporal (30 min) resolution. Thus satellite data should be 
an appropriate data base for forecasting  irradiance. 
Sequences of satellite cloud images will be used to extract 
information about motion, formation and dissolution of clouds. 
Assuming that for small scales the variability of the irradiance 
is mainly caused by the spatial drift of cloud structures, 
methods of image processing for detection of motion can be 
applied.  
For this date several approaches have been proposed. The 
Maximum Cross Correlation has been used to determine the 
movement of cloud structures  by Beyer et al [4]. Bahner et al. 
applied a functional analytic methods to derive displacement 
vector fields from satellite image sequences[5], and Cote and 
Tatnall developed a neural network based methods for tracking 
features from satellite images[6]. 
The purpose of this paper is to present  a statistical method to 
calculate motion vector fields, based on an approach for the 
estimation of motion developed by Konrad and Dubois[7], 

which performes with very good accuracy and furthermore has 
the advantage of short computing times, what is also an 
essential point when calculating short range forecasts. The 
motion vector fields are applied on the present image to predict 
the future cloud situation and irradiance. 
In our paper we will first describe the method to calculate cloud 
images from satellite images and how to derive the ground 
irradiance thereof . In section 3 the model we use to derive the 
motion vector fields is . Finally results will be presented and 
discussed with respect to accuracy and potential for solar 
energy applications 
 
 
2. SATELLITE DATA 

2.1 METEOSAT satellite 

Images in the visible range of the geostationary satellite 
METEOSAT are used as a database for the forecast. The 
satellite takes images of the full earth disk every 30 minutes. 
In the subsatellite point the spatial resolution is 2.5 km x 2.5 
km, in central Europe approximately 2.5 km x 4.5 km. The data 
is provided as greyscale pixel images each pixel representing 
the radiance signal of solar radiation bckscattered to space by 
earth, atmosphere and clouds. 
 
2.2 HELIOSAT method to calculate cloud and radiation maps 

To derive the ground irradiance from satellite measurements we 
use an enhanced version of the semi-empirical HELIOSAT 
method [8]. 
In a first step an offset is subtracted from the satellite signal. 
From this corrected signal we calculate the relative reflectivity 
ρ  by applying a normalisation with respect to solar elevation. 
In a second step  the degree of cloudiness, the cloudindex n, is 
derived from the relative reflectivity for each pixel with 
following model: 
Depending on the amount of clouds, a part of the solar 
radiation, defined as cloud index n, is reflected by clouds with a 
high reflectivity ρcl, the other part is reflected by the ground 
with a low reflectivity ρgr (see Fig 1): 
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Fig. 1.  Reflection of solar radiation from clouds and ground. 
 
From the satellite images we can estimate a constant value for 
the cloud reflectivity ρcl  and derive monthly maps for the 
ground albedo ρgr. Now it is possible to determine n using 
Equation (1): 
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The HELIOSAT method assumes a linear relationship between 
the cloud index n and the transmission through the atmosphere 
k*, defined as ratio of surface global irradiance G to the clear 
sky irradiance Gclear. 

nGGk clear −=≡ 1/*  (3) 

The global irradiance G thus can be calculated directly from k* 

using a clearsky irradiance model. 
The error of the satellite retrieved irradiance estimated by 
comparison with half hourly mean values of ground 
measurements is about 20%, mean hourly values have an error 
of about 15%. 
 
2.3. Cloud images 

As stated in the introduction and quantified in Eqn. (3) 
cloudiness is the essential parameter for the insolation. Thus 
forecasts of values of the cloud index n can be used to 
determine the future irradiance applying Eqn. (3).  
The advantage of using cloud index images instead of radiation 
maps is, that the daily pattern of radiation is not included. Thus 
we can just focus on determining the development of the 
clouds, the known information about the daily development of 
irradiance is added later. 
An example for  two consecutive cloudindex images is given in 
Fig 2. Cloud structeres are similar in both pictures. Small scale 
variations are not stable from one image to the next and change 
randomly. Filtering this ´noise´ improves the quality of the 
forecast considerably. 
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Fig. 2.  Consecutive cloud index images of Northern Germany.  
 
 
3. MOTION VECTOR FIELDS 

From two consecutive images the motion of cloud structures 
shall be determined. To find a vector field that describes the 
true motion in the best way, we use a statistical approach based 
on a model developed by Konrad an Dubois [8]. The main ideas 
of this approach will be described in this section. The first step 
is to find an estimation criterion for the quality of a vector field. 
Then a model of motion is formulated described by a 
probability function. Finally the maximum of the probability is 
searched using a Monte Carlo Method. 
 
3.1. Terminology 

The true underlying image, in our case the real cloud situation,  
is denoted by u. The observed image g (the cloud index image 
measured by the satellite) is assumed to be a realisation of a 
random field G, while the displacement vector field d is 
considered to be a sample of a Random Vector Field D. 
 
3.2. Estimation criterion 

A maximum a posteriori probability criterion is used to estimate 
the most likely displacement field. The ´best´ motion vector 
field must satisfy the relation: 
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where P is the conditional probability for a certain vector field, 
given two images g0 and g1. To calculate this probability, the 
Bayes rule for random variables is applied: 
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Since P(G1=g1|g0) does not depend on d, the task reduces to 
maximize 
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For a solution the probability distributions have to be known. 
They are specified by formulating appropriate  models. 
 
 
3.3. Model of motion 

First a model to derive the probability P(G1=g1|d,g0) is 
proposed.  
For the true underlying image u pixel intensities along the 
motion trajectories are assumed.to be costant: 
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The observed images g are derived from u with a measuring 
process and thus noise is added to the pictures. Furthermore 
transformations, like filtering and discretisation on a grid, are 
applied.  
To extend the model of constant pixel intensities to the 
observed images  displaced pixel differences are defined: 
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The continuous displacement vectors d usually do not end in 
grid points, so values for g have to be calculated by 
interpolation. 
 Equation (7) then can be extrapolated to observed images g by 
modelling the displaced pixel differences as independent 
Gaussian random variable with mean value 0: 
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i.e. there is a high probability for small differences between 
g1(xi+d(xi)) and go(xi). 
Fixing image go and the displacement field d one obtains by 
using Eq. (7) and Eq. (8) the conditional probability of getting 
image g1 when applying the vector field d to image go: 
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Here c1 is a normalisation constant and the energy U is defined 
as the sum over all displaced pixel differences: 
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Thus image g1 is a probable realisation of G1 when differences 
between g1(xi+d(xi)) and go(xi) are small for all gridpoints. 
Adding the assumption of constant pixel gradients along motion 
trajectories we define: 
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analogous to r. 

Using the same arguments as above we finally obtain: 
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with c2 being a normalisation constant and 
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If the values g1(xi+d(xi)) and grad g1(xi+d(xi)) have only a small 
difference to go(xi) respectivly. grad  go(xi), the energy functions 
Ug and Ugrad are small also and the conditional probability 
P(G1=g1|d,g0) is high. 
After the formulation of the model for P(G1=g1|d,g0), now the 
probability P(D=d | go) has to determined. As a single image 
contributes little information to motion this information is 
omitted and just properties of the motion vector field are 
considered to calculate P(D=d | go). 
As cloud motion is caused by the rather smooth  field above the 
atmospheric surface layer it is reasonable to assume also 
smooth motion vector fields, i.e. neighbouring vectors should 
not differ much from each other in direction and length. 
This condition is used to model P(D=d | go). Konrad and Dubois 
[8] applied the theory of Markov Random Fields tand showed 
that this approach leads to: 
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where c3 is a normalisation constant β  a constant characterising 
properties of the motion field and Ud is defined as: 
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where d(xi) and d(xj) are neighbouring vectors. 
A displacement vector field with large differences between 
neighbouring vectors thus has a high energy and is not a very 
probable one (Eq.(15)). 
As now the two terms of Equation (6) are specified we find for 
the conditional probability for a vector field at given images go 

and g1 : 
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where Z is a normalisation constant and U is defined as: 
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The parameters λ1=1/2σ, λ2=1/2σgrad and λ3=1/β are weighting 
the contributions of the different energy functions to U. The 
determination of these parameters is discussed in section 3.4. 
The maximum probability according to Equation (6) now can 
be found by determining the minimum of U. 
 
3.4. Simulated Annealing 

To find the minimum energy U Konrad and Dubois proposed 
the use of simulted annealing, a statistical method based on the 
analogy with the process of annealing solids. In analogy to the 
temperature in chemical annealing, the probabilty function is 
extended by a ”temperature “ parameter T: 
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T is decreasing exponentially to: 
ak
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at iteration k 
In order to find the minimum energy an initial vector field is 
chosen, all vectors are 0, and the following steps are repeated 
until the minimum is reached: 
1) One vector is chosen randomly 
2) The vector is chosen randomly 
3a) If 

    ),|(),|( 101 ggdDPggdDP oldonew =>=  (21) 

     the new vector is accepted. 
3b) If 
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    the new vector is accepted with the probability: 
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A new vector can be accepted even if it is less probable than the 
previous one (step 3b). This allows the algorithm to escape 
local minima. For high temperatures, the probability to accept a 
less probable vector is also quite high: This is a good strategy, 
when the search algorithm starts and the energy is likely to be 



in a local minimum. For very small temperatures the probability 
of accepting a less probable vector is approaching zero. This 
ensures that a global minimum once it is found is not left. Thus 
if T0 is chosen to high, the algorithm converges very slowly, if 
T0 is to small, it can be trapped in a local minimum. This can 
also happen if the temperature is decreasing to quickly, i.e. if a 
is to large.  The choice of parameters thus is an important point 
when applying simulated annealing for minimisation. 
 
3.4. Determining model parameters 

To implement the method described above, we first have to fix 
the parameters, one the one hand for the model of motion and 
on the other hand for the minimisation routine. The values were 
determined by applying the routine for detection of motion on a 
typical cloudindex image and varying the parameters. A 
combination of parameters, which gave good results in a 
reasonable computing time, was chosen for the further 
application. 
For the model of motion there are the weighting parameters 
λ1,λ2 and λ3 of the energy function U (see Eq. (18)) and the 
number of vectors N, determining the resolution of the vector 
field. As we want to minimise U , it is enough to determine the 
ratios λ1/λ2 and λ1/λ3 which were chosen as λ1/λ2 = 1 and λ1/λ3. = 
30. For the resolution of the vector field 1 vector for 5x5 pixels 
up to 10x10 pixels was found to be a good choice. 
The model parameters for simulated annealing, the initial 
temperature T0 , the rate of decreasing the temperature a and the 
number of iterations (one iteration: N x step(1)-(3) from 
section3.4) until the energy minimum is (assumed to be) 
reached, where fixed as T0 = 30, a=0.001 and n=6000. 
 
3.5. Forecasting with Motion Vector Fields 

To forecast the cloud situation of an image g2, we first 
determine the motion of clouds using the previous images g0 
and g1. As the wind field, which is responsible for cloud 
movement changes slowly with time, we assume that the 
motion vectors stay the same from image g1 to g2. Thus the 
motion vector field calculated from g0 and g1 can be applied on 
image g1 to determine the future image g2: 

)())(( 12 iii xgxdxg rrrr =+  (24) 

To detect the Motion Vector Field we made the assumption that 
pixel intensities are constant along motion trajectories. In real 
situations the cloud reflectivity is changing with time: To take 
into account this effect, we record the change in intensity from 
image g0 to g1, the displaced pixel difference r (see Eq. (8)). 
Assuming that this tendency stays the same in future we add r 
to the value calculated with Eq.(24) and obtain:   
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for the future cloudindex image.  
 
4. RESULTS 

4.1. Test situations 

As a first check of the motion detection algorithm it is applied 
to artificial motion sequences with known motion patterns. 

Fist we investigated the simplest case, translation with a 
constant vector all over the image. One test cloud index image 
g0 is translated 8 pixels north and west to get image g1. This is 
represented by the calcultaded motion vectors, as shown in 
Figure3. 
To quantify the quality of the motion vectors image g1`’, 
obtained by applying the motion vector field on image g0, is 
compared with the actual image g1. The matching error between 
g1 and g1`’ is given as the root mean square error: 
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The relative matching error is calculated by scaling the rmse’ 

value with the mean pixel intensity of the image g=110. 

Fig. 3. Cloudindex image (256x256 pixel) with translation 
vectors (6x6), dots represent foot points of vectors. 
 
Already for a coarse resolution of only 6x6 vectors for an image 
of 256x256 pixels  the relative root mean square error is very 
small: rms=3.8%. 
To test the representation of rotational motion, the same test 
image was rotated counter clockwise by 5 degrees: To obtain 
good results a higher resolution of the vector field is required. 
Fig. 4 shows the resulting vector field for this type of motion. 
Only in the upper right corner, where a great variability in the 
cloud index image exists, the motion vectors do not represent 
the true motion.  
The dependency of rms errors on the resolution of the vector 
field is shown in Table 1. 
 

number of vectors rms error 
6 x 6 22 % 

25 x 25 11 % 
50 x 50 5 % 

Table 1.  Matching error for rotation of a test image by 5° with 
different resolutions of the vector field. 
 



Fig. 4.  Cloud index image (256x256 pixels) with vectors 
(25x25) calculated from 2 images rotated by 5° to each other. 
 
 
4.2. Influence of smoothness filter 

In section 2.3 the need to filter out the short scale variations of 
the images has been stated. After  developing the routine for 
detection of motion, this effect now can be described 
quantitatively to choose the optimum filter size. 
For all further calculations we used two time series : one, 
referred to as time series 1, of 50 days (10.4.1997 –29.5.1997) 
for northern Germany (100x65 pixel) and a second one time 
series 2 of 76 days (28.4.96 – 24.6.96) for Germany (256x256 
pixel). 
Binominal filters from size 1x1 pixel (i.e. no filter) to 19x19 
pixel were applied to the images before and after the forecast. 
The results are shown in Fig. 5, where the mean forecast and  
mean matching error for time series 2 are plotted versus  a filter 
parameter (filtersize: (2a+1)(2a+1) pixels). 
The forecast error is again given as root mean square error 
between the forecasted image g2’ and the actual image g2: 
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Fig 5.  rms error depending on filtersize. 
 
While the optimum filter size when looking at the matching 
error lies about a=5, the forecast error is still reducing slightly, 
when making the filter bigger. 
This can be understand, when looking at the following effect: 
The motion vectors do not represent the motion perfectly and 
thus motion vectors might point to neighbouring pixels of the 
true ones. Hence taking into account these pixels for 
determining the new image, by applying a smoothing filter, 
makes the new image better. As the forecast error exceeds the 
matching error, this effect is bigger fore forecasting and thus the 
optimum filter size fore forecasting is higher than the best filter 
size due to the matching error. 
As best filter size for forecasting we choose according to Fig. 5 
19x19 pixels. 
 
4.3. Forecasting cloud index images 

An example for a motion vector field determined from two 
consecutive cloud images is given in Fig . 6 
Fig. 7 shows the forecast error for a forecast horizon of 30 
minutes for examples from 10 days from time series 1. For 
comparison also the error of persistence is plotted (persistence: 
future image = present image) .  
It can be seen that the forecast error using motion vector fields, 
is always smaller than the persistence error. Especially for high 
persistence errors, the forecast errors are reduced considerably. 
For mean values derived from  time series we get a forecast 
error of 18% compared to a mean persistence error of 25%. For 
time series 2 we get a reduction of the error from a persistence 
error of 27.% to forecast error of 19% 
For a more detailed analysis of the forecast errors, in Fig 8 the 
forecast error is plotted as a function of the matching error (time 
series2). The forecast error has a strong correlation with the 
matching error, which indicates that the assumption of constant 
motion is reasonable. Errors in the Forecast errors are mainly 
caused by errors in determining the motion vectors for a 
forecast horizon of 30 minutes. 
Fig. 9 shows the forecast error as a function of variability  of 
the images, which is defined as the mean of the absolute values 
of pixel differences between neighbouring pixels. 
While smooth images with low variability are easy to predict, 
images with a higher variability show significantly higher 
forecast errors. 
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Fig. 6.  Cloud images (100x65 pixel) with motion vectors 
determined from the two images. 
 

 

Fig. 7:  Forecast (solid line) and persistence (dotted line) rms 
error for examples form times series 1 (10.4.1997 – 20.4.1997) 
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Fig. 8.  Forecast error versus matching error (time series 2). 
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Fig. 9.  Forecast error versus variability of the images (time 
series 2). 
 
The forecast can be extended to larger forecast horizons by 
applying the calculated motion vector fields with a scaling 
factor on the present images. For forecast horizons larger than 
one hour  the motion vector fields can also be determined from 
two images with  a time lag of one hour between each other. 
The dependence of the forecast error on the forecast horizon is 
displayed in Fig. 10.The forecast based on the motion vectors 
for images with one hour time lag performs slightly worse than 
the forecast with 30 min motion vectors. Extending the forecast 
horizon from 30 min to 60 min the error of the forecast is 
increasing less than the persistence error. For more than one 
hour the difference between forecast and persistence stays 
almost constant at about 10% of mean pixel values. 
 
 



Fig. 10.  Mean errors for forecast (bottom) and persistence (top) 
as a function of the forecast horizon for time series 1. 
 
4.4. Example: Forecast of the ensemble power output of 
photovoltaic systems 

As an example for the application of the forecasting algorithm, 
the power output of an ensemble of photovoltaic (PV) systems 
distributed over an area of 250 km x 250 km is estimated. This 
configuration shall represent the joint power production of PV 
in a regional utility grid. 
The surface solar irradiance can be calculated using Eqn. (3): 
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As PV power can roughly be approximated to be linearly 
dependent on global irradiance, the following results are 
presented in terms of irradiance G instead of PV power. Also, 
optimum tilt angles are not considered here as they will have no 
influence on the spatial statistics of PV power generation. 
Assuming a simple linear model for the photovoltaic generators 
and furthermore that all generators are the same, we get for the 
power output of an ensemble of N pv systems at time t: 
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The constant c reflects type and size of the PV systems and thus 
relates the ensemble mean irradiance Gmean and PV power. 
As a measure of the forecast error we define 

))()(()(_ , tGtGabstforecerror forecmeanmean −=  (30) 

The persistence error is defined in the same manner. 
For an ensemble of 12 PV systems the daily pattern of Gmean is 
plotted in the upper graph of Figure 11. The lower graph shows 
forecast errors and persistence errors for the same time period. 
As expected the persistence error is generally higher than the 
forecast error. Especially maximum errors are significant 
reduced in the forecast (below 40 Wm-2) as compared to 
persistence (up to 100 Wm-2). 
The errors for forecast and persistence show a daily pattern 
similar to irradiance G with maximum values around solar 
noon. The relative error error_forec/Gmean resulted not to depend 

on day time, the quality of the prediction of cloudindex values 
is the same all over the day. 
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is shown in Fig. 12 for a varying number of PV systems. 
Different realisations for small ensembles with the same 

number of systems show statistical variations in the error due to 
the short time series used.  
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Fig. 11.  Ensemble mean irradiance (top) and corresponding 
forecast (bottom, solid) and persistence errors (bottom, dots) for 
12 spatially distributed PV systems. The time series includes 
daytime values only (7 days from time series 1). The forecast 
horizon is 30 minutes. 
 
As expected, the forecast quality increases with the ensemble 
size. For large ensembles (>50 systems) forecasting (∆Grel = 3 
%) gives only slightly better results than persistence (∆Grel = 4 
%) and short-term forecasts of PV output are accurate with both 
methods. For small ensemble sizes the persistence error is 
reduced considerably using the forecast routine. Already for 
ensembles of 5 PV systems only, a mean error of 5 % is 
reached. 

80

0 20 40 60 80 100 120 140
0

20

40

60

100

er
ro

r i
n 

 W
/m

exam

2

ples from 7 days



0 10 20 30 40 50
     0

     5

   10

   15

   20

er
ro

r i
n 

%

number of pv stations

Fig. 12.  Relative mean errors for forecasts (x) and persistence 
(∆) as a function of the ensemble size (time series 1, forecast 
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