Surprises with Rotating Black Holes

J. Kunz¹ B. Kleihaus¹ F. Navarro-Lérida²

¹Institut für Physik CvO Universität Oldenburg

²Ciencias Físicas Universidad Complutense de Madrid

Groningen, 27.11.2006

Outline

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Outline

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Outline

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Flat Space–Time

metric of Euclidean space

$$ds^2 = dx^2 + dy^2 + dz^2$$

metric of Minkowski space-time

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

Curved Space–Time

metric of curved space-time

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

Motion in Curved Space–Time

motion in curved space-time

Strongly Curved Space–Time

metric of curved space-time

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

Einstein Equations

metric

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

 Einstein equations matter tells space how to curve

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

 $G_{\mu\nu}$: Einstein tensor

 $T_{\mu\nu}$: energy-momentum tensor

• equations of motion for matter/radiation metric $g_{\mu\nu}$ tells matter how to move Introduction to Black Holes General Relativity

Einstein Equations

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Schwarzschild Metric

Schwarzschild 1916

• space-time outside a star: $T_{\mu\nu} = 0$

$$ds^2 = -N(r)c^2dt^2 + \frac{1}{N(r)}dr^2$$
$$+r^2d\theta^2 + r^2\sin^2\theta d\phi^2$$

Karl Schwarzschild 1873 - 1916

$$N(r) = 1 - \frac{2GM}{c^2 r}$$

static spherically symmetric metric remark: Minkowski space-time has N(r) = 1

• space–time inside a star: $T_{\mu\nu} \neq 0$

Introduction to Black Holes

Schwarzschild Black Holes

Schwarzschild Singularity

Schwarzschild space-time

$$ds^{2} = -N(r) c^{2} dt^{2} + \frac{1}{N(r)} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$
$$N(r) = 1 - \frac{2GM}{c^{2}r} = 1 - \frac{r_{\rm H}}{r}$$

- black holes: M
- Schwarzschild radius r_H

$$N(r_{\rm H}) = 0: r_{\rm H} = \frac{2GM}{c^2}$$

- event horizon
- coordinate singularity
- true singularity r = 0

Jutta Kunz (Universität Oldenburg)

Introduction to Black Holes

Schwarzschild Black Holes

Formation of a Black Hole

Event Horizon

Jutta Kunz (Universität Oldenburg)

Event Horizon

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Rotating Black Holes

rotating generalization of the Schwarzschild black holes: Kerr (1965)

Kerr metric in Boyer–Lindquist coordinates

Roy Kerr *1934

$$ds^{2} = -\frac{\Delta}{\rho^{2}} \left(dt - a \sin^{2} \theta d\phi \right)^{2} + \frac{\sin^{2} \theta}{\rho^{2}} \left(a dt - \rho_{0}^{2} d\phi \right)^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2}$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta \;, \ \ \rho_0^2 = r^2 + a^2 \;, \ \ \Delta = r^2 - 2Mr + a^2$$

a is the specific angular momentum: $a = \frac{J}{M}$ a = 0: Schwarzschild Introduction to Black Holes Kerr Black Holes

Kerr Black Holes in the Equatorial Plane

metric in Boyer–Lindquist coordinates:

equatorial plane: $\theta = \pi/2$ through center of black hole, perpendicular to the spin axis

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} - \frac{4Ma}{r}dtd\phi + \frac{dr^{2}}{1 - \frac{2M}{r} + \frac{a^{2}}{r^{2}}} + \left(1 + \frac{a^{2}}{r^{2}} + \frac{2Ma^{2}}{r^{3}}\right)r^{2}d\phi^{2}$$

comparison with Schwarzschild ($a \neq 0$)

Term: static limit • dt^2 $dt \, d\phi$ Term: frame dragging and Lense–Thirring

Term: event horizon dr^2

Event Horizon of Kerr Black Holes

First new feature coordinate singularity:

$$1 - \frac{2M}{r} + \frac{a^2}{r^2} = 0$$

radial coordinate of the horizon $r_{\rm H}$

- a < M
 - +: event horizon of the black hole
 - —: inner horizon

maximal angular momentum a = M: extremal black hole

• a > M: naked singularity (Cosmic Censorship)

black hole with horizons

Sir Roger Penrose *1931

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does Lense–Thirring mean?

- Schwarzschild: radial rocket thrust is required to keep a stationary observer at a fixed radius
- Kerr: additional tangential rocket thrust is required to keep an observer at a stationary position, i.e., a position from which the fixed stars do not appear to move

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does Lense–Thirring mean?

- Schwarzschild: radial rocket thrust is required to keep a stationary observer at a fixed radius
- Kerr: additional tangential rocket thrust is required to keep an observer at a stationary position, i.e., a position from which the fixed stars do not appear to move

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does frame dragging mean?

- Schwarzschild: gyroscopes always point in the same direction
- Kerr: gyroscpes start to precess, i.e., the direction with respect to distant stars changes

Introduction to Black Holes Kerr Black Holes

Black Hole at the Center of the Milky Way

Introduction to Black Holes

Kerr Black Holes

Black Hole at the Center of the Milky Way

Black Hole: mass $3.7 \cdot 10^6 M_{\odot}$ (Yusuf–Zasdeh et al. Astrophys. J. 644, 198 (2006))angular velocity $\sim 1/17 \min$

R. Genzel (1995 – 2006)

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Maxwell Theory

electric field \vec{E} , magnetic field \vec{B} electromagnetic potential A^{μ} : (Φ, \vec{A})

$$\vec{E} = -\nabla \Phi - \partial_t \vec{A} , \quad \vec{B} = \nabla \times \vec{A}$$
$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

the field strength tensor $F_{\mu\nu}$ is gauge invariant, while $A_{\mu} \to A_{\mu} + \partial_{\mu} \chi$

- the electromagnetic field can carry energy
- the electromagnetic field can carry momentum
- the electromagnetic field can carry angular momentum

Coulomb field

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

Maxwell Theory

Kerr–Newman Black Holes

- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Einstein–Maxwell Equations

Einstein-Maxwell theory

Einstein equations

Einstein tensor $\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \longleftarrow \quad \text{stress-energy tensor}$

Maxwell field equations

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0$$

Einstein–Maxwell Equations

Einstein-Maxwell theory

Einstein equations

Einstein tensor $\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \longleftarrow \quad \text{stress-energy tensor}$

Maxwell field equations

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0$$

For spherical symmetry: $T_{00} \sim E^2 \sim \frac{1}{r^4}$

what are the properties of charged black holes?

Reissner–Nordström Black Holes

1916: H. Reissner, 1918: G. Nordström charged static spherically symmetric black holes:

$$N(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$

electrically charged black hole: M, Q

• horizons:
$$r_{\pm} = M \pm \sqrt{M^2 - Q^2}$$

- event horizon: $r_{\rm H} = M + \sqrt{M^2 Q^2}$
- magnetically charged black hole: M, P

energy density outside the horizon due to the Coulomb field of the charge Q

$$M = M_{\rm H} + M_{\rm outside} = M_{\rm H} + 2\Phi_{\rm H}Q$$

Hans J. Reissner 1874 – 1967

Gunnar Nordström 1881 – 1923

Reissner–Nordström Black Holes

1916: H. Reissner, 1918: G. Nordström charged static spherically symmetric black holes:

$$N(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$

- electrically charged black hole: M, Q
 - horizons: $r_{\pm} = M \pm \sqrt{M^2 Q^2}$
 - event horizon: $r_{\rm H} = M + \sqrt{M^2 Q^2}$
- magnetically charged black hole: M, P

energy density outside the horizon due to the Coulomb field of the charge Q

$$M = M_{\rm H} + M_{\rm outside} = M_{\rm H} + 2\Phi_{\rm H}Q$$

Kerr–Newman Black Holes

charged rotating black holes: adding charge to the Kerr solution

global charges:	M, J = aM, Q, P		
dipole moments:	$\mu_{ m mag} = g_{ m mag} rac{Q}{2M} J, \mu_{ m el} = g_{ m el} rac{P}{2M} J$	$(g_{\rm Dirac}=2)$	
horizons:	$r_{\pm} = M \pm \sqrt{M^2 - a^2 - Q^2 - P^2}$	$(\Delta = 0)$	
static limit:	$r_0 = M + \sqrt{M^2 - a^2 \cos^2 \theta - Q^2 - P^2}$	$(g_{tt} = 0)$	
horizon velocity:	$\Omega = \frac{a}{r_+^2 + a^2}$		
axis of rotation			

Rotation and Deformation

Kerr–Newman black holes co–rotate

$$\Omega>0\quad\Leftrightarrow\quad J>0$$

they do not counter-rotate:

 $\Omega>0 \ , \ J<0$

a static horizon implies vanishing angular momentum

$$\Omega=0 \quad \Leftrightarrow \quad J=0$$

there are no black holes with

 $\Omega = 0$, $J \neq 0$ or $\Omega \neq 0$, J = 0

rotation implies an oblate deformation of the horizon

Summary: Einstein-Maxwell Black Holes

	static	rotating
spherically symmetric	Schwarzschild (M)	
	Reissner-Nordström	_
	(M,Q,P)	
axially symmetric		Kerr (M, J)
	_	Kerr–Newman
		(M, Q, P, J)

Uniqueness theorem

black holes are uniquely determined by their mass M, angular momentum J, charges Q and P

Israel's theorem

static black holes are spherically symmetric

Staticity theorem

stationary black holes with non-rotating horizon are static

Werner Israel *1931

Jutta Kunz (Universität Oldenburg)

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes

4D Einstein-Maxwell-Dilaton Black Holes

- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Motivation: String Theory

String theory:

- higher dimensions
- additional fields

influence on black hole physics ?

Einstein-Maxwell-Dilaton Theory

Einstein-Maxwell-dilaton action

dimensionless dilaton coupling constant γ

- $\gamma = 0$: Einstein-Maxwell theory
- $\gamma = 1$: string theory
- $\gamma = \sqrt{3}$: Kaluza-Klein theory
- $\gamma > \sqrt{3}$

Kaluza-Klein Black Holes

Surfaces of extremal solutions in Kaluza-Klein theory: Rasheed 1995

Kaluza-Klein Black Holes

extremal |P| = |Q| solutions

Rotating EMD Black Holes

Kleihaus, Kunz, Navarro-Lérida 2004

extremal: |P| = |Q|

stationary: $\Omega = 0$

stationary: $\Omega = 0$, J = PQ

what is in the shaded region?

Microscopic Black Holes Non-Rotating Stationary EMD Black Holes

Einstein-Maxwell-Dilaton Theory

mass and angular momentum

horizon mass and angular momentum

- as J increases, M decreases
- a negative fraction of J resides behind the horizon: $J_{\rm H} < 0$
- effect of the rotation: prolate deformation of the horizon

Jutta Kunz (Universität Oldenburg)

Microscopic Black Holes Einstein-Maxwell-Dilaton Theory

Counter-Rotating EMD Black Holes

γ=3, x_H=0.1, P=1

- co-rotation
 - J > 0: $\Omega > 0$
- non-rotating horizon
 - J > 0: $\Omega = 0$

Microscopic Black Holes Einstein

Einstein-Maxwell-Dilaton Theory

Shape of Counter-Rotating EMD Black Holes

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes

5D Einstein-Maxwell-Chern-Simons Black Holes

Odd-D Einstein-Maxwell-Chern-Simons Black Holes

D = 5 Einstein-Maxwell-Chern-Simons Theory

In odd dimensions D = 2n + 1 the Einstein-Maxwell action may be supplemented by a ' AF^n ' Chern-Simons term.

D = 5 Einstein-Maxwell-Chern-Simons action

$$S = \int \frac{1}{16\pi G_5} \left\{ \sqrt{-g} \left(R - \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \right) - \underbrace{\frac{2\lambda}{3\sqrt{3}} \varepsilon^{mnpqr} A_m F_{np} F_{qr}}_{3\sqrt{3}} \right\} d^5x$$

Chern-Simons

Chern-Simons coupling constant λ

- $\lambda = 0$: Einstein-Maxwell theory
- $\lambda = 1$: bosonic section of minimal D = 5 supergravity

 $\lambda > 1$

$\lambda = 0$: D = 5 Einstein-Maxwell Black Holes

 rotating vacuum black holes Myers, Perry 1986

two angular momenta J_1 , J_2 rotation in two orthogonal planes

 rotating EM black holes surprise: no analytic solutions Kunz, Navarro-Lérida, Petersen 2005

 $g \neq 3$

 $J_1 \neq 0, J_2 = 0$ black holes $J_1 = J_2$ black holes

r_н=0.5

$\lambda = 1$: Supersymmetric Black Holes

extremal $\lambda = 1$ EMCS black holes:

- mass saturates the bound:
- finite angular momenta:
- angular momenta satisfy the bound:
- horizon angular velocites vanish:
- angular momentum is stored in the Maxwell field
- negative fraction of the angular momentum is stored behind the horizon
- the effect of rotation is to deform the horizon into a squashed 3-sphere

Breckenridge, Myers, Peet, Vafa 1996

$$|J| = |J_1| = |J_2|$$
$$|J| \le \frac{1}{2} \left(\frac{\sqrt{3}}{2}|Q|\right)^{3/2}$$

$$\Omega_i = 0, |J| \neq 0$$

$\lambda > 1$: Rotating D = 5 Black Holes

Kunz, Navarro-Lérida 2006

 $|J_1| = |J_2|, \lambda = 0, 1, 2$

Instability of 5D EMCS Black Holes

|J₁|=|J₂|, Q=-1

• instability beyond $\lambda = 1$

supersymmetry marks the borderline between stability and instability

• $\lambda = 2$ is special

Jutta Kunz (Universität Oldenburg)

Non-Uniqueness of 5D EMCS Black Holes?

$\lambda=2~{\rm EMCS}$ black holes

angular momentum and mass versus Ω

• $\lambda = 2$: set of extremal rotating J = 0 solutions appears to be present

• $\lambda = 2$: infinite set of extremal black holes with the same charges

Non-Uniqueness of 5D EMCS Black Holes

$\lambda>2$ EMCS black holes

|J₁|=|J₂|, λ=3, Q=-1

angular momentum versus mass

 black holes are not uniquely determined by M, J_i, Q

- non-uniqueness of 5D black holes with horizon topology of a sphere S³
- non-uniqueness of 5D black holes and black rings $(S^1 \times S^2)$

Emparan, Reall 2002

 ${{\cal A}\over (GM)^{3/2}}$ versus $\sqrt{{27\pi\over 32G}}{J\over M^{3/2}}$

Domain of Existence of 5D EMCS Black Holes

$\lambda>2$ EMCS black holes

5D, $|J_1| = |J_2|$, $\lambda = 3$

continuous set of black holes

Negative Horizon Mass of 5D EMCS Black Holes

|J₁|=|J₂|, λ=3, r_H=0.20, Q=-10

48 / 55

Introduction to Black Holes

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Microscopic Black Holes

- Maxwell Theory
- Kerr–Newman Black Holes
- 4D Einstein-Maxwell-Dilaton Black Holes
- 5D Einstein-Maxwell-Chern-Simons Black Holes
- Odd-D Einstein-Maxwell-Chern-Simons Black Holes

Odd-D Einstein-Maxwell-Chern-Simons Theory

odd-D Einstein-Maxwell-Chern-Simons Lagrangian

$$L = \frac{1}{16\pi G_D} \left\{ R - \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \underbrace{\frac{8\tilde{\lambda}}{D+1}}_{D+1} \epsilon^{\mu_1\mu_2\dots\mu_{D-2}\mu_{D-1}\mu_D} F_{\mu_1\mu_2}\dots F_{\mu_{D-2}\mu_{D-1}} A_{\mu_D} \right\}$$

Chern-Simons

Chern-Simons coupling constant $\widetilde{\lambda}$

$$\widetilde{\lambda}=0$$
: Einstein-Maxwell theory

$\widetilde{\lambda} \neq 0$: $\widetilde{\lambda}$ dimensionful except for D = 5

scaling transformation: D = 2N + 1

$$r_{\rm H} \to \gamma r_{\rm H} \;,\;\; \Omega \to \Omega/\gamma \;,\;\; \widetilde{\lambda} \to \gamma^{N-2} \widetilde{\lambda} \;,\;\; Q \to \gamma^{D-3} Q \;, \dots$$

Jutta Kunz (Universität Oldenburg)

Rotating D = 7 EMCS Black Holes

Kunz, Navarro-Lérida 2006

Jutta Kunz (Universität Oldenburg)

Microscopic Black Holes Einstein-Maxwell-Chern-Simons Theory

$\lambda > 1$: Rotating D = 7 Black Holes

$\lambda > 1$: Rotating D = 9 EMCS Black Holes

Kunz, Navarro-Lérida 2006

magnetic moment versus angular momentum

• non-static black holes with J = 0, $\Omega = 0$

Conclusions

Conclusions: Surprises with Rotating Black Holes

Einstein-Maxwell-Dilaton Black Holes

- $\Omega = 0, J > 0$ black holes stationary with static horizon
- $\Omega < 0, J > 0$ black holes counter-rotating black holes
- prolate horizon

D = 5 EM-Chern-Simons Black Holes

- in addition: $\lambda \geq 2$
- $\Omega \neq 0$, J = 0 black holes
 - rotating horizon, but vanishing J
- non-uniqueness of black holes
 with horizon topology S³
- negative horizon mass
- D = 9 EM-Chern-Simons Black Holes
 - in addition:
 - $\Omega = 0, J = 0$ black holes stationary and non-static
 - further surprises?

Outlook: Further Surprises?

higher dimensions:

- black holes different horizon topology?
- black strings

rotating non-uniform black strings

4 dimensions:

platonic black holes?

further surprises?