Black Holes in Alternative Theories of Gravity

Jutta Kunz

Institute of Physics CvO University Oldenburg

Introduction

EsGB BHsEdGB BHsEsGB BHs

B EsGB+R BHs

Occlusions

The Fifth Zeldovich Meeting

EsGB BHs
EdGB BHs
EsGB BHs

B EsGB+R BHs

4 Conclusions

The Fifth Zeldovich Meeting

2 EsGB BHs
• EdGB BHs
• EsGB BHs

3 EsGB+R BHs

• Conclusions

The Fifth Zeldovich Meeting

2 EsGB BHs
• EdGB BHs
• EsGB BHs

3 EsGB+R BHs

The Fifth Zeldovich Meeting

Introduction

EsGB BHsEdGB BHsEsGB BHs

3 EsGB+R BHs

4 Conclusions

The Fifth Zeldovich Meeting

GR: Kerr black holes

GR: Kerr black holes

A Kerr black hole has no hair

A Kerr black hole is fully characterized in terms of only two global parameters: the mass M and the angular momentum J

$$\frac{J}{M^2} \le 1$$

GR: Kerr black holes

GR: Kerr black holes

Alternative Theories of Gravity

- Compatible with all solar system tests!
- Strong gravity?
 - Black holes
 - Neutron stars
 - Exotic compact objects
- Cosmology?

1 Introduction

EsGB BHs
EdGB BHs
EsGB BHs

3 EsGB+R BHs

4 Conclusions

The Fifth Zeldovich Meeting

EsGB BHs

Einstein-scalar-Gauss-Bonnet Theories

EsGB action

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} (\partial_\mu \varphi)^2 + f(\varphi) R_{\rm GB}^2 \right]$$

Gauss-Bonnet term: quadratic in the curvature

$$R_{\rm GB}^2 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$

coupling function $f(\varphi)$

The resulting set of equations of motion are of second order (Horndeski).

EsGB BHs

Einstein-scalar-Gauss-Bonnet Theories

Gregory Horndeski, 'Horndeski Scalar Theory, Past, Present and Future'

EsGB BHs

Einstein-scalar-Gauss-Bonnet Theories

generalized Einstein equations

$$G_{\mu\nu} = -\frac{1}{4}g_{\mu\nu}\partial_{\rho}\varphi\partial^{\rho}\varphi + \frac{1}{2}\partial_{\mu}\varphi\partial_{\nu}\varphi - \frac{1}{2}(g_{\rho\mu}g_{\lambda\nu} + g_{\lambda\mu}g_{\rho\nu})\eta^{\kappa\lambda\alpha\beta}\tilde{R}^{\rho\gamma}{}_{\alpha\beta}\nabla_{\gamma}\partial_{\kappa}f(\varphi)$$

scalar equation

$$\nabla_{\mu}\nabla^{\mu}\varphi + \frac{df}{d\varphi}R_{\rm GB}^2 = 0$$

crucial: choice of coupling function $f(\varphi)$

- GR black hole solutions do not remain solutions
 - \implies only hairy black holes result
- GR black hole solutions do remain solutions
 - \implies in addition scalarized black holes emerge

1 Introduction

EsGB BHs
EdGB BHs
EsGB BHs

3 EsGB+R BHs

4 Conclusions

The Fifth Zeldovich Meeting

Kanti et al. hep-th/9511071, Torii et al. gr-qc/9606034

coupling function

$$f(\phi) = \frac{\alpha}{4}e^{-\gamma\phi}$$

static black holes

critical black holes:

horizon expansion

$$\sqrt{1-6\frac{\alpha'^2}{r_h^4}e^{2\phi_h}}$$

lower bound on the horizon size for fixed α'

lower bound on the mass

Kleihaus et al. 1101.2868

horizon area versus angular momentum

Cunha et al. arXiv:1701.00079

perturbation theory: damped oscillations metric

$$g_{\mu\nu} = g^{(0)}_{\mu\nu}(r) + \epsilon h_{\mu\nu}(t, r, \theta, \varphi)$$

 scalar

 $\phi = \phi_0(r) + \epsilon \delta \phi(t, r, \theta, \varphi)$

polar modes:even-parity perturbationsaxial modes:odd-parity perturbations (pure space-time modes)

master equation: Schrödinger-like equation eigenvalue ω

$$\omega = \omega_R + i\omega_I$$

frequency: ω_R

decay time: $\tau = 1/\omega_I$

Blazquez-Salcedo et al. 1609.01286 quasi-normal mode (polar l = 2) versus coupling constant normalized to the Schwarzschild values

1 Introduction

EsGB BHs
EdGB BHs
EsGB BHs

3 EsGB+R BHs

4 Conclusions

The Fifth Zeldovich Meeting

Static curvature induced scalarized black holes

Doneva et al. 1711.01187, Silva et al. 1711.02080, Antoniou et al. 1711.03390 curvature induced scalarized black holes Einstein equations

$$G_{\mu\nu} = T_{\mu\nu}$$

scalar equation

$$\nabla_{\mu}\nabla^{\mu}\varphi + \frac{df}{d\varphi}R_{\rm GB}^2 = 0$$

GR solutions remain solutions: $\varphi = 0, \ \frac{df(\varphi)}{d\varphi} = 0$

Gauss-Bonnet: Schwarzschild

$$R_{\rm GB}^2 = \frac{48M^2}{r^6} > 0$$

tachyonic instability

effective mass

$$m_{\rm eff}^2 = -\eta R_{\rm GB}^2 < 0 \ , \quad {\rm if} \ \eta > 0 \label{eq:meff}$$

Static curvature induced scalarized black holes

Blazquez-Salcedo et al. 1805.05755

domain of existence of spontaneously scalarized static black holes

spontaneously scalarized black holes, $\varphi_{\infty} \neq 0$, radicand negative

Static curvature induced scalarized black holes

Blazquez-Salcedo et al. 1805.05755

solutions

Schwarzschild blue scalarized n = 0 dark green scalarized n > 0 ...

scalar equation

$$g^{2}(r)\ddot{\varphi}_{1} - \varphi_{1}'' + C_{1}(r)\varphi_{1}' + U(r)\varphi_{1} = 0$$

lost hyperbolicity

Static curvature induced scalarized black holes

Blazquez-Salcedo et al. 2006.06006

Rotating curvature induced scalarized black holes

Cunha et al. 1904.09997, Collodel et al. 1912.05382, Dima et al. 2006.03095 scalar equation

$$\nabla_{\mu}\nabla^{\mu}\varphi + \frac{df}{d\varphi}R_{\rm GB}^2 = 0$$

Gauss-Bonnet: Kerr

$$R_{\rm GB}^2 = \frac{48M^2}{(r^2 + \chi^2)^6} \left(r^6 - 15r^4\chi^2 + 15r^2\chi^4 - \chi^6 \right) , \quad \chi = a\cos\theta$$

effective mass

$$m_{\rm eff}^2(r) = -\eta R_{\rm GB}^2 < 0$$

• $\eta > 0$

 \implies spin suppresses scalarization

• $\eta < 0$

 \implies spin induces scalarization

Rotating curvature induced scalarized black holes

Cunha et al. arXiv:1904.09997

coupling function

$$f(\varphi) = \frac{\lambda^2}{12} \left(1 - e^{-6\varphi^2} \right) , \quad \eta > 0 , \quad V(\varphi) = 0$$

angular momentum vs mass

area/entropy vs angular momentum

Rotating curvature induced scalarized black holes

Cunha et al. arXiv:1904.09997

EsGB

 $M/\lambda=0.237(j=0.24)$

Kerr

Rotating spin induced scalarized black holes

<u>Herdeiro et al. arXiv:2009.03904</u>, Berti et al. arXiv:2009.03905 coupling function $\lambda^2 \left(1 - \frac{-6\omega^2}{2}\right)$

$$f(\varphi) = \frac{\lambda}{12} \left(1 - e^{-6\varphi^2} \right) , \quad \eta < 0 , \quad V(\varphi) = 0$$

area vs angular momentum

entropy vs angular momentum

even scalar field

Rotating spin induced scalarized black holes

Herdeiro et al. arXiv:2009.03904

Berti et al. arXiv:2009.03905

entropy vs angular momentum

$$f(\varphi) = \frac{\lambda^2}{12} \left(1 - e^{-6\varphi^2} \right)$$

entropy vs angular momentum

$$f(\varphi) = \frac{\lambda^2}{8} \varphi^2$$

1 Introduction

2 EsGB BHs
• EdGB BHs
• EsGB BHs

3 EsGB+R BHs

• Conclusions

The Fifth Zeldovich Meeting

Einstein-scalar-Gauss-Bonnet with Ricci coupling

Antoniou et al. 2004.14985

Compact object scalarization with general relativity as a cosmic attractor

EsGB with Ricci action

coupling

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} (\partial_\mu \varphi)^2 + \frac{\varphi^2}{2} \left(\alpha R_{\rm GB}^2 - \frac{\beta}{2} R \right) \right]$$

function $f(\varphi) = \frac{\varphi^2}{2}$

Einstein-scalar-Gauss-Bonnet with Ricci coupling

Antoniou et al. 2004.14985

top: energy density ratio of scalar ρ_{φ} and cosmic fluid ρ_a vs redshift z bottom: evolution of scalar field φ in units of its initial value φ_i

RD: radiation dominated, MD: matter dominated, Λ : Λ dominated

$$m_{\rm eff}^2 = \frac{\beta}{2}R - \alpha R_{\rm GB}^2$$

Static curvature induced scalarized black holes

Antoniou et al. 2105.04479

domain of existence of spontaneously scalarized static black holes

$$m_{\rm eff}^2 = \frac{\beta}{2}R - \alpha R_{\rm GB}^2 < 0$$

tachyonic instability: independent of β (R = 0)

scaled scalar charge vs scaled mass for varying Ricci coupling β endpoint: onset of instability

Jutta Kunz (Universität Oldenburg)

Black Holes...

Static curvature induced scalarized black holes

Antoniou et al. 2204.01684

stability of Schwarzschild and spontaneously scalarized static black holes

charge vs mass

radial mode vs mass

- Schwarzschild black holes unstable vor $\hat{M} < 1.174$
- scalarized black holes always unstable for $\beta=0,\,0.7,\,0.9$
- scalarized black holes in part radially stable for $\beta = 1.2$

Rotating curvature induced scalarized black holes

preliminary results

Ricci coupling

$$\beta = 5$$

angular momentum vs mass

area/entropy vs angular momentum

scalarized black holes are entropically preferred

Black Holes...

Quadrupole instability of static scalarized black holes

Kleihaus et al. 2303.04107

Ricci coupling

 $\beta = 2$ and $\beta = 5$

scalar charge vs mass

Quadrupole instability of static scalarized black holes

Quadrupole instability of static scalarized black holes

Kleihaus et al. 2303.04107

Ricci coupling

$$\beta = 2$$
 and $\beta = 5$

entropy vs mass

temperature vs mass

oblate scalarized black holes entropically preferred?

Hexadecupole instability of static scalarized black holes

 $\beta = 2$

preliminary results

Ricci coupling

scalar charge vs mass: l = 0, l = 2, l = 4

Hexadecupole instability of static scalarized black holes

Hexadecupole instability of static scalarized black holes

Kleihaus et al. 2303.04107

Ricci coupling

 $\beta = 2$

2-dimensional embedding

temperature vs mass

next? l = 6, l = 8, ...?

1 Introduction

2 EsGB BHs• EdGB BHs• EsGB BHs

3 EsGB+R BHs

The Fifth Zeldovich Meeting

Conclusions

Conclusions

GR versus generalized gravity theories

GR black holes

- Kerr: no hair
- gravitational waves
- shadow
- ...

black holes beyond GR

• EsGB

- dilatonic
- spontaneously scalarized
- $\bullet~{\rm EsGB+Ricci}$
 - stability?
- Ο..

Conclusions

THANKS