The Many Faces of Black Holes

Jutta Kunz

Institut für Physik CvO Universität Oldenburg

Thessaloniki, 19.10.2006

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

2 Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3 Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3) Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3 Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

General Relativity

Flat Space–Time

metric of Euclidean space

$$ds^2 = dx^2 + dy^2 + dz^2$$

metric of Minkowski space-time

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

Curved Space–Time

metric of curved space-time

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

Motion in Curved Space-Time

motion in curved space-time

$$0 = \frac{d^2 x^{\mu}}{ds^2} + \left\{ \begin{smallmatrix} \mu \\ \rho \sigma \end{smallmatrix} \right\} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}$$

General Relativity

Strongly Curved Space-Time

metric of curved space-time

 $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$

Einstein Equations

metric

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

 Einstein equations matter tells space how to curve

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

 $G_{\mu\nu}$: Einstein tensor

 $T_{\mu\nu}$: energy-momentum tensor

• equations of motion for matter/radiation metric $g_{\mu\nu}$ tells matter how to move Introduction General Relativity

Einstein Equations

Jutta Kunz (Universität Oldenburg)

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3 Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Schwarzschild Metric

Schwarzschild 1916

• space-time outside a star: $T_{\mu\nu} = 0$

$$ds^2 = -N(r)c^2dt^2 + \frac{1}{N(r)}dr^2$$
$$+r^2d\theta^2 + r^2\sin^2\theta d\phi^2$$

Karl Schwarzschild 1873 - 1916

$$N(r) = 1 - \frac{2GM}{c^2 r}$$

static spherically symmetric metric remark: Minkowski space-time has N(r) = 1

• space–time inside a star: $T_{\mu\nu} \neq 0$

Introduction

Schwarzschild Black Holes

Schwarzschild Singularity

Schwarzschild space-time

$$ds^{2} = -N(r) c^{2} dt^{2} + \frac{1}{N(r)} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$
$$N(r) = 1 - \frac{2GM}{c^{2}r} = 1 - \frac{r_{\rm H}}{r}$$

- black holes: M
- Schwarzschild radius $r_{\rm H}$

$$N(r_{\rm H}) = 0: r_{\rm H} = \frac{2GM}{c^2}$$

- event horizon
- coordinate singularity
- true singularity r = 0

Jutta Kunz (Universität Oldenburg)

Introduction

Schwarzschild Black Holes

Formation of a Black Hole

Event Horizon

Jutta Kunz (Universität Oldenburg)

Event Horizon

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3 Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Rotating Black Holes

rotating generalization of the Schwarzschild black holes: Kerr (1965)

Kerr metric in Boyer–Lindquist coordinates

Roy Kerr *1934

$$ds^{2} = -\frac{\Delta}{\rho^{2}} \left(dt - a \sin^{2} \theta d\phi \right)^{2} + \frac{\sin^{2} \theta}{\rho^{2}} \left(a dt - \rho_{0}^{2} d\phi \right)^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2}$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta \;, \quad \rho_0^2 = r^2 + a^2 \;, \quad \Delta = r^2 - 2Mr + a^2$$

a is the specific angular momentum: $a = \frac{J}{M}$ a = 0: Schwarzschild Introduction Kerr Black Holes

Kerr Black Holes in the Equatorial Plane

metric in Boyer-Lindquist coordinates:

equatorial plane: $\theta = \pi/2$ through center of black hole, perpendicular to the spin axis

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} - \frac{4Ma}{r}dtd\phi + \frac{dr^{2}}{1 - \frac{2M}{r} + \frac{a^{2}}{r^{2}}} + \left(1 + \frac{a^{2}}{r^{2}} + \frac{2Ma^{2}}{r^{3}}\right)r^{2}d\phi^{2}$$

comparison with Schwarzschild ($a \neq 0$)

 dt^2 Term: static limit $dt d\phi$ Term: frame dragging and Lense–Thirring dr^2 Term: event horizon

Event Horizon of Kerr Black Holes

First new feature coordinate singularity:

$$1 - \frac{2M}{r} + \frac{a^2}{r^2} = 0$$

radial coordinate of the horizon $r_{\rm H}$

- a < M
 - +: event horizon of the black hole
 - —: inner horizon

maximal angular momentum a = M: extremal black hole

• a > M: naked singularity (Cosmic Censorship)

black hole with horizons

Sir Roger Penrose *1931

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does Lense–Thirring mean?

- Schwarzschild: radial rocket thrust is required to keep a stationary observer at a fixed radius
- Kerr: additional tangential rocket thrust is required to keep an observer at a stationary position, i.e., a position from which the fixed stars do not appear to move

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does Lense–Thirring mean?

- Schwarzschild: radial rocket thrust is required to keep a stationary observer at a fixed radius
- Kerr: additional tangential rocket thrust is required to keep an observer at a stationary position, i.e., a position from which the fixed stars do not appear to move

Gravitomagnetism

Second new feature

- The product $dt d\phi$ implies that the coordinates t and ϕ are intimately linked.
- The Kerr metric predicts Lense–Thirring effect and frame dragging.

What does frame dragging mean?

- Schwarzschild: gyroscopes always point in the same direction
- Kerr: gyroscpes start to precess, i.e., the direction with respect to distant stars changes

Kerr Black Holes

Static Limit of Kerr Black Holes

Third new feature

The coefficient of dt^2 goes to zero at the static limit

- in the equatorial plane $r_{\rm S} = 2M$
- for radii smaller than $r_{\rm S}$ (but greater than $r_{\rm H}$) an observer cannot remain at rest
- the space between the static limit and the event horizon is called ergosphere
- inside the ergospere an observer is inexorably dragged along in the direction of rotation of the black hole axis of rotation
- horizon velocity:

$$\Omega = \frac{a}{r_+^2 + a^2}$$

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

3 Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Stellar Evolution

Astrophysical Black Holes Stellar Mass Black Holes

Detection of Stellar Mass Black Holes

Astrophysical Black Holes Stellar Mass Black Holes

Artist's View of a Binary System

Formation of Cygnus X-1 and its possible future

Jutta Kunz (Universität Oldenburg)

Artist's View of a Binary System

Cygnus X-1:

- O9-B0 supergiant (T = 31,000 K) and a compact object.
- mass of the supergiant $\sim 20 30 M_{\odot}$.
- mass of compact object $\sim 7-13~M_{\odot}$
- distance to Cygnus X-1 ~ 2500 parsec ~ 8000 ly

Candidates

Cygnus X-1

Evidence for stellar black holes

Stellar Black Hole Candidates in the Milky Way (R. Blandford & N. Gehrels 1999)

X-Ray Source Name	Mass of Companion	Mass of Black Hole
	(in M_{\odot})	(in M_{\odot})
Cgnus X-1	24 - 42	11 - 21
V404 Cygni	~ 0.6	10 - 15
GS 2000+25	~ 0.7	6 - 14
H 1705-250	0.3 - 0.6	6.4 - 6.9
GRO J1655-40	2.34	7.02
A 0620-00	0.2 - 0.7	5 - 10
GS 1124-T68	0.5 - 0.8	4.2 - 6.5
GRO J042+32	~ 0.3	6 - 14
4U 1543-47	~ 2.5	2.7 - 7.5

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Milky Way

The Milky Way

- Diameter: 100,000 ly = 30 kpc
- Thickness: 3,000 ly = 0.92 kpc
- Thickness of bulge: 16,000 ly = 5 kpc
- Mass: 1.9 · 10¹² M_☉
- Number of stars: $3 \cdot 10^{11}$
- Rotation velocity of sun: 1 orbit per $\sim 240 \cdot 10^6 \text{ y}$

Milky Way

The Milky Way

- Diameter: 100,000 ly = 30 kpc
- Thickness: 3,000 ly = 0.92 kpc
- Thickness of bulge: 16,000 ly = 5 kpc
- Mass: $1.9 \cdot 10^{12} M_{\odot}$
- Number of stars: $3 \cdot 10^{11}$
- Rotation velocity of sun: 1 orbit per $\sim 240 \cdot 10^6 \text{ y}$
Milky Way

The Milky Way

- Diameter: 100,000 ly = 30 kpc
- Thickness: 3,000 ly = 0.92 kpc
- Thickness of bulge: 16,000 ly = 5 kpc
- Mass: 1.9 · 10¹² M_☉
- Number of stars: $3 \cdot 10^{11}$
- Rotation velocity of sun:
 1 orbit per $\sim 240 \cdot 10^6$ y

Black Hole at the Center of the Milky Way

Black Hole at the Center of the Milky Way

Black Hole at the Center of the Milky Way

Black Hole at the Center of the Milky Way

Black Hole: mass $3.7 \cdot 10^6 M_{\odot}$ (Yusuf–Zasdeh *et al. Astrophys. J.* 644, 198 (2006)) angular velocity ~ 1/17 min

R. Genzel (1995 - 2006)

Andromeda Galaxy

Distance = $2.5 \cdot 10^6$ ly = 0.75 Mpc

٩

Andromeda Galaxy

Andromeda

- Supermassive black hole $M = 30 \cdot 10^6 M_{\odot}$
- Measuring method: X–rays

Elliptical Galaxy

- location: center of Virgo cluster
- distance = $6 \cdot 10^7$ ly = 18 Mpc
- mass = $2.7 \cdot 10^{12} M_{\odot}$
- \circ supermassive black hole $M=3\cdot 10^9\,M_{\odot}$
- measuring method: motion of gas

VI A Radio

Elliptical Galaxy

- distance = $6 \cdot 10^7$ ly = 18 Mpc
- mass = $2.7 \cdot 10^{12} M_{\odot}$
- supermassive black hole $M = 3 \cdot 10^9 \, M_{\odot}$
- measuring method: motion of gas

Accretion Disk

Core of Galaxy NGC 4261

Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image

HST Image of a Gas and Dust Disk

Jutta Kunz (Universität Oldenburg)

Evidence for black holes

Supermassive Black Hole Candidates (M.J. Rees 1997)

Name	Mass (in M_{\odot})	Method
M87	$3 \cdot 10^{9}$	stars + optical disc
NGC 3115	10^{9}	stars
NGC 4486 B	$5 \cdot 10^8$	stars
NGC 4594 (Sombrero)	$5 \cdot 10^8$	stars
NGC 3377	$8\cdot 10^7$	stars
NGC 3379	$5 \cdot 10^7$	stars
NGC 4258	$4 \cdot 10^7$	masing H ₂ O disc
M 31 (Andromeda)	$3 \cdot 10^7$	stars
M 32	$3 \cdot 10^6$	stars
Galactic Centre	$2.5\cdot 10^6$	stars + (3D motions)

Correlation of Black Hole and Galaxy Size

Jutta Kunz (Universität Oldenburg)

Astrophysical Black Holes

Galactic Black Holes

Correlation of Black Hole and Galaxy Size

Correlation of Black Hole and Galaxy Size

Outline

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Conclusions and Outlook

Microscopic Black Holes

The Standard Model

Standard Model of Particle Physics

- What types of black holes do current particle physics theories predict?
- Standard Model is modelled after Maxwell's Theory of Electromagnetism
- Standard Model: gauge field theory

ELEMENTARY PARTICLES

Maxwell Theory

electric field \vec{E} , magnetic field \vec{B} electromagnetic potential A^{μ} : (Φ, \vec{A})

$$\vec{E} = -\nabla \Phi - \partial_t \vec{A} , \quad \vec{B} = \nabla \times \vec{A}$$
$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

the field strength tensor $F_{\mu\nu}$ is gauge invariant, while $A_{\mu} \to A_{\mu} + \partial_{\mu} \chi$

- the electromagnetic field can carry energy
- the electromagnetic field can carry momentum
- the electromagnetic field can carry angular momentum

Coulomb field

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Conclusions and Outlook

Einstein–Maxwell Equations

Einstein-Maxwell theory

Einstein equations

Einstein tensor $\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \longleftarrow \quad \text{stress-energy tensor}$

Maxwell field equations

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0$$

Einstein–Maxwell Equations

Einstein-Maxwell theory

Einstein equations

Einstein tensor $\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \longleftarrow \quad \text{stress-energy tensor}$

Maxwell field equations

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0$$

For spherical symmetry: $T_{00} \sim E^2 \sim \frac{1}{r^4}$

what are the properties of charged black holes?

Reissner–Nordström Black Holes

1916: H. Reissner, 1918: G. Nordström charged static spherically symmetric black holes:

$$N(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$

- electrically charged black hole: M, Q
 - horizons: $r_{\pm} = M \pm \sqrt{M^2 Q^2}$
 - event horizon: $r_{\rm H} = M + \sqrt{M^2 Q^2}$
- magnetically charged black hole: M, P

energy density outside the horizon due to the Coulomb field of the charge Q

$$M = M_{\rm H} + M_{\rm outside} = M_{\rm H} + 2\Phi_{\rm H}Q$$

Hans J. Reissner 1874 – 1967

Gunnar Nordström 1881 – 1923

Reissner–Nordström Black Holes

1916: H. Reissner, 1918: G. Nordström charged static spherically symmetric black holes:

$$N(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$

- electrically charged black hole: M, Q
 - horizons: $r_{\pm} = M \pm \sqrt{M^2 Q^2}$
 - event horizon: $r_{\rm H} = M + \sqrt{M^2 Q^2}$
- magnetically charged black hole: M, P

energy density outside the horizon due to the Coulomb field of the charge Q

$$M = M_{\rm H} + M_{\rm outside} = M_{\rm H} + 2\Phi_{\rm H}Q$$

Kerr–Newman Black Holes

charged rotating black holes: adding charge to the Kerr solution

global charges:	M, J = aM, Q, P		
dipole moments:	$\mu_{ m mag} = g_{ m mag} rac{Q}{2M} J, \mu_{ m el} = g_{ m el} rac{P}{2M} J$	$(g_{\text{Dirac}}=2)$	
horizons:	$r_{\pm} = M \pm \sqrt{M^2 - a^2 - Q^2 - P^2}$	($\Delta = 0$)	
static limit:	$r_0 = M + \sqrt{M^2 - a^2 \cos^2 \theta - Q^2 - P^2}$	$(g_{tt} = 0)$	
horizon velocity:	$\Omega = \frac{a}{r_+^2 + a^2}$		
axis of rotation			

Rotation and Deformation

Kerr–Newman black holes co–rotate

$$\Omega>0\quad\Leftrightarrow\quad J>0$$

they do not counter-rotate:

 $\Omega>0 \ , \ J<0$

a static horizon implies vanishing angular momentum

$$\Omega=0 \quad \Leftrightarrow \quad J=0$$

there are no black holes with

 $\Omega = 0$, $J \neq 0$ or $\Omega \neq 0$, J = 0

rotation implies an oblate deformation of the horizon

Summary: Einstein-Maxwell Black Holes

	static	rotating
spherically symmetric	Schwarzschild (M)	
	Reissner-Nordström	_
	(M,Q,P)	
axially symmetric		Kerr (M, J)
	_	Kerr–Newman
		(M, Q, P, J)

Uniqueness theorem

black holes are uniquely determined by their mass M, angular momentum J, charges Q and P

Israel's theorem

static black holes are spherically symmetric

Staticity theorem

stationary black holes with non-rotating horizon are static

Werner Israel *1931

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Conclusions and Outlook

Non–Abelian Fields

- standard model
 - QCD: gluons $a = 1, \dots, 8$
 - WS: W[±], Z⁰
 non-Abelian gauge fields
 non-linearity in field strength tensor

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- effective theories
 - Skyrme model of strong interactions non–Abelian scalar and pseudo–scalar fields

$$\sigma^2 + \vec{\pi}^2 = f^2$$

What are the consequences of the presence of non–Abelian fields?

Non–Abelian Fields

standard model

- QCD: gluons *a* = 1,...,8
- WS: W[±], Z⁰
 non-Abelian gauge fields
 non-linearity in field strength tensor

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- effective theories
 - Skyrme model of strong interactions non–Abelian scalar and pseudo–scalar fields

$$\sigma^2 + \vec{\pi}^2 = f^2$$

What are the consequences of the presence of non–Abelian fields?

Regular Solutions: Solitons

solitons in flat space: extended solutions with finite energy examples: nucleons, nuclei, magnetic monopoles, etc.

- static spherically symmetric solitons
- static axially symmetric solitons
- static platonic solitons

coupling to gravity: gravitating solitons

Jutta Kunz (Universität Oldenburg)

Non–Uniqueness of Black Holes

black hole solutions: Volkov, Gal'tsov 1989, et al.

$$ds^{2} = -A^{2}(r)N(r)dt^{2} + \frac{1}{N(r)}dr^{2} + r^{2}d\Omega^{2}$$
ptential:
$$A_{\mu}dx^{\mu} = \frac{1 - w_{k}(r)}{2} \left[\tau_{\varphi}d\theta - \sin\theta\tau_{\theta}d\varphi\right]$$

• regular at $r = r_{\rm H}$

metric:

gauge po

- asymptotically flat
- node number k

 $k=1,...,\infty$

- limiting solution $k \rightarrow \infty$: RN
- no charge

no uniqueness

Static Axially Symmetric Black Holes

black hole solutions: Kleihaus, Kunz 1997

- regular horizon
- asymptotically flat
- no charge
- no uniqueness
- static but axially symmetric
- deformed horizon

Platonic Black Holes

Challenge: Are there black holes with only discrete symmetries?

Theodora Ioannidou, Burkhard Kleihaus, Jutta Kunz, Kari Myklevoll

work in progress

platonic black holes?

Outline

Introduction

- General Relativity
- Schwarzschild Black Holes
- Kerr Black Holes

Astrophysical Black Holes

- Stellar Mass Black Holes
- Galactic Black Holes

Microscopic Black Holes

- The Standard Model
- Kerr–Newman Black Holes
- Static Non-Abelian Black Holes
- Rotating Einstein–Maxwell–Dilaton Black Holes

Conclusions and Outlook

Rasheed 1995

domain of existence of Einstein–Maxwell–dilaton black holes: $\gamma = \sqrt{3}$

stationary black holes with static horizon: $\Omega = 0$, $J \neq 0$

J increases, M = const

- frame dragging?
- effect of rotation?

Angular Momentum and Deformation

- a negative fraction of J resides behind the horizon: $J_{\rm H} < 0$
- effect of the rotation: prolate deformation of the horizon

EMD Black Holes: $\gamma > \sqrt{3}$

Kleihaus, Kunz, Navarro-Lérida 2004

extremal: |P| = |Q|

stationary: $\Omega = 0$

stationary: $\Omega = 0$, J = PQ

what is in the shaded region? counterrotating black holes
Conclusions

Conclusions: Surprises with Microscopic Black Holes

- Kerr black holes: astrophysical black holes
- Kerr-Newman black holes: uniqueness theorem Israel's theorem
- static non-Abelian black holes: no uniqueness in terms of global charges not spherically symmetric static black holes platonic black holes?
- rotating EMD black holes:

 $\Omega = 0, J \neq 0$ $\Omega < 0, J > 0$ prolate deformation

Conclusions

Outlook: Further Surprises?

Higher dimensions:

- black holes
 - non-uniqueness of black holes
 - $\Omega \neq 0$, J = 0 black holes
 - non-static $\Omega = 0$, J = 0 black holes
 - black holes with negative horizon mass
 - ???
- black rings
- black strings
- ???

