Ultrafast dynamics and near-field optics of light transmission through plasmonic crystals

ABSTRACT

Using near-field scanning optical microscopy and ultrafast laser spectroscopy, we study the linear optical properties of subwavelength nanoslit and nanohole arrays in metal films, which are prototype structures for novel plasmonic crystals. Near-field microscopy provides direct evidence for surface plasmon polariton (SPP) excitation and allows for spatial imaging of the corresponding SPP modes. By employing spectral interferometry with ultrashort 11-fs light pulses, we directly reconstruct the temporal structure of the electric field of these pulses as they are transmitted through the metallic nanostructures. The analysis of these data allows for a quantitative extraction of the plasmonic band structure and the radiative damping of the corresponding SPP modes. Clear evidence for plasmonic band gap formation is given. Our results reveal that the coherent coupling between different SPP modes can result in a pronounced suppression of radiative SPP damping, increasing the SPP lifetime from 30 fs to more than 200 fs. These findings are relevant for optimizing and manipulating the optical properties of novel nano-plasmonic devices.

KEYWORDS: Near-field microscopy, Ultrafast spectroscopy, Femtosecond, Surface plasmon polaritons, Metal nanostructures, Enhanced transmission, Subradiance

1. INTRODUCTION

Surface-bound electromagnetic waves on metals, so-called surface plasmon polaritons (SPPs), are the elementary optical excitations of novel plasmonic nanostructures. Such plasmonic structures promise an unprecedented amount of microscopic light control (1; 2; 3; 4) and applications in, e.g., nano-lensing (3), perfect lensing (5), field localization, and ultrafast switching. Nano-hole and slit arrays in metal films are a particularly important model system for SPP nano-optics, and the enhanced transmission of light (4) through such arrays is one of the many unusual optical phenomena associated with this class of nanostructures. Recent time-resolved experiments have demonstrated a strong SPP coupling to far-field radiation (6), limiting SPP lifetimes to few tens of femtoseconds (6; 7; 8). This poses a serious constraint on using these structures in novel elements such as plasmonic resonators or nano-waveguides. The question arises how to control radiative SPP damping in order to overcome these lifetime constraints.

In this paper, we address this question by providing a full amplitude- and phase-resolved study of the temporal structure of the electric field of ultrashort 11-fs light pulses transmitted through such metallic nanostructures (9). The results give evidence for two interfering transmission channels: ultrafast non-resonant transmission due to photon tunneling and time-delayed resonant reemission from surface plasmon polariton excitations. The analysis of these results allows to reconstruct the plasmonic band structure of these crystals and evidences band gap formation. We demonstrate that the coherent coupling between different SPP modes induced by periodic variations
in the dielectric function can result in a pronounced enhancement of the radiative SPP lifetime, increasing from 30 to more than 200 fs. Near-field optical images reveal that the formation of coupled antisymmetric SPP modes is the origin of this radiative damping suppression, in analogy to Dicke subradiance (10) in coupled atomic and molecular systems.

The article is structured as follows: In Sec. 2 we describe our experimental techniques. In Sec. 4 we demonstrate the use of near-field scanning optical microscopy for direct imaging of SPP eigenmodes in plasmonic crystals. Section 4 reports and discusses results on ultrafast light transmission through periodic nanoslit arrays. Some conclusions are given in Sec. 5.

2. EXPERIMENTAL

We investigate 150-300 nm thick gold films that are either perforated by periodic square arrays of nanoholes with a radius of 125 nm and periods of 700 to 800 nm or by linear arrays of 50-nm wide nano-slits and 600 to 700 nm period. The samples are fabricated by dry etching after e-beam patterning of a gold film grown on a \(\frac{\lambda}{5} \) flat sapphire substrate (11; 6). The linear optical properties of these nanostructures are studied by both, conventional far-field white-light spectroscopy and near-field scanning optical microscopy (NSOM). In the NSOM measurements, the sample is illuminated with linearly polarized light from a spectrally tunable continuous-wave Ti:sapphire laser through the sapphire substrate. The incident beam is weakly focused to a spot size of about 10 \(\mu \)m, and the electric field at the metal/air interface is coupled into an aluminum-coated near-field probe with 80-100 nm aperture diameter. The signal is then detected with a silicon avalanche photodiode. A conventional tuning-fork based shear-force distance regulation is used to maintain a constant tip-to-sample distance of about 10 nm. All experiments are performed at room temperature.

In the time-resolved experiments, ultrashort 11-fs light pulses from a Ti:sapphire oscillator centered at a wavelength of 800 nm are transmitted through the metallic nanostructures. The linearly polarized pulses are weakly focused onto the sapphire substrate of the sample using reflective metal optics. Both, amplitude and phase of the incident electric field are fully characterized by spectral phase interferometry for direct electric-field reconstruction (SPIDER) (12; 13), apart from an unknown carrier-envelope phase. Amplitude and phase of the transmission function through the metallic nanostructure are measured via spectral interferometry (14) by interferometrically heterodyning the incident and the transmitted pulses (Fig. 2). The spectral interferogram of the two pulses is dispersed in an 0.5 m spectrograph and is detected by a fast 2048 pixel line-scan camera, covering the wavelength range from 700 to 900 nm in a single shot. A read-out rate of 1 kHz is sufficient to avoid any degradation of the fringe visibility in the unstabilized interferometer (see inset in Fig. 2). In this way, the amplitude and phase of both, the incident pulse and the transmission function of the nanoslit array are known, and we can compute the electric field at the output of the array and determine its temporal structure via a Fourier transform.
3. NEAR-FIELD MAPPING OF SURFACE PLASMON POLARITON MODES

A typical far-field transmission spectrum of a sample with 150 nm hole diameter and a period of 850 nm perforated into a 300 nm thick gold film, is displayed in Fig 1(b). It shows pronounced transmission resonances at certain resonance wavelength (4). Surprisingly, it was found that this transmission is so large that it may even exceed the geometrical fill fraction of the nanoholes in the metal film (4). The resonant transmission enhancement arises from an efficient grating coupling of the incident far-field radiation to surface-plasmon-polariton (SPP) excitations at either the air-metal or sapphire-metal interfaces. The resonance energies can be estimated (15) from the SPP dispersion relations on a planar metal-dielectric interface

\[
\omega(\vec{k}_{SP}) = \frac{c}{|\vec{k}_{SP}|} \left(\frac{\varepsilon_m + \varepsilon_d}{\varepsilon_m \varepsilon_d} \right)^{1/2},
\]

energy conservation

\[
\omega(\vec{k}_\parallel) = \omega(\vec{k}_{SP})
\]

and momentum conservation

\[
\vec{k}_{SP} = \vec{k}_\parallel \pm p \vec{G}_x \pm q \vec{G}_y.
\]

Here \(\omega(\vec{k}_{SP})\) denotes the frequency of the incident light with in-plane wave vector \(\vec{k}_\parallel\). \(\omega(\vec{k}_\parallel)\) is the frequency of the SPP with wave vector \(\vec{k}_{SP}\), and \(\varepsilon_m\) and \(\varepsilon_d\) are the dielectric function of metal and dielectric, respectively. \(\vec{G}_x\) and \(\vec{G}_y\) are the reciprocal lattice vectors, i.e., in this case \(|\vec{G}_x| = |\vec{G}_y| = 2\pi/a_0\), where \(a_0\) is the grating period. The integers \(p\) and \(q\) indicate the amount of momentum transferred by the grating. Consequently, the different transmission resonances are labelled as \(\text{AM}[p, q]\) and \(\text{SM}[p, q]\) for excitation of SPP modes at the air and sapphire side, respectively. For slit structures, only the in-plane wave vector component perpendicular to the slit axis is affected and the resonances are labelled \(\text{AM}[p]\) and \(\text{SM}[p]\), correspondingly. The above estimate of the resonance positions is only an approximation as the experimentally observed transmission maxima are affected by (i) the hole-induced change of the planar surface dispersion relation, (ii) hole-induced couplings of different SPP modes (i.e. band gap formation), and (iii) the finite radiative damping of these SPP modes, as will be seen in the next section.

As the role of SPP excitations in this enhanced-transmission process has been the subject of a considerable amount of theoretical work (16; 17; 18; 19; 20), partly reaching seemingly controversial conclusions (19; 20), there is some interest in giving direct experimental evidence for SPP excitations in nanohole-perforated metal films. This can be achieved by imaging the electric field intensity in the near-field of the metal film (11). Figure 3(a) shows such a near-field image taken on an array of nanoholes with 150 nanometer diameter and \(a_0 = 850\) nm. In this experiment, the laser light is sent at near-normal incidence through the sapphire substrate, and the transmitted light is collected with an aluminum-coated tapered fiber probe with \(\sim 80\) nm aperture diameter. The excitation wavelength is 877 nm, close to the \(\text{AM}[1, 0]\) resonance. The linear laser polarization (along the \(x\)-direction) and the location of the nanoholes, precisely known from simultaneously recorded shear-force images,
Figure 3. (a) Image of the transmitted intensity in the near-field of a two-dimensional array of nanoholes of 150 nm diameter with a period of 850 nm in a 300-nm thick gold film. The image is recorded at an excitation wavelength of 877 nm with an aluminum-coated NSOM fiber probe with an ~80 nm aperture diameter. The tip-to-sample distance of ~10 nm is kept constant during scanning. The polarization direction of the incident light is indicated. Light regions correspond to high intensity, whereas the intensity is zero in the dark regions. (b) Near-field intensity $|E_y|^2$ on top of a hole-perforated metal film from a three-dimensional finite difference time domain simulation. The simulation was performed for a silver grating with a 500 nm period and a 100 nm hole diameter. The incident wave at 530 nm is polarized along the y-direction.

are indicated in the figure. This possibly somewhat counter-intuitive experimental result is quite striking. It gives indeed clear evidence for efficient SPP excitation. Only a small fraction of the total light intensity is detected inside or near the nanoholes, whereas most of the transmitted light intensity is found on the metal surface, away from the holes. The SPP field at the metal surface reveals a clear standing-wave pattern, easily recognized as essentially being dominated by interference of SPP modes with in-plane wave vectors $\vec{k}_{SP} = \pm \vec{G}_x$. The analysis of the dependence of these near-field images on the incident laser polarization (Fig. 4) supports this assignment. Rotation of the incident polarization by 90° [Fig. 4(b)] essentially rotates the SPP standing wave pattern. The stripe-like interference pattern is again perpendicularly oriented to the incident polarization, directly evidencing the longitudinal character of surface plasmon polariton waves at metal-/dielectric interfaces (21). The more complicated interference patterns at intermediate polarization angles [Fig. 4(c)] essentially result from the interference of SPP waves with $\vec{k}_{SP} = \pm \vec{G}_x \pm \vec{G}_y$.

Since these near-field images are quite different from previous near-field studies with nonresonant excitation in

Figure 4. Polarization dependence of near-field transmission images near the air-gold $[1,0]$ and/or $[0,1]$ resonance using light with a wavelength of 877 nm. The data were taken from the same sample as in Fig. 3(a). The arrow represents the polarization of the incident light.
Figure 5. (a) Schematic of the time-resolved transmission experiments. In these measurements, the time structure of the 11-fs incident pulses and of the pulses transmitted through an array of 50-nm wide slits in a 100-nm thick gold film is characterized by interferometric autocorrelation (IAC) (b) IAC and spectrum (inset) of the incident laser pulses. (c) IAC and spectrum of the transmitted light at $\theta = 28^\circ$. (d) IAC and spectrum at $\theta = 35^\circ$. The IAC trace is dominated by the re-emission from resonant SPP excitations.

From chromium films (22) and also from recent theoretical calculations of the near-field distribution (18), we decided to perform three-dimensional finite difference time domain (FDTD) (23) simulations of light transmission through subwavelength hole arrays (24; 25). Results for light transmission through 100-nm holes in a free-standing silver film of 100 nm thickness are shown in Fig. 3(b). The field distributions for a linear incident polarization along the y-axis, as in Fig. 3(a), are calculated by numerically integrating Maxwell’s equations in the time domain assuming a Drude model for the dielectric function of the metal. For simplicity, we chose a lattice constant of the hole array of 500 nm and an excitation wavelength of 530 nm, similar to the experimental conditions. These simulations show that the field distribution close to the aperture is described rather well by the well-known Bethe-Bouwkamp model (26; 27) and show the typical divergence at the rim of the aperture. In addition, strong SPP fields are generated on the non-illuminated side and the stripe-like patterns run perpendicular to the polarization direction. The formation of a standing-wave SPP field is clearly visible in the local enhancement of the field intensity along lines in the center between adjacent holes, perpendicular to the incident y-polarization, in quite good agreement with the experimental results. The facts that, in the experiments, we do not observe the predicted field divergence at the rims of the aperture and also that the simulated field intensities in this region are higher than the measured ones are not too surprising. First, the finite spatial resolution of the used near-field probes may effectively smear out these features and second, the shape of the experimentally fabricated cylindrical apertures is certainly less ideal than that in the model calculations, and this is likely to suppress the predicted field divergencies. It is interesting to note that the experimental results agree quite well with the numerical simulations of the in-plane components of the electric field. This indicates that the used aperture-type NSOM probes are not sensitive to the strong out-of-plane z-polarized field components, generated in the near-field of the metal film. These field components are expected to display a completely different spatial distribution (24) and may be probed, e.g., via second-harmonic generation at sharp metal tips (28). These results give convincing evidence that the used near-field technique is well suited for directly imaging spatial SPP mode profiles in this class of metallic nanostructures. In the next section we make use of this technique for studying the effects of coherent SPP coupling on the optical properties of such arrays.

4. ULTRAFAST DYNAMICS OF LIGHT TRANSMISSION THROUGH PLASMONIC CRYSTALS: TUNING RADIANT DAMPING BY COHERENT SPP COUPLING

To study the ultrafast dynamics of light propagation through such metallic nanostructures, we first probe the time structure of the transmitted light by a second-order interferometric autocorrelation (IAC) technique commonly applied for the characterization of ultrashort laser pulses (Fig. 5). As a model system, we study light propagation
Figure 6. (left) Experimentally measured time structure of the electric field $E_{\text{in}}(t)$ of the incident 11-fs pulses with a center wavelength of 800 nm. The amplitude and the phase of $E_{\text{in}}(t)$ are characterized - apart from the unknown carrier-envelope phase - by SPIDER. (right) Time structure of the pulses $E_{\text{out}}(t)$ transmitted through a nanoslit array with $a_0 = 650$ nm at an angle θ of 8°. The time structure is reconstructed from the spectral interferogram between transmitted and incident pulses (see Fig. 2). The initial burst ("direct transmission") and the delayed reemission from different, interfering SPP resonances are distinguished.

through a linear array of 50-nm wide nanoslits in a 150-nm thick gold film. In these experiments, the transmitted light is split into two pulses of equal intensity in a Michelson interferometer. Theses pulses are then collinearly overlapped and focused onto a nonlinear optical crystal. The intensity of the generated blue second-harmonic light is measured as function of the variable pulse delay Δt (29; 30). The IAC trace of the incident 11-fs pulses is shown in Fig. 5(b) together with the spectrum of the laser pulses. Autocorrelation traces of the light transmitted through the nanoslits at two different incident angles are given in Fig. 5(c,d). The linear transmission spectra of the arrays are shown in the insets. At an angle of 28$^\circ$, the laser spectrum overlaps only weakly with the SPP resonances. Here the transmitted light consists of an ultrafast initial burst and a second long-lived but weak contribution. When the overlap between SPP resonances and laser spectrum is optimized by angle tuning [Fig. 5(d)], the long-lived contribution is strongly enhanced. Clearly, the transmitted light is now dominated by the pronounced polarization interference between the electric fields re-emitted from two long-lived SPP resonances, persisting for more than 80 fs.

These experiments present the first direct visualization of the ultrafast dynamics of light propagation through such metallic nanostructures. Yet, a quantitative reconstruction of the time structure of the transmitted fields is difficult, even if independent knowledge of the power spectrum is available. Theoretical studies show that different pulse shapes with equal spectrum may display basically indistinguishable interferometric autocorrelation traces (31). We therefore used spectral interferometry with amplitude- and phase-characterized ultrafast reference pulses for a quantitative retrieval of the transmitted electric field (9). The time structures of the incident laser field and the transmitted electric field through a slit array with $a_0 = 650$ nm are shown in Fig. 6. Again, the temporal profile of the transmitted field reveals two distinct components: an initial ultrafast burst mainly around time zero and a long-lived signal persisting beyond 30 fs, which is due to resonant SPP re-emission. Two distinct pathways can contribute to the transmission through these arrays (32; 33): an ultrafast, nonresonant direct transmission through the nanoslit waveguide $E_{\text{nr}}(t)$ and resonant excitation and subsequent reemission of more weakly damped SPP resonances $E_{\text{SP}}(t) = \sum_j E_j \exp(-i\omega_j t - \gamma_j t)$. The total transmitted field $E_{\text{t}}(t) = E_{\text{nr}}(t) + E_{\text{SP}}(t)$ then results from the interference between both channels.

In the spectral domain, this interference gives rise to asymmetric Fano-like lineshapes in the far-field transmission spectra $T(\omega) = |t(\omega)|^2$ with

$$
t(\omega) = a_{\text{nr}} + \sum_j \frac{b_j \Gamma_j e^{i\phi_j}}{\omega - \omega_j + i(\gamma_j + \Gamma_j)}.
$$

The resonance width generally contains two contributions: a nonradiative damping γ_j due to absorption in the metal and the radiative damping Γ_j of the SPP modes, which is in most cases dominant (6). Such a Fano-model allows one to quantitatively model the distinct asymmetric line shapes of the transmission spectra (Fig. 1).
To investigate band gap formation and radiative decay phenomena, we have performed angle-resolved spectral interferometry. In such experiments, the in-plane momentum $k_x = \frac{2}{\lambda} \sin \theta + p \cdot 2\pi/\lambda_0$ and thus the resonance energy of the excited SPP mode is continuously varied by changing the angle of incidence θ, allowing for a mapping of the SPP band structure (4; 15). Figure 7 shows transmission spectra $T(\omega, \theta)$ between 700 and 900 nm. Resonances connected to SPPs on both sides of the gold film, namely AM$[p = \pm 1]$ and SM$[p = \pm 1, 2]$, are clearly resolved. At all angles, the spectra and the phase curves are consistently modeled by Eq. 1, taking the mapping of the SPP band structure (4; 15). Figure 7 shows transmission spectra in Fig. 7. One observes a clear anti-crossing of the SPP bands with a band gap energy of about 72 meV.

Interestingly, there are pronounced variations of the intensities and linewidths near the crossing of the two modes. In particular, as θ approaches the crossing, the lower energy mode becomes narrower until the transmission intensity begins to decrease. As we discuss below, this reduction in linewidth reflects the suppression of radiative SPP damping due to the coupling of the SM$[+1]$ and SM$[-2]$ resonances.

Such a subradiant SPP decay is expected to be intimately connected with the formation of new coupled SPP eigenmodes of different spatial symmetry (10; 34). To demonstrate this link, we have studied the damping suppression in more detail near the crossing of two air-metal bands, where we can directly compare the results of the far-field transmission to near-field images of the SPP modes. In order to overlap the AM$[+1]/$AM$[-1]$ crossing with our laser spectrum, these data are taken on a sample with $\lambda_0 = 750$ nm, red-shifting all transmission modes. To first order, the strength of these interactions can be approximated as $V_{ij} \propto (\alpha^2 \Delta \epsilon(\epsilon^{-1})(r))/\hbar$ (35), even though some care is needed in using such approximations for metallic nanostructures. Here $\Delta \epsilon(r)$ denotes the local perturbation of the dielectric function.
linewidth is mainly attributed to an oversimplified modeling of the non-resonant transmission continuum in
≈ 35 meV and $h\bar{\nu}_{\text{peak}}$, which vanishes at $\Delta = 0$. The results in Fig. 8(b,c) are satisfactorily modelled by Eq. 2 when parameters of the resonance with decreasing damping is fully suppressed at $\Delta = 0$. Here, the linewidth of the resonance is no longer limited by radiative modes are angle-tuned into resonance (Fig. 7). This band gap formation coincides with a pronounced change of eigenvalues describing the resonances of the coupled system and their radiative decay:

$$
\begin{pmatrix}
\omega_1 - i\gamma_1 & 0 \\
0 & \omega_2 - i\gamma_2
\end{pmatrix} +
\begin{pmatrix}
V_{11} - i\Gamma_{11} & V_{12} - i\Gamma_{12} \\
V_{21} - i\Gamma_{21} & V_{22} - i\Gamma_{22}
\end{pmatrix}.
$$

The detuning $\Delta(k_x) = \omega_2(k_x) - \omega_1(k_x)$ between the two unperturbed resonances follows from the SPP dispersion relation of the unpatterned film and is continuously varied by angle tuning. For the AM$[\pm 1]$ resonance and small angles, all individual coupling constants $V \simeq V_{ij}$ are nearly identical, as are the damping constants $\Gamma \simeq \Gamma_{ij}$, $\gamma \simeq \gamma_j$. The frequencies of the coupled modes are given as $\omega_{\pm} = \omega_1 + \Delta/2 + V - i\Gamma \pm A/2$ with $A = \sqrt{\Delta^2 + 4(V - i\Gamma)^2}$. The resulting coupled eigenmodes are $|+,-\rangle = \pm c_{1}|1\rangle + c_{2}|2\rangle$, with coefficients $c_{1,2} = \sqrt{(A + \Delta)/2A}$. Using this model, optical transmission spectra can be directly simulated using Eq. 1.

The coupling between these two resonances results in the opening of the SPP band gaps $2h\nu$ when the SPP modes are angle-tuned into resonance (Fig. 7). This band gap formation coincides with a pronounced change of the linewidth $\Gamma_\gamma = \gamma + \Gamma - \text{Im}(A/2)$ of the newly formed antisymmetric (dark) $|\rangle$ mode. Its radiative coupling to the far-field continuum $\Gamma_\gamma = \Gamma - \text{Im}(A/2)$ decreases continuously with decreasing detuning, and radiative damping is fully suppressed at $\Delta = 0$. Here, the linewidth of the resonance is no longer limited by radiative damping but by the intrinsic losses γ. In angle-dependent spectra (Fig. 8(b)), one thus observes a narrowing of the resonance with decreasing θ until $\Gamma_\gamma < \gamma$, followed by a decrease of the intensity of the dark mode peak, which vanishes at $\Delta = 0$. The results in Fig. 8(b,c) are satisfactorily modelled by Eq. 2 when parameters $h\nu = 35$ meV and $h\Gamma = 13$ meV are assumed. The slightly stronger variation in the experimentally measured linewidth is mainly attributed to an oversimplified modeling of the non-resonant transmission continuum in Eq. 1.

The microscopic origin of this pronounced suppression of radiative damping becomes immediately apparent by looking at the spatial near-field mode profiles of the coupled modes (Fig. 9). The mode overlap of the symmetric $|+\rangle$ mode with the nanoslit scattering centers is larger than that of the uncoupled modes $|1,2\rangle \propto \exp(\pm iGx)$,

Symmetric mode:
Superradiant damping

Antisymmetric mode:
Subradiant damping

Figure 9. (left) Experimentally measured near-field mode-profiles $I_t(x)$ of the symmetric mode $|+\rangle$ recorded at an excitation energy of 1.548 eV (superradiant mode). The position of the nanoslits, simultaneously measured by shear-force microscopy, is indicated. (right) $I_t(x)$ of the antisymmetric mode $|-\rangle$ at 1.617 eV (subradiant mode). The reduced mode overlap with the nanoslit scattering centers greatly suppresses radiative damping.

thus increasing the radiation damping constant Γ_+. For the antisymmetric $|-\rangle$ mode, however, the maxima of $I(x) \approx |\exp(iGx) - \exp(-iGx)|^2$ at $\pm a_0/4$ are now in between the nanoslits. The field intensity at the nanoslits is strongly reduced, and the radiative damping rate Γ_- becomes vanishingly small. This is in analogy to previously observed interference phenomena in the radiative damping of other, e.g., atomic or molecular, multi-level systems (36; 37). In such systems, however, the finite radiative damping of the uncoupled systems is often larger than their radiative coupling, and the suppression of radiative damping is much less pronounced (37). In the system considered here, the intrinsic damping is sufficiently weak to reach the strong radiative coupling limit ($\Gamma > \gamma$).

5. SUMMARY AND CONCLUSIONS

In summary, we have studied the linear optical properties of periodic nanohole and -slit arrays in metal films using both, near-field optical microscopy and ultrafast laser spectroscopy. Ultrafast laser pulses, shorter in duration than the relevant SPP damping times, were transmitted through such arrays, and both, amplitude and phase of the electric field of the transmitted pulses were analyzed. Our experiments give evidence for a pronounced coherent coupling of surface plasmon polaritons in these plasmonic nano-crystals. Near-field optical studies show how the formation of coupled, antisymmetric SPP modes induces an efficient suppression of radiative damping and leads to surprisingly long SPP lifetimes of more than 200 fs. Such a control of radiative damping by tailoring SPP mode profiles is an essential prerequisite for designing and implementing efficient nanoplasmonic devices such as wave guides or resonators, studying the physics of strong SPP localization and using SPPs as flying qubits in quantum information processing.

6. ACKNOWLEDGMENT

Financial support of the work in Korea by MOST and KOSEF and that in Germany by the Deutsche Forschungsgemeinschaft (SFB296) is gratefully acknowledged.

References

