

PHYSICAL COLLOQUIUM

INVITATION

Monday, 15.04.2019, 4.15 p.m., W2-1-148

speaks

Dr. Markus Heyde

Fritz-Haber-Institute of the Max-Planck-Society Berlin

about

"Resolving the Structure of Thin Glass Films by Using Scanning Probe Microscopy Methods"

The difficulty to reveal the atomic structure of bulk amorphous materials can be overcome by using a thin film approach. The development of an amorphous two dimensional (2D) silica bilayer has allowed deriving the atomic positions by using scanning tunneling microscopy (STM), atomic force microscopy (AFM) [1] and transmission electron microscopy (TEM) [2]. In order to establish a general understanding of amorphous networks, structural characterization of glass-forming materials as well as their mixtures is of great interest.

Recently, we have been able to develop also germania thin films [3] grown on Ru(0001) and Pt(111) by physical vapor deposition and subsequent annealing in oxygen. These atomically defined films have also been characterized by combining intensity-voltage low energy electron diffraction (I/V-LEED) and ab initio density functional theory (DFT) analysis together with high-resolution STM imaging.

Furthermore, these thin film glass systems have gained impact as a new 2D material class with interesting material properties [4, 5].

[1] L. Lichtenstein, et al., Angew. Chem., Int. Ed. 51 (2012) 404

- [2] P. Y. Huang, et al., Nano Letters **12** (2012) 1081
- [3] A. L. Lewandowski, et al., Phys. Rev. B 97 (2018) 115406
- [4] C. Büchner, et al., ACS Nano 10 (2016) 7982
- [5] C. Büchner, et al., Phys. Rev. Lett. 120 (2018) 226101

All interested persons are cordially invited. Sgd. Prof. Dr. Niklas Nilius