Modulhandbuch Master of Science in Engineering Physics

Institute of Physics November 29, 2021

$CP \rightarrow$	3	6	9	12	15		18	21	24		27		30	sum
$4. \rightarrow$ Semester						Thesis	S							
СР						30								30
$3. \rightarrow$ Semester	Theoretic	cal Methods	Advanced Topics in EP	Specia	lization			Adva	anced Resea	urch P	roject			
СР		6	3		6				15					30
$2. \rightarrow$ Semester	Advance	ed Physics	Engineeri	ng Sciences	Spe	ecializa	ation	Spe	cialization	r. S	Tools ar gineerin	nd Skills og Scienc	in En- œs	
СР		6		6		6			6				30	
$1. \rightarrow$ Semester	Advance	Advanced Physics Advanced N			Engine	ering	Sciences	Enginee	ering Scienc	es	${ m Sp}\epsilon$	ecializati	on	
СР	6 6			6	[6			6			6		30
Fields	of study: Mandatory Advanced				hysics Engineering Specialization Thesis ΣCP							\overline{CP}	= 120	

0

The field of specialization consists of Biomedical Physics, Acoustics, Laser & Optics, Renewable Energies.

Contents

1	\mathbf{Spe}	cialization	5
2	Mai 2.1 2.2	ndatory Courses Advanced Metrology	14 14 15
	2.2 2.3	Theoretical Methods	16
	$\frac{2.5}{2.4}$	Tools and Skills in Engineering Sciences	10 19
	2.4 2.5	Advanced Research Project (Proparation Master Thesis)	20 20
	2.6	Thesis	$\frac{20}{22}$
3	Adv	vanced Physics	24
	3.1	Advanced Nuclear and Particle Physics	24
	3.2	Fluiddynamics	26
	3.3	Optics	27
	3.4	Fourier Methods	28
	3.5	Audiologie und Akustik	30
	3.6	Selected Topics in Advanced Physics	32
4	Bio	medical Physics	33
	4.1	Engineering Sciences	33
		4.1.1 Grundlagen der Physiologie	33
		4.1.2 Personalized Medicine	35
		4.1.3 Processing and Analysis of Biomedical Data	36
		4.1.4 Advanced Engineering Topics in Biomedical Physics and Acoustics	37
	4.2	Specialization	38
		4.2.1 Selected Topics on Medical Radiation Physics	38
		4.2.2 Imaging and Data Analysis	40
		4.2.3 Medizinische Strahlenphysik I	41
		4.2.4 Medizinische Strahlenphysik II	42
		4.2.5 Advanced Computing	43
		4.2.6 Advanced Topics in Biomedical Physics and Acoustics	44
5	Aco	oustics	45
	5.1	Engineering Sciences	45
		5.1.1 Digital Signal Processing	45
		5.1.2 Machine Learning II	47
		5.1.3 Advanced Computing	49
		5.1.4 Advanced Engineering Topics in Biomedical Physics and Acoustics	50
	5.2	Specialization	51
		5.2.1 Speech Processing	51
		5.2.2 Advanced Topics Speech and Audio Processing	52
		5.2.3 Acoustics	53
		5.2.4 Psychoacoustics	54
		5.2.5 Advanced Topics in Biomedical Physics and Acoustics	55
6	Lase	er and Optics	56
	6.1	Engineering Sciences	56
		6.1.1 Spectrophysics \ldots	56
		6.1.2 Photonics	58
		6.1.3 Medical Optics	59
		6.1.4 Laser Material Processing	60

		6.1.5	Advanced Engineering Topics in Laser and Optics
	6.2	Specia	lization $\ldots \ldots \ldots$
		6.2.1	Laser Design and Beam Guiding
		6.2.2	Biophotonics and Spectroscopy
		6.2.3	Engineering Scientific Instrumentaion
		6.2.4	Intense Light Physics
		6.2.5	Advanced Topics in Laser and Optics
7	Ren	newable	e Energies 68
	7.1	Engine	eering Sciences
		7.1.1	Energy Ressource and Systems
		7.1.2	Solar Energy
		7.1.3	Water and Biomass Energy
		7.1.4	Wind Energy Physics, Data and Analysis
		7.1.5	Computational Fluid Dynamics
		7.1.6	Advanced Computing
		7.1.7	Advanced Engineering Topics in Renewable Energies
	7.2	Specia	lization
		7.2.1	Photovoltaic Physics
		7.2.2	Wind Physics Student's Lab
		7.2.3	Future Power Supply Systems 88
		7.2.4	Wind Resources and its Applications
		7.2.5	Design of Wind Energy Systems
		7.2.6	Smart Grid Management
		7.2.7	Solar Energy Meteorology
		7.2.8	Photovoltaic Systems
		7.2.9	Control of Wind Turbines and Wind Farms
		7.2.10	Advanced Laboratories in Renewable Energies
		7.2.11	Advanced Topics in Renewable Energies

1 Specialization

$\mathrm{CP} \rightarrow$	3	6	9	12	15	18		21	24		27	30		sum
$4. \rightarrow$ Semester					г	hesis								30
3.→ Semester	Specializ phy64 MI 8-1: 5.04.42 Wind Physi Lab Win	cation 6 2 14 cs Student's nd2Grid	Seminar Advanced Topics in EP phy640 FR 10-12 5.04.656 Advanced Topics in EP	Advanced phy63 MO 09- 5.04.65 Op	l Physics 3 3 -13 70 otics			Adv (Pre	anced Rese peration M phy6 Blockverans	earch Iaster 91 taltur	Project r Thesis) ^{1g}			30
2.→ Semester	Advanced Physics phy603 MI 12-14 5.04.4071 Fluid Dynamics II	Engineering Sciences phy644 MO 12-14 5.04.4234 Wind Physics Measure- ment Project	Specializ phy64 DI 16-1 DO 12- 5.04.42 Design of W Syst	zation 9 18 14 35 Vind Energy tems	Special phy6 MI 8 5.04.4 Advanced Meteor 5.04.4 Wind Application Resource to App	lization 348 -12 Wind Energy rology 1236 1 Energy 1s - from Wind to Wind Farm lications	A d	Specia phy Freitags 5.04. Advanced Renew	lization 687 , ganztägig 4102 Laboratories able Energy	in	Enginee ph DI 5.04.407 Compu I	ering Science y616 12-16 72 & 5.04.407 utational Flui Dynamics	ces 4 id	30
$1. \rightarrow$ Semester	Advanced Physics phy603 DI 12-14 5.04.4070 Fluid Dynamics I	Engineering Sciences phy644 DO 10-12 5.04.4061 Wind Energy Physics	Engineerin phy64 DI 10-1 MI 12-1 5.06.021 & Energy Re Syst	ng Sciences 1 12 14 5.06.022 essources & tems	Advanced phy6 DI 14 FR 12 5.04.4 Advance	1 Metrology 331 1-16 2-14 1660 d Metrology	ן M	Theoreti phy DI 1 HS 1 fodelling	cal Method 611 5-20 Leer and Simulat	ls	Tools Engined ph DO 2.12.02 Int Sus Ma	and Skills i ering Science y681 12-16 I and 2.12.02 cernational stainability anagement	n ces 2	30
CP														$\Sigma CP = 120$

Renewable Energy (Winter Term)

S

$\mathrm{CP} \rightarrow$	3			6			9		1	2		15			18		21			24			27			30		sui	m
$4. \rightarrow$ Semester													The	esis														30)
3.→ Semester	Sp I WF 5 Laser	есіаl phy6 E 13:4 5.04.4 Desi Gı	izati 37 45-17 664 gn ar uding	on :00 nd Bea	am	Se Ad To Ph FR 5.0 Ad To	emina vance pics i EP y640 (10-12 04.656 vance pics in EP	r ed in 2 d n	Engi	MO 5.04. Sig	r ing 605 16-18 12-14 4586 gnal I	Scienc	ng				Ad (P	lvano repei Blo	ced ratio I ockv	Resea on Ma ohy69 eranst	arch aste: 91 altu	Pror Tl	oject nesis)					30)
2.→ Semester	Adva I M 5 Found	ance phy6 40 09 5.04.6 lamer	d Ph 33 9-13 570 ntals	ysics of Op	s tics	Ad	lvance phy DI : FR 5.04 Advance	ed 1 y 631 14-10 12-1 .466 ced 1	Metro l 6 4 0 Metrol	logy		Theory pl MO 1 5.(Optica Mode	etical ny611 7-19 04.466 I Simu Iling (Me + Pi 7 ulati (ZEN	ethods roj. on ano MAX)	5	Engine pl TU 5.0 Spec 5.0 Adv Sj	eering 19632 J 08-1 J 12-1 4.466 troph 4.661 anced pectro	g Sc 0 4 1 ysics 1 . Op oscop	ience	s	Е	ngine ph MC 5.0]	erin 1 y60) 13- 4.46(Phot	g Sci 0 17 58 onics	ences		3()
$1. \rightarrow$ Semester	Adva I M 5.04.4 Physi Pt	ance phy6 40 1: 40 1 4662 cs wi ulses Me	d Ph 17 2-14 4-16 & 5.0 th U & Fo thods	ysics)4.467 ltrash purier s	s 6 ort	E	Speci phy MO 5.04 Instr	aliz 9 965 08-1 1.467 ering	ation 5 12 7 7 5 Scien entatio	tific n		Spee pl TU TU 5.0 Bio Spe Mode Opti	cializ 19634 J 08-1 J 12-1 04.466 photo ctrosc ern M cal M	atio 1 .0 .4 .7 nics copy etho icros	and ods in scopy		Spec pl FF 5.0 Physi L	cializa ny639 & 11-1 14.466 cs wit aser F	atio 5 3 h In Pulse	n ttense s			Tools Pl Eng ph WF 5.0 Tools	and nysic inee y68 2 09- 4.46' s in 1 Phot	l Ski cs an ring 1 13 71 Advar onics	lls in d		30)
СР																											I	ΣCP :	= 120

Laser and Optics(Summer Term)

-1

$CP \rightarrow$	3			6	9			12		15	l	18		21		24		27		30		su	ım
$4. \rightarrow$ Semester											The	sis										3	80
$3. \rightarrow$ Semester	Spe F MO Spe N 2 Sel Micro and S 5 Chaos,	ecializ hy683 14-16, 7E 14-7 04.408 ctrosco anosca .01.369 ected 7 owave-1 -Comm systems .04.488 catast fract	ation 3 TU (16 32 ag yat de 3 Topic Micro Micro S 3 3 troph tals	1 08-10, 5 the s in scopy ation es, and	Semi Adva Topic EP phy6 FR 10 5.04.0 Adva Topic El	inar nced cs in 40)-12 556 nced cs in P	I	Engine ph TU 5.0 Laser M	ering 19 685 4.4669 aterial Proje	Scienc Process ct	es			Ad (Pr	vance epera Bloc	d Rese tion M phy69 kveranst	arch I aster 91 taltung	Project Thesis))			3	30
2.→ Semester	Adva F MO 1 5.04.4 Physia Pu	nced hy617 2-14, l 662 & cs with ilses & Meth	Phys 7 MO 1 5.04. 1 Ultr Foun ods	sicss 4-16 4676 ashort ier	Sp I N Eng h	eciali phy90 AO 08 5.04.40 ineerin strun	izat 65 8-12 677 ng \$ nen	tion 2 Scientifi tation	с	Spec pł TU 08 5.0 Bioj Spec Mode Optie	cializa ny634 -10, T 4.4667 photon ctrosec ern Me cal Mic	tion U 12-14 , ics and py thods in croscopy		Spec ph FR 5.04 Physic La	ializat y639 11-15 4.4663 as with user Pu	ion Intense lses		Tools P Eng pl W : 5.(Tool	s and hysics gineer 19681 E 09-1 S in A Photor	Skills i s and ing 3 l dvanced nics	n	3	30
$1.\rightarrow$ Semester	Adva F M 5 Found	inced bhy633 10 09-1 .04.657 amenta	Phy: 3 13 70 als of	sicss Optics	Adva TU	nced phy6: 14-16, 5.04.46 vanced	M 31 , FF 660 M	fetrolog R 12-14 fetrology	5 y	Theore pl MO 1 5.0 Optica Mode	etical ny611 7-19 + 4.4667 I Simu Iling (1	Method - Proj. , lation an ZEMAX)	d	Engine ph TU 08- 5.0 Spect 5.0 Adva Sp	ering \$ y632 10, TU 4.4661 crophys 4.6611 nnced C ectrosc	Science 12-14 ics Optical opy	95	Engine pl M(eering ny600 D 13-1 04.4668 Photo	Scienc 7 3 nics	es	3	30
CP																						$\Sigma \cup P$	= 120

Laser and Optics (Winter Term)

 ∞

$\mathrm{CP} \rightarrow$	3		6		9	I	12		15		18		21		24		27		30		sum
$4. \rightarrow$ Semester										Thes	is										30
$3. \rightarrow$ Semester	Enginee phy DI 1 DO 5 5.04 Machin	ring S 694 4-16 10-12 .4214 ae Learn	ciences ning II		Seminar Advanced Topics in EP phy640 DO 16-18 5.04.656 Advanced Topics in EP	1	Enginee phy Advance Topics Physics	ring 685 ed En in Bio and 2	Science gineering omedical Acoustics	95 5			Ad (Pr	vanceo eperat Block	l Resea ion Ma phy69 averanst	arch H aster)1 altung	Project Thesis)				30
2.→ Semester	Specia phy MO DO 5.04 Acoustica Virtua	alizatio 679 10-12 16-18 	on blogy and istics	1	Advanced phyf DI 14 FR 12 5.04.4 Advance	d N 531 4-16 2-14 4660 ed N	Aetrology 5 4 J Metrology		Theore ph DI MI 5.04 Machi	tical I y611 16-18 10-12 4.4213 ine Lea	Method	S	Speci phy MO MI 5.04 Auditory in speed 5.04 Applied	alizati /xxx 16-18 16-18 4218 y scene ch and 4203 l Psyco	on analysi music ophysics	S	Spec ph MC DC 5.0 Advance and A	cializa ny696) 14-10) 10-12 4.4207 ed Top udio F	tion	ech 1g	30
$1.\rightarrow$ Semester	Enginee: phy MO MI 1 5.04. Digital Si	ring S 605 16-18 12-14 .4586 gnal Pi	ciences		Advance phyf ?? ? Selecte Advance or 5.04.4 Al	ed 307 ?? ed 1 ed 1 471 kus	Physics 'opics in Physics I tik		Speci ph 5.04 Speed	ializat y 611 4.4012 ch Pro	cion zessing		Advan phy ?? 5.04.460 Physics Pulso N	ced Pl 7? ?? 32 & 5. with U es & Fo Jethod	hysics 04.??? ltrashor purier s	t	Tools Pl Eng ph FF FR 5.0 Fort Proj Höi	and hysics ineer y681 (10-1) (12-14)4.811 geschr ektpra rtechn	Skills i and ing ttenen- ktikum k und ogie	n	30
CP																					$\Sigma CP = 120$

Acoustics(Summer Term)

0

$\mathrm{CP} \rightarrow$	3	6	9	12	15	18	21	24	27	30	sum
$4. \rightarrow$ Semester					Т	hesis					30
3.→ Semester	Speciali phy69 MO 14 DO 12 5.04.45 Advanced T and Audio	zation 96 -16 -14 586 Fopics Speech 9 Processing	Seminar Advanced Topics in EP phy640 FR 10-12 5.04.656 Advanced Topics in EP	Speciali phy68 DO 10- 5.04.45 Advanced Biomedical Acoustics (zation 35 -12 86 I Topics in Physics and see Stud.IP)		Adva (Prep	anced Researd peration Mast phy691 Blockveranstalt	ch Project cer Thesis)		30
2.→ Semester	Engineerin phy60 MO 16 MI 12- 5.04.45 Digital Signa	ng Sciences 05 -18 -14 586 al Processing	Advanced phy60 ???? Selected Advanced or 5.04.47 Aku	l Physics 7 Topics in Physics 11 1stik	Special phy6 5.04.4 Speech	ization 11)12 Prozessing	Engineeri phy6 5.04.4 Machine	ing Sciences 94 214 Learning II	Advance phy6 ?? ? 5.04.4662 Physics wi Pulses & Fo	ed Physics 17 ? & 5.04.??? ith Ultrashort purier Methods	30
$1.\rightarrow$ Semester	Speciali phy67 MO 10 DO 16 5.04.60 Acoustical M Virtual	zation 79 -12 -18 63 Metrology and Acoustics	Advanced phy63 DI 14-7 FR 12- 5.04.46 Advanced	Metrology 1 16 14 60 Metrology	Theoretic phy6 DI 16- MI 10 5.04.4 Machine	al Methods 11 -18 -12 213 Learning I	Special phy9 MO 1 MI 16 5.04.4 Auditory 3 in speech 5.04.4 Applied F	lization 60 6-18 5-18 218 scene analysis and music 203 Psychophysics	Tools an Phys Engino phy6 FR 19 FR 19 5.04.8 Fortges Projekt Hörtee Aud	nd Skills in sics and eering 81 0-1 2-14 811 chrittenen- praktikum chnik und liologie	30 30
CP											$\Sigma CP = 120$

Acoustics(Winter Term)

10

Studiengangszertifikat

Die Deutsche Gesellschaft für Medizinische Physik e.V.

zertifiziert den konsekutiven Bachelor-/Masterstudiengang

"Engineering Physics"

der

Carl von Ossietzky Universität Oldenburg

für die

Fachanerkennung für Medizinische Physik

mit Berechtigung zum Führen der Bezeichnung

"Medizinphysiker (DGMP)"

gemäß der gültigen Weiterbildungsordnung der DGMP vom 09.05.2015 unter den in der Anlage zu diesem Zertifikat genannten Voraussetzungen.

Die Zertifizierung gilt vom 18.1.2018 bis zum 30.9.2022.

Berlin, den 18.1.2018

Prof. Dr. Katia Parodi Präsidentin der DGMP

SGZ 0021/18

Deutsche Gesellschaft für Medizinische Physik e.V. • Geschäftsstelle • Ernst-Reuter-Platz 10 • 10587 Berlin Eingetragen im Vereinsregister beim Amtsgericht Mainz • Reg.-Nr. AZ 90 VR 1255 • http://www.dgmp.de • office@dgmp.de

Anlage zum Studiengangszertifikat

für den konsekutiven Bachelor-/Masterstudiengang

"Engineering Physics"

der

Carl von Ossietzky Universität Oldenburg

Diese Zertifizierung ist eine Verlängerung der Zertifizierung vom 01.06.2015 und gilt unter den folgenden Voraussetzungen:

- 1. Die Absolvent/innen haben die Bachelorstudiengänge "Physik" oder "Engineering Physics" erfolgreich abgeschlossen und die Veranstaltungen
 - 5.04.341 "Kern- und Teilchenphysik"
 - 5.04.462 "Hochenergiestrahlenphysik"
 - 5.02.271 "Physiologie der Tiere und Menschen"
 - 5.04.317 "Biomedizinische Physik und Neurophysik"
 - 5.04.4666 "Personalized Medicine"
 - 5.04.4207 "Processing and analysis of Biomedical Data"
 - 05.04.4021 "Bildgebende Verfahren"

belegt.

2. Diese Zertifizierung gilt für das Spezialgebiet (gemäß WBO der DGMP):

- a) N6. Strahlentherapie, falls folgende Veranstaltungen belegt wurden:
 - 05.04.4642 "Medizinische Strahlenphysik"
 - 05.04.4222 "Spezialkurs Strahlenschutzseminar"
 - 05.04.4242 "Selected Topics on Medical Radiation Physics"
 - 05.04.4221 "Grundkurs im Strahlenschutz"
- b) N9. Klinische Audiologie, falls folgende Module belegt wurden:
 - 05.04.4021 "PPAA"
 - 05.04.4203 "Angewandte Psychophysik"
 - 05.04.4586 "Advanced Topics Speech and Audio Processing"
- 3. Diese Zertifizierung gilt für die Wahlgebiete (gemäß WBO der DGMP):
 - a) N6 bzw. N9 mit den unter Pkt. 2 genannten Veranstaltungen sofern sie nicht schon als Spezialgebiet gewählt wurden.
 - b) N14. Physikalische Messtechniken in der Medizin, falls mindestens zwei der folgenden Veranstaltungen belegt wurden:

Deutsche Gesellschaft für Medizinische Physike.V.

- 05.04.4586 Digital Signal Processing
- 05.04.4012 Informationsverarbeitung und Kommunikation
- 05.04.4052 "Optische Messtechnik"

Es müssen mindestens zwei Gebiete belegt werden mit insgesamt 15 ECTS-Punkten und mindestens 5 ECTS-Punkten pro Gebiet.

4. Die Zertifizierung gilt vom 18.1.2018 bis zum 30.09.2022 bzw. bis zu einer Änderung des Curriculums. Für eine Rezertifizierung ist rechtzeitig ein erneuter Zertifizierungsantrag zu stellen.

Die Absolventen des Studienganges müssen sich bei Beginn der klinischen Tätigkeit zur Weiterbildung anmelden (Anträge unter www.dgmp.de, WBB-Antrag).

Die Kandidaten haben während der i.d.R. dreijährigen berufspraktischen, klinischen Weiterbildungsphase nach Abschluss des Studiums insgesamt mindestens 150 Weiterbildungspunkte (gleich Stunden) im Sinne der kontinuierlichen Fortbildung (CPD) durch den Besuch anerkannter Weiterbildungsveranstaltungen im Spezialgebiet - das auch das Arbeitsgebiet sein muss - nachzuweisen.

Für das Spezialgebiet "Strahlentherapie" ist die Fachkunde im Strahlenschutz bei Antragstellung nachzuweisen.

Diese Anerkennung gilt auch für Absolventen des konsekutiven Bachelor-/Masterstudiengans "Physik" der Carl von Ossietzky Universität Oldenburg, wenn die entsprechenden Veranstaltungen erfolgreich bestanden wurden.

2 Mandatory Courses

2.1 Advanced Metrology

4	
\leq	
`	

Module title:	Advanced Metrology
Module code:	phy631
Course:	5.04.4660 Advanced Metrology
Term:	Winter
Person in charge:	Prof. Dr. Huke
Lecturer:	Prof. Dr. Huke
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Pflichtmodule
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week first, 2 hrs/week second half of semester Experimental /Seminar work: 0 hrs/week first, 2 hrs/week second half of semester
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Metrology
Aim/learning outcomes:	The course in Advanced Metrology sets up a high-level route enabling the students to acquire skills to allow them to operate effectively in the majors of Engineering Physics. This is achieved by provision of state-of-the-art techni- cal and physical approaches covering broad aspects of ad- vanced metrology. Experimental setups, simulations and signal analysis from experiments are explained within the context of Laser and optics, Biomedical physics and acous- tics, and renewable energies. Demonstrate systematic knowledge across appropriate advanced metrology tech- nologies, management, and environmental issues to pro- vide solutions for international industries and/or research organisations.
Content:	The module combines theory and practical applications of the fundaments of metrology in all majors. Fundamen- tals of Metrology, Dimensional Measurement Systems, Ba- sic metrology operators including Association and Filtra- tion, Optical Metrology and Instrumentation, Surface and Nanometrology, Machine Tool and Large Volume Metrol- ogy, Process Measurement and Control, Individual Project.
Assessment/type of examina-	Internship report: Between 15 and 30 pages or Written
tion:	examination: 120 minutes
Literature:	Recent publications on specifc topics D.L. Allen, D.W. Mills: Signal Analysis (Time, Frequency, Scale and Structure) T. Yoshizawa (Ed.): Handbook of Optical Metrology: Prin- ciples and Applications, 2nd rev. ed., Crc Pr Inc., 2015

2.2 Seminar Advanced Topics in Engineering Physics

Module title:	Seminar Advanced Topics in Engineering Physics
Module code:	phy640
Course:	Seminar Advanced Topics in Engineering Physics (WS and SS, 5.04.656)
Term:	Winter and Summer
Person in charge:	Prof. Dr. Neu
Lecturer:	Prof. Dr. Neu, Dr. S. Koch
Language:	German or English on demand
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics, 1st - 4th semester
Teaching Methods/ semester periods per week:	Seminar: 2 hrs/week
Workload:	Attendance: 28 hrs, Self study: 62 hrs
Credit points:	3
Prerequisites acc. syllabus:	
Recommended prerequisites:	Participation: 1st - 3rd semester. Presentation: Master thesis work in progress or finished; at least one successfully completed specialization module.
Aim/learning outcomes:	The students are enabled to demonstrate the ability to com- municate clearly, both orally and in writing, to special- ist and non-specialist audiences. Demonstrate knowledge, fundamental understanding and critical awareness of cur- rent research fields in the student's master projects. Per- sonal development through practice of communication, pre- sentation, time management, teamwork, problem solving, project management, critical evaluation, numeracy, and IT skills.
Content:	Current seminar topics
Assessment/type of examina- tion:	1 Written examination: 45 to 90 minutes and regular active and documented participation in the seminar spread over the first three semesters
Literature:	M. Alley: The Craft of Scientific Presentations, Springer,2nd ed., 2013Publications according to seminar topics

2.3 Theoretical Methods

Module title:	Theoretical Methods
Module code:	phy611
Course:	Computer Physics, Density-functional theory, Machine
	Learning, Modelling and Simulation, Signal Processing
Term:	Winter
Person in charge:	Prof. Dr. Caterina Cocchi
Lecturer:	Prof. Dr. Hartmann, Prof. Dr. Caterina Cocchi, Prof. Dr.
	Lücke, Prof. Dr. Doclo
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Pflichtmodule
Teaching Methods/ semester	Lecture: 2 or 4 hrs/week; Excercises: 1 or 2 hrs/week
periods per week:	
Workload:	attendance: 56 hrs, self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Theory modules in Bachelor, e.g., Mathematical Methods;
	Quantum Structure of Matter
Aim/learning outcomes:	The goal of this module is to extend the training in theoreti-
	cal methods for engineering physics through the acquisition
	of solid and in-depth knowledge of advanced concepts and
	through their practice with computer simulations. Depend-
	ing on the chosen course, the students will have the oppor-
	tunity to strengthen their knowledge in quantum material
	modelling (Density-functional theory), signal processing,
	fluid dynamics (Modelling and Simulation), computational
	physics, and machine learning. In this way, they will de-
	velop skills to relate the conceptual design of models, their
	numerical implementation, and the physical analysis of the
	produced data, with the results of field and/or laboratory
	measurements.

Content: Assessment/type of examina-	Computer Physics Debugging; data structures; algorithms; random numbers; data analysis; percolation; Monte Carlo simulations; finite- size scaling; quantum Monte Carlo; molecular dynamics simulations; event-driven simulations; graphs and algo- rithms; genetic algorithms; optimization problems. Density-functional theory The many-body problem; the Hartree-Fock approxima- tion; Homogeneous electron gas; Hohenberg-Kohn theo- rems; Kohn-Sham equations; exchange-correlation poten- tials; pseudopotentials; basis sets. Machine learning Unsupervised learning methods; algorithms for clustering, classification, component extraction, feature learning, blind source separation and dimensionality reduction; Relations to neural network models; learning in biological systems. Modelling and Simulation Advanced fluid dynamics including 3D, transient and com- pressible processes; Theory of similarity, range of dimen- sionless numbers; Potential Theory; Numerical Algorithms and possibilities of independent coding of simplest mathe- matical models; Introduction of a complete chain of Open- Source-CFD-Tools; Contactless high-resolving measuring techniques in the fluid dynamics. Signal processing System properties; Discrete-time signal processing; Statis- tical signal processing; Adaptive filters. 1 exam according to selected course
tion:	

Computer Physics

- T. H. Cormen, S. Clifford, C.E. Leiserson, und R.L. Rivest: Introduction to Algorithms. MIT Press, 2001;

- K. Hartmann: Practical guide to computer simulation. World- Scientic, 2009;

- J. M. Thijssen: Computational Physics. Cambridge University Press, 2007;

- M. Newman, G. T. Barkema: Monte Carlo Methods in Statistical Physics. Oxford University Press, 1999.

Density-functional theory

- R. Martin, Electronic Structure, Cambridge University Press (2004);

- F. Bechstedt, Many-body approach to electronic excitations, Springer (2015);

- F. Giustino, Materials modelling using density functional theory, Oxford University Press (2014).

Machine learning

- C. M. Bishop, Pattern Recognition and Machine Learning, Springer 2006;

- D. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

Modelling and Simulation

- Versteeg, K.H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics. Prentice Hall, 2nd rev. Ed., 2007

Signal processing

- A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing", Prentice Hall, 2013;

- J. G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice Hall, 2013;

- S. Haykin, Adaptive Filter Theory, Pearson, 2013;

- P. P. Vaidyanathan, Multirate systems and lter banks, Prentice Hall, 1993;

- K.-D. Kammeyer, K. Kroschel, Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB-Übungen, Broschiert, 2018;

2.4 Tools and Skills in Engineering Sciences

Module title:	Tools and Skills in Engineering Sciences
Module code:	phy681
Course:	Workshop Management
Term:	Summer
Person in charge:	Prof. Dr. Huke
Lecturer:	Prof. Dr. Huke et.al.
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Pflichtmodule
Teaching Methods/ semester	Seminar: 2hrs/week; Excersise: 2hrs/week
periods per week:	
Workload:	Attendance: 28 hrs, Self study: 152 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	The aim of the module is that the students are qualified to plan, setup, conduct and successfully complete scientific or industrial-driven projects. Therefore, the students use the (physical) understanding of the process in question, derive and realize a solution with their necessary engineering skills and document the results properly
Content:	Projects may include design of laser systems (solid-state, gas, diode lasers with ultrashort-pulses, tunability, low- noise frequency-stabilization) as well as conceptual setups in photonics and fiber technologies. One of the major top- ics is planning, management and conduction of a project from idea to realization.
Assessment/type of examina-	Internship report: Between 15 and 30 pages
tion:	
Literature:	 Projektportfolio-Management : Strategisches und oper- atives Multi-Projektmanagement in der Praxis; Matthias Hirzel [Hrsg.] ; Wolfgang Alter [Hrsg.] ; Cornelia Niklas [Hrsg.] 4., überarbeitete und erweiterte Auflage., Wies- baden : Springer Gabler, 2019 Project management 2.0 : leveraging tools, distributed collaboration, and metrics for project success Harold Kerzner Hoboken, New Jersey: John Wiley & Sons, Inc, 2015 The Decision Book: Fifty models for strategic thinking (New Edition) (English Edition) Lasers, Siegman, 13. Au- flage, ISBN: 978-0935702118

2.5 Advanced Research Project (Preparation Master Thesis)

Module title:	Advanced Research Project
Module code:	phy691
Course:	Advanced Research Project
Term:	Winter or Summer
Person in charge:	Prof. Dr. Neu
Lecturer:	Acc
Language:	English
Location	Acc. selected course
Curriculum allocation:	Master Engineering Physics (Master); Pflichtmodule
Teaching Methods/ semester periods per week:	Project work / 40 hours/week
Workload:	Attendance: 320 hrs, Self study: 130 hrs
Credit points:	15
Prerequisites acc. syllabus:	
Recommended prerequisites:	Sound knowledge in the specialisation field of Master thesis
Aim/learning outcomes: Content:	Students are able to search for and to state an adequate research problem in the field of the working group or in- dustry (problem should be related to the topics covered in the masters programme). They are capable to derive re- search questions based on the statement of the problem and prepare an elaborated research proposal yielding lab work that serves as the preliminary study for the Master's Thesis. Students are in a position to develop the specialised bases (detailed theoretical background of the topic, ample and critically annotated literature review, research objectives and research question(s), fully developed methods section, sketched workplan) of the Master's Thesis Project in terms of content and style in such a way that they form a sound basis for a successful Master's Thesis. Students gain ex- pertise in workflow optimization, data collection and data analysis. Independent management and transformation of a complex and unpredictable problem from the general field of study contexts of the Master degree program "Engineer- ing Physics" (including related subject areas) utilizing sci- entific state-of-the-art research methods. Independent research for the definition of a physics and en-
Content:	Independent research for the definition of a physics and en- gineering solution to a problem in the choosen field. Spe- cialized knowledge of a subject area as foundation for the student's research. The assignment of specific tasks will be given after consulting the responsible lecturers and is de- pending upon the current research profile. The Advanced research project (preliminary study to the Master's thesis) forms the basis of the Master's Thesis Project and must contain the following aspects: - Detailed theoretical back- ground of the topic - Ample and critically annotated liter- ature review - Research objectives and research question(s) - Fully developed methods section - Draft of a fully formed table of contents

Assessment/type of examina-	home work: between 15 and 30 pages or presentation: be-
tion:	tween 20 and 45 minutes
Literature:	Acc. Research field, Recent publications on specific topics

2.6 Thesis

 \Leftarrow

Module title:	Master Thesis
Module code:	MAM
Course:	Master Thesis
Term:	Summer or Winter
Person in charge:	Supervising tutor
Lecturer:	Supervising tutor
Language:	German or English
Location	
Curriculum allocation:	Master Engineering Physics, 4. Semester
Teaching Methods/ semester	Seminar, Laboratory and self studies
periods per week:	
Workload:	900
Credit points:	30 including 3 CP (Seminar) and 2 CP (Colloquium)
Prerequisites acc. syllabus:	Master Curriculum Engineering Physics
Recommended prerequisites:	
Aim/learning outcomes:	As a general objective for the Master Thesis, the student shall demonstrate the ability to constructively, critically and independently formulate, discuss and communicate is- sues at stake, integrating theory and methodology. As specific competency objectives within the Master The- sis, after completion the student shall be able to:
	• demonstrate knowledge of relevant and latest publi- cations concerning the selected topic
	• elaborate the Master Thesis on the basis of clearly formulated, general objectives and specific character- istics of the topic
	• identify and put to use in an operational manner em- pirical or other scientific material and methods that are appropriate in relation to the subject
	• develop a balanced discussion of material, methods, results and possible consequences of these in relation to the field of Renewable Energy
	• present the Master Thesis orally and defend the re- sults and conclusions in a critical discussion
	The module is designed to apply and deepen the method- ologies acquainted throughout the program to a specific sci- entific problem given by the supervisor. In order to achieve a result the student needs to apply scientific as well as key- competencies described in the next section. Students have understood the scientific problem, they have learned the ropes of the problem, they have selected, ac- quainted or deepened a set of scientific and methodologies and key-competencies necessary to solve the problem and

they have applied those methods.

Content:	The master thesis module finalizes and concludes the mas- ter programme. The student presents the achieved results as a written thesis and defends the results / conclusions to a board of examiners. Within this framework, the students work independently on a current topic from the research areas of the working groups. The work is accompanied by a seminar to present and review results and the progress of the work intermit- tently. The results will be presented and defendedd in a final colloquium. The publication of thesis results is appreciated.
Assessment/type of examina-	Master Thesis and colloquium
tion:	
Literature:	As required

3 Advanced Physics

 \Leftarrow

3.1 Advanced Nuclear and Particle Physics

Module title:	Advanced Nuclear and Particle Physics
Module code:	phy602
Course:	High-Energy Radiation Physics (WS, 5.04.4642) und Space
	Enviroment (WS, 5.04.776)
Term:	Winter
Person in charge:	Prof. Dr. B. Poppe
Lecturer:	Prof. Dr. B. Poppe, Dr. Hui Khee Looe, Dr. G. Drolsha- gen
Language:	German $(5.04.4642)$ and Englisch $(5.04.776)$
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester periods per week:	each lecture: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basic lectures in physics / engineering
Aim/learning outcomes:	High-Energy Radiation Physics:
	Basic understanding of the physical basics of high-energy
	radiation physics (in the energy sector from approx. 106
	eV). Students should understand the universal approaches
	of the physical description of the generation, acceleration,
	interaction and detection of high-energy radiation across
	disciplines.
	Space Environment:
	Basic understanding of the main components of the near-
	Earth space environment. The students shall become fa-
	miliar with die different types of radiation and particles
	in space, their physical characteristics and their effects on
	hardware and humans in space. The interdisciplinary na-
	ture of these topics shall become clear.
Content:	Fundamentals of high energy rediction physics:
	distion in the environment segmes and medicine segmin
	rave fundamentals of astronarticle physics, torrestrial and
	association of radiation with matter
	detection mechanisms and designetry technical realizations
	for acceleration and detection
	Space Environment:
	Overview of radiation and particles in space and their en-
	ergy ranges. The upper Earth atmosphere the spectrum of
	the sun and its variability plasma solar- terrestrial interac-
	tions the radiation belts of Earth cosmic rays meteoroids
	and meteors, near-Earth objects, space debris. Effects and

potential protection measures.

Assessment/type of examina- tion:	written exam Max. 180 min. or oral exam 30 min.
Literature:	 H. Krieger: Strahlungsmessung und Dosimetrie, Springer Verlag, Wiesbaden, 2013; Grupen: Astroparticle Physics, Springer Verlag, Heidelberg, 2005; Falkenburg, Rhode (Eds.): From Ultra Rays to Astroparticles, Springer Verlag, Heidelberg, 2012

3.2 Fluiddynamics

¢

Module title:	Fluid Dynamics
Module code:	phy603
Course:	Fluid Dynamics I (WS, 5.04.4070) und Fluid Dynamics II
	(SS, 5.04.4071)
Term:	Term: Winter and Summer
Person in charge:	Prof. Dr. Peinke
Lecturer:	Jun. Prof- Laura Lukassen (winter) Prof. Dr. Peinke (sum-
	mer)
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester	Lecture: 2hrs/week; Excersise: 2hrs/week
periods per week:	
Workload:	Attendance: 84 hrs, Self study: 96 hrs
Credit points:	6
Prerequisites acc. syllabus:	Fluid Dynamics I has to be taken before Fluid Dynamics
	II
Recommended prerequisites:	
Aim/learning outcomes:	Fundamental knowledge and comprehension on the move-
	ment of fluids
Content:	Fluid Dynamics I:
Content:	Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equa-
Content:	Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equa- tion, Bernoulli- equation; Vortex- equation – and Energy
Content:	Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equa- tion, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; ex-
Content:	Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equa- tion, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; ex- act solutions, application of basic equations
Content:	Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equa- tion, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; ex- act solutions, application of basic equations Fluid Dynamics II:
Content:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Tur-
Content:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models
Content: Assessment/type of examina-	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or
Content: Assessment/type of examina- tion:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press,
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cam-
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002 U. Frisch: Turbulence: the legacy of A. N. Kolmogorov.
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002 U. Frisch: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 2001
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002 U. Frisch: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 2001 J. Mathieu, J. Scott: An introduction to turbulent flow.
Content: Assessment/type of examina- tion: Literature:	 Fluid Dynamics I: Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation; Vortex- equation – and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations Fluid Dynamics II: Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models max 180 minutes written exam or 30 min oral exam or presentation between 20 and 45 minutes J. Spurk, N. Aksel: Fluid Mechanics, Springer D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003 G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002 U. Frisch: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 2001 J. Mathieu, J. Scott: An introduction to turbulent flow. Cam- bridge University Press, Cambridge, 2000

3.3 Optics

Module title:	Optics
Module code:	Phy633
Course:	Applied Photonics II - Fundamentals of Optics (WS,
	5.04.657)
Term:	Winter
Person in charge:	Prof. Dr. Teubner
Lecturer:	Prof. Dr. Ulrich Teubner
Language:	German or English depending on demand
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master; Advanced Physics
Teaching Methods/ semester	Lecture plus Lab Part: 4 hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Electrodynamics
Aim/learning outcomes:	The students acquire broad theoretical and experimental
	knowledge of optics together with the necessary physical
	background. In the laboratory they acquire practical skills
	during application of their knowledge from lecture. The
	module prepares the students to work in the field of optical
	science and engineering in general, and yields the base for
	all further specialisations within the field of optics and laser
	technology.
Content:	Fundamental and advanced concepts of optics. Topics in-
	clude: reflection and refraction, optical properties of mat-
	ter, polarisation, dielectric function and complex index of
	refraction, evanescent waves, dispersion and absorption of
	light Seidel's abberations Sellmeier's equations optical
	systems wave optics Fourier analysis wave packets chirp
	interference interferometry spatial and temporal coher-
	ence diffraction (Huygens Fraunhofer Fresnel) focussing
	and optical resolution brilliance Fourier optics optics at
	short wavelengths (extreme IIV and X rays)
Assessment /type of examina-	max 180 min written exam or 30 min oral exam or Lab
tion.	work with report
Literature	Born and Wolf: Principles of Optics (Cambridg Press) E
Littlituite.	Hecht: Optics (Addison-Wesley).
	Pedrotti and Pedrotti: Introduction to Ontics (Prentice-
	Hall): Saleh and Teich, Fundamentals of Photonics (Wiley).
	all those books are also available in German

3.4 Fourier Methods

Module title:	Fourier Methods
Module code:	phy617
Course:	Physics with Ultrashort Pulses (SS, 5.04.4662) und Fourier
	Methods (WS, 5.04.xxxx)
Term:	
Person in charge:	Prof. Dr. Ulrich Teubner
Lecturer:	Prof. Dr. Ulrich Teubner
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester	Lecture 2hrs/week; Exersise: 2hrs/week
periods per week:	
Workload:	Attendance: 56hrs,Self Study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	Physics with ultrashort pulses:
	Students will get competences on the special aspects on
	ultrashort laser pulses which do not play a role in standard
	optics or laser physics. Starting from basics, the module
	vields advanced knowledge of the physics of femtosecond
	light pulses and their interaction with matter, as well as
	the physics of femtosecond lasers. The students will obtain
	skills to work with such lasers in particular on generation
	handling measurement application of femtosecond pulses
	Fourier Methods:
	The students acquire deeper knowledge on Fourier mathe-
	matics and ist applications within physics. They will learn
	related definitions, properties, theorems. Many examples
	will be presented. The students should be able to apply
	Fourier technology for physical and technical problems in
	porticular with relation of spatial and temporal domain to
	(aparticular with relation of spatial and temporal domain to
	(spanar) nequency domain. They will get deepened in-
	domain
	domam.

Content:	The course consists of two parts, both strongly related to Fourier physics: Physics with ultrashort pulses: Linear and non-linear optics of ultrashort pulses such as: amplitude, phase and spectral phase of the electric field, chirp, phase and group velocity, dispersion, group velocity dispersion, pulse compression, self focusing, self phase mod- ulation, frequency conversion, multi photon effects; fem- tosecond laser pulse generation and amplification with var- ious schemes, measurement of ultrashort pulses; applica- tions Fouriertechniken in der Physik: Motivation: Application of Fourier transformation within physics. Examples of Fourier pairs; properties of Fourier transformation; symmetries; important theorems; dis- placement, differentiation, convolution, uncertainty rela-
Assessment/type of examina-	tion; examples to convolution, theorem, frequency comb, Hilbert transformation, auto correlation function methods of time/frequency analysis, Wigner distribution; Fourier transformation in higher dimensions: tomography; discrete Fourier transformation, sampling theorem; applications 2 * 3 hours written or 2 * 30 minutes oral exams
tion:	
Literature:	 Physics with ultrashort pulses: C. Rullière: Femtosecond Laser Pulses. Springer, Berlin,2004 JC. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena. Academic Press, Amsterdam, 2006 K. Jesse: Femtosekundenlaser. Springer, Berlin, 2005 A.M. Weiner: Ultrafast Optics, Wiley Fouriertechniken in der Physik: R. Bracewell: "The Fourier Transform and its Applications", McGraw-Hill, 3. Auflage (1999) T. Butz: "Fouriertransformation für Fußgänger", Vieweg+Teubner, 7. Auflage (2011) D. W. Kammler: "A First Course in Fourier Analysis", Cambridge University Press (2008) M. Wollenhaupt, A. Assion and T. Baumert: "Springer-Handbook of Lasers and Optics", Springer, Chapter 12, 2.Auflage (2012) L. Cohen: "Time Frequency Analysis", Prentice Hall(1995) Weitere spezielle Literatur wird in der Vorlesung bekannt gegeben.

3.5 Audiologie und Akustik

Module title:	Audiologie und Akustik
Module code:	phy950
Course:	Psychophysik und Audiologie / Akustik
Term:	
Person in charge:	Steven van de Par, Birger Kollmeier
Lecturer:	Steven van de Par, Birger Kollmeier
Language:	Deutsch
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester	Lecture: 3hrs/week; Excersise: 1hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Einführendes Akustik Modul
Aim/learning outcomes:	Die Studierenden erwerben theoretische Grundlagen und
· -	fortgeschrittene Methoden der Psychophysik, Audiologie
	und Akustik. Sie erlangen Fertigkeiten zum sicheren und
	selbstständigen Umgang mit modernen Konzepten und
	Methoden der Angewandten Physik.
Content:	Psychophysik und Audiologie
	Physiologie:
	Überblick über Hörsystem, Außenohr, Virtuelle
	Akustik, Mittelohr, Stapediusreflex, Innenohrfunk-
	tion, Cochleamodelle, Makro und Mikromechanik der
	Cochlea., Otoakustische Emissionen (Theorie), Innere
	Haarzellen, Auditorischer Nerv, Hirnstamm, Tonotopie,
	binaurale Verschaltung, Periodizitätentuning, Cortex (Å1),
	Evozierte Felder (MEG) und Potentiale (EEG),
	Audiologie:
	Audiogramm, BERA, Schallleitungs- und
	Schallempfindungs-störungen, Tinnitus, Otoakustische
	Emissionen (Diagnostisch), Stapediusreflex-audiometrie,
	Impedanzaudiometrie.
	Psychophysik:
	Wahrnehmungsgrößen, JNDs, Weber-Fechnersches Gesetz,
	Schwellen, Signaldetektion, dprime/ROC, Lautheit,
	Tonhöhe, Stevenssches Gesetz, Zeitliche und spektrale
	Maskierung, Modulationswahrnehmung, auditorische
	Szenenanalyse, effektive Signalyerarbeitungs-Modelle.
	Akustik
	Schwingungen und Wellen, physikalische Grundlagen der
	Akustik, Erzeugung und Ausbreitung von Schall. Mes-
	sung und Bewertung von Schall, Verarbeitung und Anal-
	yse akustischer Signale. Akustik von Stimme und Sprache.
	Sprachpathologie, Schalldämmung und –dämpfung. Raum-
	und Bauakustik, Elektroakustik, Musikalische Akustik
	Stoßwellen, ausgesuchte Kapitel der Akustik. der Vibra-
	tionen und des Ultraschalls.

Assessment/type of examina-	one or two examination, totaling to 180 min. written exam
tion:	or 30 min. oral exam
Literature:	B. Kollmeier: Skriptum Physikalische, technische und
	medizinische Akustik, Universität Oldenburg;
	H. Kuttruff, Akustik: Eine Einführung, 2004;
	P. Damaske, Acoustics and Hearing, Springer, 2008;
	M. Heckl, G. Müller: Taschenbuch der technischen Akustik,
	Springer-Verlag, 2012

3.6 Selected Topics in Advanced Physics

Module title:	Selected Topics in Advanced Physics
Module code:	phy607
Course:	This module offers special as well as advanced courses in Advanced Physics. The list of eligible courses will be up- dated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. Walter Neu
Lecturer:	Related to selected course/s
Language:	Related to selected course/s
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester	Related to selected course/s
periods per week:	
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Related to selected course/s
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific physics skills.
Content:	Photonics, Optics, Metrology,
Assessment/type of examina-	Related to selected course/s
tion:	
Literature:	Related to selected course/s

4 Biomedical Physics

4.1 Engineering Sciences

4.1.1 Grundlagen der Physiologie

_	
\sim	

Module title:	Grundlagen der Physiologie
Module code:	bio279
Course:	Physiologie der Tiere und des Menschen (WS, 5.02.271)
Term:	Winter
Person in charge:	Dominik Heyers
Lecturer:	Dominik Heyers, Christine Köppl, Karin Dedek
Language:	Deutsch
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics Master of Education (Sonderpädagogik) Biologie (Master
	of Education); Mastermodule
Teaching Methods/ semester periods per week:	lecture 4 hrs/week
Workload:	Attendance: 56 hrs, Self Study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	biologische Fachkenntnisse Kenntnisse biologischer Arbeitstechniken biologierelevante naturwissenschaftliche/mathematische Grundkenntnisse Statistik und wissenschaftliches Programmieren Abstraktes, logisches, analytisches Denken vertiefte Fachkompetenz in biologischem Spezialgebiet Selbstständiges Lernen und (forschendes) Arbeiten Teamfähigkeit Vermittlung grundlegender Kenntnisse und Zusam- menhänge der Physiologie mit Schwerpunkt Humanphys- iologie. Vermittlung des Zusammenhanges von Struktur und Funktion als wesentliches Basikonzept der Biologie; Vermittlung naturwissenschaftlicher Arbeitsweisen: Hy- pothesenbildung, Versuchsplanung, Versuchsdurchführung, Datensammlung, Interpretation, Fehleranalyse; Anleitung zum eigenen, forschend-entdeckenden Experimentieren; Schaffen von Experimentiergelegenheiten. Reflektion des Experimentierens als Weg der Erkenntnisgewinnung

Content:	Der Vorlesungsstoff (Vorlesung: 5.02.271 - Physiologie der Tiere und des Menschen) umfasst die Gebiete Allgemeine Zellphysiologie, Sinnesphysiologie, Neuro- und Muskelphys- iologie, vegetative Funktionen, Blut und Immunabwehr, Herz und Kreislauf, Regulation des inneren Milieus, sowie Atmung und Ernährung und Verdauung. In der Vorlesung steht die Physiologie des Menschen im Vordergrund. In der sich anschließenden Übung werden eine Reihe von physiol- ogischen Experimenten mit direktem Bezug zur Vorlesung durchgeführt. Anhand von Eigenversuchen sowie Simula- tionen am Computer erlernen die Teilnehmer Erkenntnisse zum Verständnis der physiologischen Vorgänge des eigenen Körpers.
Assessment/type of examina- tion:	Written examination: 120 minutes
Literature:	Klinke, Pape, Kurtz, Silbernagl: Physiologie, Aufl. 6, 2010 Schmidt, Lang, Heckmann: Physiologie des Menschen mit Pathophysiologie, Aufl. 31, 2011 (sinnvolle Zusatzliteratur, falls verfügbar: Wehner, Gehring: Zoologie)

4.1.2 Personalized Medicine

_	
\sim	

Module title:	Personalized Medicine
Module code:	phy614
Course:	Personalized Medicine (SS, 5.04.4666)
Term:	Summer
Person in charge:	Prof. Dr. T. Schmidt.
Lecturer:	Prof. Dr. T. Schmidt
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week
Workload:	attendance: 56 hrs, self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus;	
Recommended prerequisites:	Statistics, Computing
Aim/learning outcomes:	Students should understand current high-throughput meth- ods used in research and clinics. They should be aware of the advantages and challenges and should be able to judge and interpret the results. In addition, the students should accomplish a sound understanding of basic algo- rithms which are used to analyze big and complex data sets. They should be able to choose, use and interpret ap- propriate tools and methods. Finally, students should be able to address the limitations and prospects of big-data analyses in complex systems
Content:	The lecture aims to provide an overview about current ex- perimental high-throughput methods and bioinformatic al- gorithms to address the challenges of exponentially growing amounts of data. In addition to basic algorithms and meth- ods like alignments, hidden markov models, Viterbi, graphs or protein-protein interaction networks, the lecture aims to gives an introduction to a data-driven view of disease biol- ogy.
Assessment/type of examina- tion:	Max. 3 hrs written exam or 30 min oral exam. Here, you will find information about the consideration of bonus points for module marks.
Literature:	 Genomic and Personalized Medicine: V1-2 Huntington F. Willard, Geoffrey S. Ginsburg; Academic Press; 2. Edition. (30. Oktober 2012); Cancer Genomics: From Bench to Personalized Medicine; Graham Dellaire, Jason Berman; Academic Press; 1. Edition (17. January 2014); Systems Biology: A Textbook; Eda Klipp et al (2009); Wiley-VCH Verlag GmbH, Co. KGaA; Auflage: 1. Edition;

4.1.3 Processing and Analysis of Biomedical Data

Module title:	Processing and analysis of biomedical data
Module code:	phy678
Course:	Processing and analysis of biomedical data (WS, 5.04.4207)
Term:	Winter
Person in charge:	Prof. Dr. B. Poppe
Lecturer:	S. Uppenkamp, S. Ewert, V. Hohmann
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basic signal processing, algebra knowledge
Aim/learning outcomes:	This course introduces basic concepts of statistics and sig- nal processing and applies them to real-world examples of bio-medical data. In the second part of the course, recorded datasets are noise-reduced, analyzed, and dis- cussed in views of which statistical tests and analysis meth- ods are appropriate for the underlying data. The course forms a bridge between theory and application and offers the students the means and tools to set up and analyze their future datasets in a meaningful manner.
Content:	Normal distributions and significance testing, Monte- Carlo bootstrap techniques, Linear regression, Correlation, Signal-to-noise estimation, Principal component analysis, Confi-dence intervals, Dipole source analysis, Analysis of variance Each technique is explained, tested and discussed in the exercises.
Assessment/type of examina-	Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes
Literature:	 Kirkwood B.R. and Sterne A.C., Essential Medical Statistics: 2nd editition. Blackwell Science. Oxford, 2003; Cho, Z.H. and Singh J. P. J.M.: Foundations of Medical Imaging. John Wiley, New York, 1993; Kutz, J.N. Data-Driven Modeling and Scientific Computation: Methods for complex systems and Big Data. Oxford University Press, Oxford, 2013
4.1.4 Advanced Engineering Topics in Biomedical Physics and Acoustics

Module title:	Advanced Engineering Topics in Biomedical Physics and
	Acoustics
Module code:	phy685
Course:	This module offers special as well as advanced engineering
	courses in Biomedical Physics and Acoustics. The list of
	eligible courses will be updated each academic year. Please
	refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. B. Poppe and Prof. Dr. ir. Doclo
Lecturer:	Depending on selected courses
Language:	Depending on selected courses
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt:
	Acoustics
	Master Engineering Physics (Master); Schwerpunkt:
	Biomedical Physics
Teaching Methods/ semester	Depending on selected courses
periods per week:	
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Depending on selected courses
Aim/learning outcomes:	The aim of this module is, to give students further access to
	also small courses (3 CP) which address the specific interest
	of the student and deliver unique in-depth knowledge or
	the opportunity to train specific engineering skills. The
	students acquire advanced knowledge and skills related to
	the engineering areas biomedical physics and acoustics.
Content:	Depending on selected courses
Assessment/type of examina-	Depending on selected courses, one or two examinations
tion:	
Literature:	Depending on selected courses

4.2 Specialization

4.2.1 Selected Topics on Medical Radiation Physics

Module title:	Selected Topics on Medical Radiation Physics
Module code:	phy698
Course:	Selected Topics on Medical Radiation Physics (SS, 5.04.4242) and Medizinische Strahlenphysik (SS, 5.04.4642)
Term:	Sommer
Person in charge:	Prof. Dr. B.Poppe
Lecturer:	Dr. A. Rühmann, Prof. Dr. B. Poppe (5.04.4242) Prof. Dr. B. Poppe, Dr. K. Dörner, Dr. H. K. Looe, Dr. N. Chofor (5.04.4242)
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Seminar: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	3 and 3
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	 5.04.4242: Recent publications in the field of medical radiation physics are selected from peer-review journals and discussed on a weekly basis. The participants will get accustomed to comprehending and presenting key information from the publications in English. 5.04.4642: The course covers from the fundamental to the advanced topics of medical radiation physics. The participants will gain deep understanding on the underlying physics essential for the safe application of ionizing radiations in the medicine for therapeutic purposes.
Content:	 5.04.4242: Current topics in medical radiation physics: Intensity modulated techniques, image-guided radiation therapy, radiation measurements, quality assurance etc. 5.04.4642: Interaction of charged and uncharged particles, properties of clinical radiation beams, detectors, cavity theory and dosimetry protocols, medical applications such as radiology and radiation therapy and radiation biology.
Assessment/type of examina- tion:	Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes

The publications will be selected during the course. 5.04.4642:

F. M. Khan: The Physics of Radiation Therapy. Lippincott Williams and Wilkins, Philadelphia, 2003;

H. Krieger: Strahlungsmessung und Dosimetrie, Springer Verlag, Wiesbaden, 2013;

H. Krieger, W. Petzhold: Strahlenphysik, Dosimetrie und Strahlenschutz, Band 1 und 2, Teubner, Stuttgart, 1997; IAEA,SyllabusonMedicalPhysics

4.2.2 Imaging and Data Analysis

Module title	Imaging and Data Analysis
Module code:	phy954
Course:	5.04.6444 Imaging and Data Analysis in Space Environ-
	ment Research
Term:	Summer
Person in charge:	Prof. Dr. Poppe
Lecturer:	Prof. Dr. Poppe
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	3 and 3
Prerequisites acc. syllabus:	
Recommended prerequisites: Aim/learning outcomes:	Knowledge from the courses Astrophysics I and II The students learn to use modern astronomical instruments for observation (photographic) and spectroscopy, as well as to evaluate the obtained measurement data. They will gain insights into different areas of astrophysics and data processing and will be introduced to cutting-edge research areas. In addition, students learn how a consistent descrip- tion of astrophysical processes emerges from observational data, theory, and modeling.
Content:	Preparation of observations in a seminar including selec- tion of relevant objects, determination of observation tech- niques (e.g. high resolution photography or spectroscopy), execution of observations at C2PU ("Centre Pédagogique Planète et Univers, South of France") and evaluation of observations.
Assessment/type of examina-	Written examination: Between 90 and 180 minutes or Oral
tion:	examination: Between 20 and 45 minutes
Literature:	 B.W. Caroll, Introduction to Modern Astrophysics, Addison-Wesley, 2013, M. Camenzind, Compact Objects in Astrophysics, Springer, 2007, P. Lena, D. Ruoan Observational Astrophysics, Springer 2012, J.L. Starck, F. Murtagh, Astronomical Image and Data Analysis, Springer 2006, D.S. Birney, G. Gonzalez. Observational Astronomy, Cam- bridge University Press, 2006, BD Warner, Photometry and Lightcurve Analysis, Springer

4.2.3 Medizinische Strahlenphysik I

	_
\leftarrow	\leftarrow

Module title:	Medizinische Strahlenphysik
Module code:	phy955
Course:	5.04.4221 Grundkurs im Strahlenschutz &
	5.04.4021 Bildgebende Verfahren
Term:	Summer
Person in charge:	Prof. Dr. B. Poppe
Lecturer:	Prof. Dr. B. Poppe
Language:	Deutsch
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	2 Lecture: each 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	3 and 3
Prerequisites acc. syllabus:	
Recommended prerequisites:	Medizinische Strahlenphysik I
Ann/learning outcomes.	Bildgebenden Verfahren und des Strahlenschutzes. Sie wer- den im Rahmen des Grundkurses Strahlenschutz zudem er- stmals mit dem beruflichen Fort- und Weiterbildungssys- tem in Deutschland vertraut gemacht.
Content:	 5.04.4022 Spezialkurs Strahlenschutzseminar Strahlenschutz in der Tele- und Brachytherapie, Aufbau von Beschleunigern, Dosimetrie, Baulicher und Organisatorischer Strahlenschutz, StrSchG und StrSchV sowie zugehörige DIN Normen 5.04.4021 Bildgebende Verfahren Bildgebende Verfahren: Grundlagen der Bildgebenden Verfahren in der Medizin: CT, MRT, Ultraschall, Nuklearmedizin SPECT, PET sowie grundlegende Rekonstrukltionstechniken
Assessment/type of examina-	2 Written examinations: Between 45 and 90 minutes or
tion:	Oral examinations: Between 10 and 20 minutes
Literature:	Grundkurs Strahlenschutz: Unterlagen werden zur Verfügung gestellt (Skript) Bildgebende Verfahren: werden in der VL bekannt gegeben.

4.2.4 Medizinische Strahlenphysik II

\leftarrow	
· · ·	

Module title:	Medizinische Strahlenphysik
Module code:	phy959
Course:	5.04.4222 Spezialkurs Strahlenschutzseminar
Term:	Summer
Person in charge:	Prof. Dr. B. Poppe
Lecturer:	Prof. Dr. B. Poppe
Language:	Deutsch
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	2 Lecture: each 2hrs/week
Workload:	Attendance: 58 hrs, Self study: 124 hrs
Credit points:	3 und 3
Prerequisites acc. syllabus:	
Recommended prerequisites:	Medizinische Strahlenphysik I
Aim/learning outcomes:	Die Studierenden werden die grundlegenden Kompeten- zen eines Strahlenschutzbeauftragten kennen lernen. Dazu gehören neben den fachlichen Grundlagen im Strahlen- schutz insbesondere die Kompetenz sich im deutschen Gesetz und Verwaltungssystem im Bereich des Strahlen- schutzes zurecht zu finden.
Content:	Strahlenschutz in der Tele- und Brachytherapie, Aufbau von Beschleunigern, Dosimetrie, Baulicher und Organ- isatorischer Strahlenschutz, StrSchG und StrSchV sowie zugehörige DIN Normen
Assessment/type of examina-	Written examination: Between 90 and 180 minutes or Oral
tion:	examination: Between 20 and 45 minutes
Literature:	StrSchG, StrSchV verschiedene DIN Normen

4.2.5 Advanced Computing

Module title:	Advanced Computing
Module code:	phy964
Course:	???
Term:	Term:
Person in charge:	Prof. Dr. Martin Kühn, Prof. Dr. Simon Doclo
Lecturer:	
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
	Master Engineering Physics (Master); Schwerpunkt: Acoustics
	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basic knowledge in computing, knowledge in undergradu- ate mathematics and physics
Aim/learning outcomes:	Learning of advanced programming concepts and their ap- plication in biomedical physics, acoustics, laser and optics, and renewable energies.
Content:	Advanced programming concepts for C, python and Mat- lab; Artificial Intelligence and Data Science; Visual Com- puting; Software Engineering
Assessment/type of examina- tion:	written exam: max 180 minutes or oral exam: max 30 minutes
Literature:	

4.2.6 Advanced Topics in Biomedical Physics and Acoustics

Module title:	Advanced Topics in Biomedical Physics and Acoustics
Module code:	phy686
Course:	This module offers special as well as advanced engineering courses in Biomedical Physics and Acoustics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. B. Poppe and Prof. Dr. ir. Doclo
Lecturer:	Depending on selected courses
Language:	Depending on selected courses
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Acoustics
	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics
Teaching Methods/ semester periods per week:	Depending on selected courses
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Depending on selected courses
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific specialization skills. The students acquire advanced knowledge and skills related to the specialization areas biomedical physics and acoustics.
Content:	Depending on selected courses
Assessment/type of examina- tion:	Depending on selected courses, one or two examinations
Literature:	Depending on selected courses

5 Acoustics

5.1 Engineering Sciences

5.1.1 Digital Signal Processing

Module title:	Digital Signal Processing
Module code:	phy605
Course:	Digital Signal Processing (SS, 5.04.4586)
Term:	Term: Summer
Person in charge:	Prof. Dr. Doclo
Lecturer:	Prof. Dr. Doclo
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Theoretical Methods Master Engineering Physics (Master); Schwerpunkt: Acoustics
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basic knowledge about continuous-time signals and systems and statistics. In addition, Matlab programming skills are required.
Aim/learning outcomes:	The students acquire knowledge about theoretical concepts and methods of signal processing and system theory for discrete-time signals and systems. The students are able to apply these theoretical concepts and methods in analytical, numerical and programming exercises.
Content:	System properties (stability, linearity, time-invariance, causality); Discrete-time signal processing: sampling theo- rem, time-domain analysis (impulse response, convolution), z-transform, frequency-domain analysis (transfer function, discrete-time Fourier transform, discrete Fourier transform, FFT, STFT), digital filter design (FIR, IIR, linear phase filter, all-pass filter, signal flow graph), multi-rate sig- nal processing (down/up-sampling, filter banks); Statis- tical signal processing: stationarity, ergodicity, correla- tion, Wiener-Khinchin theorem, spectral estimation; Adap- tive filters: optimal filters, Wiener filter, time-domain algorithms (RLS, NLMS), frequency-domain algorithms (FDAF);Matlab exercises about discrete-time signal pro- cessing and adaptive filters.
Assessment/type of examina- tion:	written exam (max. 3 hours) or 30 minutes oral exam

A. V. Oppenheim, R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2013.

J. G. Proakis, D. G. Manolakis, "Digital Signal Processing – Principles, Algorithms and Applications", Prentice Hall, 2013.

S. Haykin, "Adaptive Filter Theory", Pearson, 2013.

P. P. Vaidyanathan, "Multirate systems and filter banks", Prentice Hall, 1993.

K.-D. Kammeyer, K. Kroschel, "Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB-Übungen", Broschiert, 2018.

5.1.2 Machine Learning II

Module title:	Machine Learning II
Module code:	phy694
Course:	Machine Learning II – Learning and inference methods (SS,
	5.04.4215)
Term:	Summer
Person in charge:	Prof. Dr. Jörg Lücke
Lecturer:	Prof. Dr. Jörg Lücke
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Acoustics
Teaching Methods/ semester	Lecture: 2hrs/week, Exercise: 2hrs/week (incl. prog. lab-
periods per week:	oratory)
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
necommended prerequisites.	first degrees in Physics, Mathematics taught as part of ing or Computer Science (basic linear algebra and analysis) is required. Additionally, programming skills are required (Matlab or python).
Aim/learning outcomes:	The students will deepen their knowledge on mathematical models of data and sensory signals. Building upon the pre- viously acquired Machine Learning models and methods, the students will be lead closer to current research topics and will learn about models that currently represent the state-of-the-art. Based on these models, the students will be exposed to the typical theoretical and practical chal- lenges in the development of current Machine Learning al- gorithms. Typical challenges are analytical and computa- tional intractabilities, or local optima problems. Based on concrete examples, the students will learn how to address such problems. Applications to different data will teach skills to use the appropriate model for a desired task and the ability to interpret an algorithm's result as well as ways for further improvements. Furthermore, the students will learn interpretations of biological and artificial intelligence based on state-of-the-art Machine Learning models.

Content:	This course builds up on the basic models and methods in- troduced in introductory Machine Learning lectures. Ad- vanced Machine Learning models will be introduced along- side methods for efficient parameter optimization. Analyti- cal approximations for computationally intractable models will be defined and discussed as well as stochastic (Monte Carlo) approximations. Advantages of different approxi- mations will be contrasted with their potential disadvan- tages. Advanced models in the lecture will include models for clustering, classification, recognition, denoising, com- pression, dimensionality reduction, deep learning, tracking etc. Typical application domains will be general pattern recognition, computational neuroscience and sensory data models including computer hearing and computer vision.
Assessment/type of examina- tion:	written exam (max. 3 hours) or 30 minutes or al exam
Literature:	Pattern Recognition and Machine Learning, C. M. Bishop,Springer 2006. (best suited for lecture).;Information Theory, Inference, and Learning Algorithms,D. MacKay, Cambridge University Press, 2003. (free on- line)

5.1.3 Advanced Computing

Module title:	Advanced Computing		
Module code:	phy964		
Course:	???		
Term:	Term:		
Person in charge:	Prof. Dr. Martin Kühn, Prof. Dr. Simon Doclo		
Lecturer:			
Language:	English		
Location	Oldenburg		
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics		
	Master Engineering Physics (Master); Schwerpunkt: Acoustics		
	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies		
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week		
Workload:	Attendance: 56 hrs, Self study: 124 hrs		
Credit points:	6		
Prerequisites acc. syllabus:			
Recommended prerequisites:	Basic knowledge in computing, knowledge in undergradu- ate mathematics and physics		
Aim/learning outcomes:	Learning of advanced programming concepts and their ap- plication in biomedical physics, acoustics, laser and optics, and renewable energies.		
Content:	Advanced programming concepts for C, python and Mat- lab; Artificial Intelligence and Data Science; Visual Com- puting; Software Engineering		
Assessment/type of examina- tion:	written exam: max 180 minutes or oral exam: max 30 minutes		
Literature:			

5.1.4 Advanced Engineering Topics in Biomedical Physics and Acoustics

Module title:	Advanced Engineering Topics in Biomedical Physics and		
	Acoustics		
Module code:	phy685		
Course:	This module offers special as well as advanced engineering		
	courses in Biomedical Physics and Acoustics. The list of		
	eligible courses will be updated each academic year. Please		
	refer to the courses listed for this module in Stud.IP.		
Term:	winter or summer		
Person in charge:	Prof. Dr. B. Poppe and Prof. Dr. ir. Doclo		
Lecturer:	Depending on selected courses		
Language:	Depending on selected courses		
Location	Oldenburg		
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt:		
	Acoustics		
	Master Engineering Physics (Master); Schwerpunkt:		
	Biomedical Physics		
Teaching Methods/ semester	Depending on selected courses		
periods per week:			
Workload:	Overall workload of 180 h		
Credit points:	3 + 3 or 6		
Prerequisites acc. syllabus			
Recommended prerequisites:	Depending on selected courses		
Aim/learning outcomes:	The aim of this module is, to give students further access to		
	also small courses (3 CP) which address the specific interest		
	of the student and deliver unique in-depth knowledge or		
	the opportunity to train specific engineering skills. The		
	students acquire advanced knowledge and skills related t		
	the engineering areas biomedical physics and acoustics.		
Content:	Depending on selected courses		
Assessment/type of examina-	Depending on selected courses, one or two examinations		
tion:			
Literature:	Depending on selected courses		

5.2 Specialization

5.2.1 Speech Processing

Module title:	Speech Processing
Module code:	phy677
Course:	Speech Processing $(SS, 5.04.4027)$
Term:	Summer
Person in charge:	Prof. Dr. Doclo
Lecturer:	Dr. Bernd Meyer
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Acoustics
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Introductory signals and systems lecture
Aim/learning outcomes:	The students will be able to (a) explain the foundations of speech production, perception and analysis, (b) understand the mathematical and information-theoretical principles of speech signal processing, and (c) apply the studied meth- ods to explain the working principle of practical speech processing systems.
Content:	Speech production and perception, speech analysis, speech signal processing (STFT, LPC, cepstrum, speech enhancement), speech coding, speech synthesis, automatic speech recognition, speech quality and intelligibility measures, selected topics on speech processing research.
Assessment/type of examina- tion:	written exam (max. 3 hours) or 30 minutes oral exam
Media:	
Literature:	 M. R. Schroeder, Computer Speech: Recognition, Compression, Synthesis, Springer, 2013. J. R. Deller, J. H. L. Hansen, J. G. Proakis: Discrete-Time Processing of Speech Signals, Wiley-IEEE Press, 1999. P. Vary, R. Martin: Digital Speech Transmission, Wiley, 2006. J. Benesty, M. M. Sondhi, Y. Huang: Handbook of Speech Processing, Springer, 2008. D. Yu, L. Deng: Automatic Speech Recognition: A Deep Learning Approach, Springer, 2015.

5.2.2 Advanced Topics Speech and Audio Processing

Module title:	Advanced Topics Speech and Audio Processing			
Module code:	Phy696			
Course:	Advanced Topics Speech and Audio Processing (WS			
	5.04.4586)			
Term:	Winter			
Person in charge:	Prof. Dr. ir. Doclo			
Lecturer:	Prof. Dr. S. Doclo, Prof. DrIng. T. Gerkmann			
Language:	English			
Location	Oldenburg			
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt:			
	Acoustics			
Teaching Methods/ semester	Lecture: 2hrs/week, Exercise: 2hrs/week			
periods per week:				
Workload:	Attendance: 56 hrs, Self study: 124 hrs			
Credit points:	6			
Prerequisites acc. syllabus:				
Recommended prerequisites:	Basic principles of discrete-time signal processing (prefer- ably completed the course Digital Signal Processing). In			
	addition. Matlab programming skills are required.			
Aim/learning outcomes:	The students gain in-depth knowledge about speech and			
, 0	audio processing methods and systems. The students gain			
	practical insights by implementing and evaluating these			
	methods for specific speech and audio applications.			
Content:	After reviewing the basic principles of speech processing			
	and statistical signal processing (adaptive filtering, estima-			
	tion theory), this course covers techniques and underlying			
	algorithms that are essential in many modern-day speech			
	communication and audio processing systems (e.g. mobile			
	phones, hearing aids, headphones): acoustic echo and feed-			
	back cancellation, noise reduction, dereverberation, micro-			
	phone and loudspeaker array processing, active noise con-			
	trol. During the exercises a typical hands-free speech com-			
	munication or audio processing system is implemented (in			
	Matlab).			
Assessment/type of examina- tion:	oral exam (30 minutes) or homework or practical report			
Literature:	J. Benesty, M. M. Sondhi, Y. Huang: Handbook of Speech			
	Processing, Springer, 2008.;			
	P. Vary, R. Martin: Digital Speech Transmission, Wiley,			
	2006.;			
	P. Loizou: Speech Enhancement: Theory and Practice,			
	CRC Press, $2017.;$			
	S. Vaseghi: Advanced Digital Signal Processing and Noise			
	Reduction, Wiley, 2006.;			
	S. Haykin: Adaptive Filter Theory, Prentice Hall, 2013,			
	E. Vincent, T. Virtanen, S. Gannot: Audio source separa-			
	tion and speech Enhancement, Wiley, 2018.			

5.2.3 Acoustics

Module title:	Acoustics
Module code:	phy679
Course:	Acoustics
Term:	Winter
Person in charge:	Prof. Dr. Steven van de Par
Lecturer:	Prof. Dr. Steven van de Par
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Acoustics
Teaching Methods/ semester periods per week:	Lecture: 3hrs/week, Exercise: 1hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Introductory acoustics lecture
Aim/learning outcomes:	The students acquire knowledge about advanced concepts in acoustics, electro-acoustics, room acoustics, acoustical measurement methods and virtual acoustics. The students acquire skills to critically and independently apply these concepts and methods to acoustical problems.
Content:	Acoustical measurement methods (sound pressure, spec- trum, transfer function, intensity); Non-linear measure- ment methods (Hammerstein model); Inverse problems in acoustics and regularization; High-resolution methods, acoustic camera; Binaural virtual acoustics; Spherical har- monics, virtual acoustics (Ambisonics, Wave Field Synthe- sis); Transaural systems; Room acoustics simulation.
Assessment/type of examina-	written exam (max. 3 hours) or 30 minutes oral exam or
tion:	presentation or homework or practical report
Literature:	 G. Müller, M. Möser: Akustische Messtechnik, Springer, 2017; H. Kuttruff: Room Acoustics, CRC Press, 2016; M. Vorländer: Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, 2020

5.2.4 Psychoacoustics

Module title: Psychoacoustics
Module code: phy960
Course: Applied Psychophysics / Auditory Scene Analysis in Speech and Music
Term:
Person in charge: Steven van de Par
Lecturer: Steven van de Par
Language: English
Location Oldenburg
Curriculum allocation: Master Engineering Physics (Master); Schwerpunkt: Acoustics
Teaching Methods/ semester Lecture: 3hrs/week, Exercise: 1hrs/week periods per week:
Workload: Attendance: 56 hrs, Self study: 124 hrs
Credit points: 6
Prerequisites acc. syllabus:
Recommended prerequisites: Introductory acoustics lecture
Aim/learning outcomes: The students acquire knowledge about concepts and meth-
ods in auditory perception, psychoacoustics, subjective test
design, and auditory scene analysis. The students acquire
skills to apply these concepts and methods in practice (e.g.
sound quality measurement, signal processing algorithms).
Content: Applied psychophysics
Subjective listening experiment design and models of hu-
man auditory perception will be treated with a focus on
application in sound quality measurement (e.g. for vehicle
noise and sound reproduction) and in digital signal pro-
cessing algorithm development (e.g. for low bit-rate audio
coding and headphone virtualizers).
Auditory Scene Analysis in Speech and Music
Basic principles of auditory scene analysis: sequential and
simultaneous segregation, schema-based segregation; scene
analysis in music perception: the cocktail party problem,
speech intelligibility in complex acoustic environments,
hearing loss, and experimental methods; speech and mu-
sic perception with hearing aids and cochlear implants
Assessment/type of examina- one or two examination, totaling to 180 min. written exam
tion: or 30 min. oral exam
Literature: H. Fastl, E. Zwicker: Psychoacoustics: Facts and Models,
$\begin{array}{c} \text{Springer}, 2007, \\ \text{A.C. Drammer, A. Piter, Grand A. Piter, MIT, 1000. \end{array}$
A.S. Diegman: Auditory Scene Analysis, M11 press, 1990,

5.2.5 Advanced Topics in Biomedical Physics and Acoustics

Module title:	Advanced Topics in Biomedical Physics and Acoustics		
Module code:	phy686		
Course:	This module offers special as well as advanced engineering courses in Biomedical Physics and Acoustics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.		
Term:	winter or summer		
Person in charge:	Prof. Dr. B. Poppe and Prof. Dr. ir. Doclo		
Lecturer:	Depending on selected courses		
Language:	Depending on selected courses		
Location	Oldenburg		
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Acoustics		
	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics		
Teaching Methods/ semester periods per week:	Depending on selected courses		
Workload:	Overall workload of 180 h		
Credit points:	3 + 3 or 6		
Prerequisites acc. syllabus			
Recommended prerequisites:	Depending on selected courses		
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific specialization skills. The students acquire advanced knowledge and skills related to the specialization areas biomedical physics and acoustics.		
Content:	Depending on selected courses		
Assessment/type of examina- tion:	Depending on selected courses, one or two examinations		
Literature:	Depending on selected courses		

6 Laser and Optics

6.1 Engineering Sciences

6.1.1 Spectrophysics

Module title:	Spectrophysics
Module code:	Phy632
Course:	Applied Photonics I / Spectrophysics (WS, 5.04.4661)
Term:	Winter
Person in charge:	Prof. Dr. Neu
Lecturer:	Prof. Dr. Walter Neu
Language:	German or English depending on demand
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master) ¿ Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Lecture: 3 hrs/week,Laboratory: 1 hrs/week
Workload:	Attendance: 28 hrs, Self study: 62 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Atomic and Molecular Physics, Optical systems
Aim/learning outcomes:	Students gain in depth theoretical as experimental knowl- edge on advanced optical spectroscopy applied to atomic and molecular systems. They are qualified in setting up in- novative methods and measurement devices based on their expert competence in up-to-date research and development areas. The module prepares the students to work in the field of optical science and engineering in general, and yields the base for all further specialisations within the field of op- tics and laser technology.
Content:	Atomic structure and atomic spectra, molecular structure and molecular spectra, emission and absorption, width and shape of spectral lines, radiative transfer and transi- tion probabilities, elementary plasma spectroscopy, exper- imental tools in spectroscopy, dispersive and interferomet- ric spectrometers, light sources and detectors, laser spec- troscopy, nonlinear spectroscopy, molecular spectroscopy, time resolved spectroscopy, coherent spectroscopy max. 2hr written examination or may the oral examination
tion:	or experimental work and laboratory reports or presenta- tion or homework

Literature:

A.Thorne, U. Litzen, S. Johansson: Spectrophysics. Principles and Applications. Springer, 1999. ISBN 978-3540651178;

J.M. Hollas, M.J. Hollas: Modern Spectroscopy. Wiley, 2003. ISBN 978-0470844168;

S. Svanberg: Atomic and molecular spectroscopy. Basic aspects and practical applications. Springer, 2001.;

W. Demtröder, Laser Spectroscopy Vol. 1and2, Springer, 5nd ed. 2014 and 4th ed., 2008;

Saleh and Teich, Fundamentals of Photonics (Wiley); Recent publications on specific topics

6.1.2 Photonics

/	
\leq	
`	

Module title:	Photonics
Module code:	phy600
Course:	Photonics (WS, $5.04.4668$)
Term:	Winter
Person in charge:	Prof. Dr. U. Teubner
Lecturer:	Prof. Dr. U. Teubner
Language:	German or English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Advanced Physics
Teaching Methods/ semester	Lecture: 4 hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basic knowledge on optics, electrodynamics and atomic physics
Aim/learning outcomes:	Starting from basics, the module yields advanced knowl- edge of the physics of lasers, laser beams, different laser types, modulators and of interaction of optical radiation with matter The second part of the course is related to imaging sensors and sensor systems which is of major importance everywhere in science and engineering. This course provides substantial background of the relevant physics and engineering methods. In the extended labora- tory part, using modern imaging systems such as scientific and professional cameras, students get experience.
Content:	Fundamentals of lasers (optical gain, optical resonator, laser beams), laser types, laser safety; modern image sen- sors (CCD,CMOS, scientific sensors such as backside illu- minated ones, XUV-detectors, MCP, etc.) are treated in detail, dynamic range and noise, optical imaging systems, basics of image processing.
Assessment/type of examina-	2 hr written examination or 30 min oral examination or experimental work or homework or presentation
Literature:	 C. Breck Hitz, J. J. Ewing, J. Hecht, Introduction to Laser Technology, 2012, Wiley Press; G. Reider, Photonics, 2016, Springer Verlag; B. Struve, Einführung in die Lasertechnik, 2009, VDE Verlag; Saleh, Teich: Fundamentals of Photonics, John Wiley and Sons; Ebeling: Integrierte Optoelektronik, Springer Verlag; U. Teubner, H.J. Bruckner: Optical Imaging and Photog- raphy (DeGruyter, Berlin); Further literature: Nakamura: Image Sensors and Signal Processing for Digital Still Cam- era (CRC Taylor and Francis) Original literature according indication during course

6.1.3 Medical Optics

Module title:	Medical Optics
Module code:	phy608
Course:	Medical Optics (WS, 5.04.663)
Term:	Winter
Person in charge:	Prof. Dr. Neu
Lecturer:	Prof. Dr. Neu
Language:	German (English)
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Lecture / 4 hrs/week
Workload:	Attendance:56 hours, Self study: 124 hours
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Medizin for Scientist , Optics, Laser Physics
Aim/learning outcomes:	To provide advanced knowledge in the field of medical op- tics and optical technologies in medicine as well as their theoretical background and experimental methods. Stu- dents will be scientifically competent positioned to critically follow current developments and initiate the design (devel- opment and design) of innovative optical applications in medicine.
Content:	Physiology and psychophysics of vision, theory of imaging systems, ophthalmic optics, lighting technology, photom- etry, vision in the workplace and in traffic, optical mea- surements on patients, diagnostic and therapeutic laser ap- plications, radiation protection (infrared, UV, laser), mi- croscopy, diffraction and subdiffraction limited methods, optical spectroscopy, fluorescence methods.
Assessment/type of examina- tion:	max. 2hr written examination or max 1h oral examination or experimental work and laboratory reports or presenta- tion or homework
Media:	Lecture script, transparencies, blackboard, electronic me-
Literature:	 Bille, J., Schlegel, W.: Medizinische Physik 3. Medizinische Laserphysik. Springer, Berlin, 2005. ISBN: 3540266305 Faller, A., Schünke, M.: Der Körper des Menschen. Thieme Verlag, 2004. Glaser, R.: Biophysics. Springer-Verlag, 2001 Dössel, O.: Bildgebende Verfahren in der Medizin. Springer-Verlag, 2000. Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (Hrsg.): Biophysik. Springer-Verlag 1982 J. Kiefer: Biological Radiation Effects, Springer Verlag 1990

6.1.4 Laser Material Processing

\leq	
`	

Module title:	Laser Material Processing
Module code:	Phy638
Course:	Laser Material Processing (WS, 5.04.4669)
Term:	Winter
Person in charge:	Prof. Dr. Neu and Prof. DrIng. Schüning
Lecturer:	DrIng. Thomas Schüning
Language:	English
Location	Emden
Curriculum allocation:	Master Engineering Physics, Laser and Optics
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Knowledge in physics, optics, production engineering
Aim/learning outcomes:	Fundamental knowledge of the characteristics of the laser beam, Knowledge of laser sources for industrial applica- tions, knowledge of procedures of the material process- ing with laser beams Knowledge of the physical-technical procedures of the individual manufacturing processes with laser beams; Ability for the estimation of favorable working parameters; The participants should be able to understand the procedures of the material processing with laser beams and evaluate the tasks of manufacturing
Content:	Fundamental knowledge of the characteristics of the laser beam, Knowledge of laser sources for industrial applica- tions, knowledge of procedures of the material process- ing with laser beams Knowledge of the physical-technical procedures of the individual manufacturing processes with laser beams; Ability for the estimation of favourable work- ing parameters; The participants should be able to under- stand the procedures of the material processing with laser beams and evaluate the tasks of manufacturing
Assessment/type of examina- tion:	Internship report between 15 and 30 pages or formal pre- sentation between 10 and 20 pages report and between 15 and 30 minutes presentation or oral examination between 20 and 45 minutes
Literature:	Script;H. Hügel: Strahlwerkzeug Laser, Teubner Studi- enbücher; Materialbearbeitung mit dem Laserstrahl im Geräte- und Maschinenbau, VDI-Verlag; Hügel, Helmut: Laser in der Fertigung, Vieweg + Teubner Verlag

6.1.5 Advanced Engineering Topics in Laser and Optics

Module title:	Advanced Engineering Topics in Laser and Optics
Module code:	phy682
Course:	This module offers special as well as advanced engineering courses in Laser and Optics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. W. Neu
Lecturer:	Related to selected course/s
Language:	Related to selected course/s
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Related to selected course/s
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Related to selected course/s
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.
Content:	Photonics, Optics, Metrology
Assessment/type of examina-	Related to selected course/s
tion:	
Literature:	Related to selected course/s

6.2 Specialization

6.2.1 Laser Design and Beam Guiding

Module title:	Laser Design and Beam Guiding
Module code:	Phy637
Course:	Laser Design and Beam Guiding $(SS, 5.04.4664)$
Term:	Summer
Person in charge:	Prof. Dr. W. Neu
Lecturer:	Prof. Dr. W. Neu
Language:	English
Location	Oldenburg / Emden
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week , practical applications included in lecture
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	basic knowledge on optics and laser physics
Aim/learning outcomes:	students acquire advanced knowledge for the design of lasers and laser systems, they also understand the prop- agation of laser beams and their forming.
Content:	design of different laser types; physics of active and passive laser components; beams and resonators; lab work
Assessment/type of examina- tion:	2 hr written examination or 30 min oral examination or presentation (20 minutes) or homework (20 pages)
Literature:	 G. Reider, Photonics, 2016, Springer Verlag, Berlin; W. Koechner, Solid-State Laser Engineering, 6th. rev. 2006, Springer Verlag, Berlin; B. Struve, Einführung in die Lasertechnik, 2009, VDE-Verlag, Berlin; Additional literature given in the lecture

6.2.2 Biophotonics and Spectroscopy

_	

Module title:	Biophotonics and Spectroscopy
Module code:	phy634
Course:	Biophotonics and Spectroscopy $(SS, 5.04.4667)$
Term:	Winter or Summer
Person in charge:	Prof. Dr. W. Neu
Lecturer:	W. Neu, M. Schellenberg, S. Koch
Language:	German or English depending on demand
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Lecture: 2 hrs/week, Seminar: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basics in optics and laser physics, in particular, fundamen- tals of optics and photonics; atomic and molecular physics; spectrophysics
Aim/learning outcomes:	The students thoroughly deepen their knowledge on con- cepts of spectroscopy as well as on biophotonics, This mod- ule provides the theoretical background for analytical ap- plications involving UV-Visible spectroscopy, atomic ab- sorption, emission and laser based spectroscopies. The students develop a sound understanding of the principles and instrumentation of atomic and molecular spectroscopy with in depth applications to a wide range of environments e.g. analytical, biological, industrial, pharmaceutical, en- vironmental. The students develop problem solving skills with reasoning based on theory underlying spectroscopy and photonics in biosciences and medicine thus providing a background to practical laboratory training.
Content:	 Application of atomic and molecular spectroscopy at a wide range of fields, e.g. industrial, biosciences, microscopy, pharmaceutical, environmental, trace analysis: 1. Explain the mechanisms of and fundamental distinctions between molecular and atomic spectroscopy 2. Recognise the issues regarding sensitivity and selectivity of molecular and atomic spectroscopy 3. Evaluate the limitations and analytical issues associated with each method 4. Demonstrate analytical application of these atomic and molecular absorption and emission techniques 5. Discriminate the analytical challenges that can be appropriately solved by these spectroscopic techniques
Assessment/type of examina-	max. 2hr written examination or max 1h oral examination
tion:	or experimental work and laboratory reports or presenta- tion or homework

Literature:

R. Noll: Laser-Induced Breakdown Spectroscopy. Fundamentals and Applications. Springer, Berlin, 2012. ISBN: 978-3-642-20667-2;

S. Musazzi, U. Perini (Eds.): Laser-Induced Breakdown Spectroscopy. Theory and Applications. Springer Series in Optical Sciences, Berlin, 2014. ISBN: 978-3-642-45084-6;

Braun, M., Gilch, P., Zinth, W.: Ultrashort Laser Pulses in Biology and Medicine. Springer Berlin; 2007. ISBN-13: 978-3540735656;

S. Svanberg: Atomic and molecular spectroscopy. Basic aspects and practical applications. Springer, 2004.;

W. Demtröder, Laser Spectroscopy Vol. 1 and 2, Springer, 5nd ed. 2014 and 4th ed., 2008;

B. Di Bartolo, John Collins (Eds.): Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation. Springer Netherlands, 2011. ISBN: 978-90-481-9976-1;

W. Fritzsche, J. Popp (Eds.): Optical Nano- and Microsystems for Bioanalytics. Springer Series on Chemical Sensors and Biosensors, Berlin, 2012. ISBN: 978-3-642-25497-0; Recent publications on specific topics

6.2.3 Engineering Scientific Instrumentaion

Module title:	Engineering Scientific Instrumentaion
Module code:	phy965
Course:	
Term:	Winter
Person in charge:	Prof. Philipp Huke
Lecturer:	Prof. Philipp Huke
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester	Lecture: 3 hrs/week first, 2 hrs/week second half of semester: Seminar: 1 hrs/week first 2 hrs/week second half
periods per week.	of the semester
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
	• Basic tools in physics and engineering
	• Knowledge about current research areas
	• Basics in optics and spectroscopy
	• Advanced Metrology
Aim/learning outcomes:	Understanding the evolution of a scientific experiment from
Aim/learning outcomes:	Understanding the evolution of a scientific experiment from scratch to conduction.
Aim/learning outcomes:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument.
Aim/learning outcomes:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instru-
Aim/learning outcomes:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instru- ment with an engineering and science team.
Aim/learning outcomes: Content:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instru- ment with an engineering and science team. Relevant scientific questions often require large scientific fa-
Aim/learning outcomes: Content:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instru- ment with an engineering and science team. Relevant scientific questions often require large scientific fa- cilities like CERN or the ELT to conduct their experiment.
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn:
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment
Aim/learning outcomes: Content:	Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instru- ment with an engineering and science team. Relevant scientific questions often require large scientific fa- cilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument e. Create a model of the instrument
Aim/learning outcomes: Content:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument e. Create a model of the instrument f. Conduct the experiment in the virtual environment
Aim/learning outcomes: Content: Assessment/type of examina-	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the instrument e. Create a model of the instrument f. Conduct the experiment in the virtual environment Example project(s) from astrophysics
Aim/learning outcomes: Content: Assessment/type of examina- tion:	 Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team. Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specification from a scientific question b. Translate these specifications to engineering c. Develop first simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument e. Create a model of the instrument f. Conduct the experiment in the virtual environment Example project(s) from astrophysics Internship report: Between 15 and 30 pages or Written examination: 120 minutes

6.2.4 Intense Light Physics

Module title:	Intense Light Physics
Module code:	Phy966
Course:	
Term:	Summer
Person in charge:	Prof. Dr. U. Teubner
Lecturer:	Prof. Dr. U. Teubner
Language:	English
Location	Emden
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week , practical applications included in lecture
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Basics in optics and laser physics, in particular, Fundamen- tals of Optics and Photonics; Atomic Physics, Electrody- namics
Aim/learning outcomes:	The students acquire broad experimental knowledge of the application of intense light from femtosecond and high power laser systems. They should be acquainted with the interaction of intense light with matter in general and with respect to important scientific and technical applications (in industry) such as laser material processing, high field physics (i.e. laser matter interaction at high intensity), laser generated particle and radiation sources of ultrashort duration and/or ultrashort wavelength etc.
Content:	Femtosecond and high power laser systems and its applica- tion, absorption of intense laser light, basics of laser mat- ter interaction at high intensity, diagnostics, applications in micro machining, laser generated ultrashort radiation such as high-order laser harmonics and femtosecond K- α - sources and keV and MeV electron and ion sources and their application to micro fabrication micro and nano anal- ysis.; atto physics, strong field physics
Assessment/type of examina-	experimental work and laboratory reports or max. 2hr
tion:	written examination or max 1h oral
Literature:	

6.2.5 Advanced Topics in Laser and Optics

Module title:	Advanced Topics in Laser and Optics
Module code:	phy683
Course:	This module offers special as well as advanced courses in Laser and Optics. The list of eligible courses will be up- dated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. W. Neu
Lecturer:	Related to selected course/s
Language:	Related to selected course/s
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Laser and Optics
Teaching Methods/ semester	Related to selected course/s
periods per week:	
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Related to selected course/s
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.
Content:	Photonics, Optics, Metrology,
Assessment/type of examina- tion:	Related to selected course/s
Literature:	Related to selected course/s

7 Renewable Energies

7.1 Engineering Sciences

7.1.1 Energy Ressource and Systems

Module title:	Energy Ressource and Systems
Module code:	phy641
Course:	Energy Meteorology (WS, 5.06.021) and Energy Systems (WS, 5.06.022)
Term:	Winter
Person in charge:	Dr. D. Heinemann
Lecturer:	Dr. D. Heinemann
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
	Master European Master in Renewable Energy (Master); Mastermodule
	Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule
Teaching Methods/ semester	each Lecture: 2hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self-study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus	
Recommended prerequisites:	
Aim/learning outcomes:	After successful completion of the module students should be able to:
	characterize the global energy system and analyze the structure and constraints of today's energy system,explain the availability and connection between solar and wind energy,
	- identify the problems and challenges of energy supply due to fluctuating energy resources with varying and seasonal
	load profiles,
	- relate the solar irradiance conversion process as well as the atmospheric radiation balance of the earth to Wind Energy Meteorology.

Content:

This module will give an overview on the global energy system and the challenges of energy supply due to fluctuating energy resources with varying and seasonal load profiles. Energy Meteorology (Lecture – 90 h workload) Section I: Solar Irradiance

- Radiation laws,

- Solar geometry,
- Interaction of solar irradiance with the atmosphere,
- Radiation climatology,
- Solar radiation model,
- Statistical properties of solar irradiance,
- Measuring devices to ascertain solar radiation balance,
- Satellite-supported data acquisition to assess solar irradiance,

Section II: Wind Flow

- Origin and potential of atmospheric energy movements, Heat balance of the atmosphere,

- Physical laws of atmospheric flow,

- Wind circulation in the atmosphere, local winds,

- Wind flow in atmospheric layers (vertical structure, Ekman Layer),

- Assessment of wind potential (European Wind Atlas: model, concept,

- Wind Measurements,

Energy Systems (Lecture – 90 h workload)

- Definitions, separation electrical - thermal energy use,

- Resources and reserves,

- Energy system analysis: Efficiencies at various levels of the energy chain; Exergy analysis,

- Energy scenarios,
- Climate change,

- Advanced (power plant) technologies for conventional fuels,

- Electric power systems with large shares of renewables Written examination: max 180 minutes

Assessment/type of examination: Energy Meteorology:

- IEA Word Energy Outlook (http://wordenergyoutlook.org/)

- Iqbal, M. 1984: An Introduction to Solar Radiation, Academic Press, Toronto

- Liou, K.-N. 2002: An Introduction to Atmospheric Radiation, Academic Press: 2nd edition, Page 2 of 39

- Peixoto, J.P. and Oort A.H. 2007: Physics of Climate Book, Surge Publishing

- Rasmussen, B. 1988: Wind Energy, 2, Routledge: 1st edition

- Sathyajith, M. 2006: Wind energy: fundamentals, resource analysis and economics, Springer

- Stull, R.B. 1988: An Introduction to Boundary Layer Meteorology, Springer 1st edition

Energy Systems: - Ramage, J.: Energy: A Guide Book (Oxford University Press, 1997)

- Boyle, G. et al. (Eds.): Energy Systems and Sustainability (Oxford University Press, 2003)

- Blok, K.: Introduction to Energy Analysis (Techne Press, Amsterdam, 2007)

- Houghton, J.: Global Warming: The Complete Briefing, 5th Ed. (Cambridge University Press, 2015)

- UNDP (Ed.): World Energy Assessment: Energy and the Challenge of Sustainability (2000/2004), http://www.undp.org/energy/weapub2000.htm

- GEA: Global Energy Assessment - Toward a Sustainable Future (Cambridge University Press and International Institute for Applied System Analysis, Laxenburg, 2012), www.iiasa.ac.at/web/home/research/ Flagship-Projects/Global-Energy-Assessment/

Chapters_Home.en.html

- Goldemberg, J. et al.: Energy for a Sustainable World (Wiley Eastern, 1988)

- Nakicenovic, N., A. Grübler and A. McDonald (Eds.): Global Energy Perspectives (Cambridge University Press, Cambridge, 1998)

- Khartchenko, N.V.: Advanced Energy Systems (Taylor and Francis, 1998)

- IEA (International Energy Agency): World Energy Statistics and Balances 2015

- BP: Statistical Review of World Energy 2016 (http://www.bp.com/en/global/corporate/

energy-economics.html)

- EIA: International Energy Outlook 2016 (www.eia.doe. gov/forecasts/ieo/)

- United Nations: 2013 Energy Statistics Yearbook (2016) (unstats.un.org/unsd/energy/yearbook/)

7.1.2 Solar Energy

Module title:	Solar Energy
Module code:	pre022
Course:	Photovoltaics (WS 5.06.035) and Fuel Cells and Energy
	Storage (WS, 5.06.036)
Term:	Winter
Person in charge:	H. Torio
Lecturer:	H. Torio, M. Knipper, C. Agert
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re-
	newable Energies
	Master Sustainable Renewable Energy Technologies
	(SuRE) (Master); Mastermodule
Teaching Methods/ semester	each lecture: 2 hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	After successful completion of the module students should
	be able to:
	critically evaluate and compare relevant Renewable Energy
	conversion processes and technologies: photovoltaics, fuel
	cells and storage
	critically appraise various electrochemical storage processes
	and the respective storage techniques
	analyse various system components and their interconnec-
	tions within a complex Renewable Energy supply system.

Content:

This module will give an overview over a selection of the major renewable energy technologies and some possibilities of their storage. The focus is on the scientific principles of components and the technical description of the components.

Further detailed system analysis will be presented in other modules.

Physics of PV:

- Basic and most important properties of solar radiation related to photovoltaics

- PV cells basics: Fundamental physical processes in photovoltaic materials

- Characterisation and basic modelling of solar cells

Component Description:

- PV generator

- Charge controller

- Inverter

- Balance of system components

System Description

- Grid Connected System

- Stand Alone System

Solar Thermal Energy (Seminar and Exercises: 90 h work-load)

- Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane, ambient temperature

- Solar thermal system components: collectors; heat exchangers; thermal storage; thermally driven compression chillers

- Solar cooling systems and components

- Characterization of solar thermal systems, their operation and performance

- F-Chart and Utilizability methods as main methods for assessing system performance

Assessment/type of examination:

Written exam, 2 times 1 hour related to the specific fields of renewable energy within the module
Photovoltaics

- Green, Martin A., 1981: Solar cells : operating principles, technology and system applications, Prentice Hall,

- Green, M.A., 2007: Third Generation Photovoltaics, Advanced Solar Energy Conversion, Springer Series in Photonics,

- Markvart, Tom and Castaner, Luis, 2003: Practical Handbook of Photovoltaics, Fundamentals and Applications, Elsevier Science,

- Nelson, Jenny, 2003: The Physics of Solar Cells (Properties of Semiconductor Materials), Imperial College Press,

- Stuart R. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish (Edit.), 2007: Applied Photovoltaics, Earthscan Publications Ltd.,

- Twidell, John and Weir, Toni, 2005: Renewable Energy Resources Taylor and Francis.

Fuel Cells and Energy Storage

- Larminie/Dicks: Fuel Cells Systems Explained, 2000, (Wiley, 2000, ISBN 0-471-49026-1),

- EG and G Services, Parsons Inc.: Fuel Cell Handbook, (DE-AM26-99FT40575, 7th Edition, 2005; www.fuelcells.org/fchandbook.pdf),

- G. Hoogers (Ed.): Fuel Cell Technology Handbook, (CRC Press, Boca Raton/London, 2003, ISBN 0-8493-0877-1),

- C.-J. Winter/J. Nitsch: Hydrogen as an Energy Carrier (Springer-Verlag, Heidelberg/N.Y., 1985, ISBN 0-387-18896-7/3-540-18896-7),

- O'Hayre/Cha/Colella/Prinz: Fuel Cell Fundamentals, (Wiley, 2009, 2nd ed., IBSN 978-0-470-25843-9),

- C.H. Hamann, A. Hammett, W. Vielstich, Electrochemistry, 2nd Ed. Wiley, Weinheim 2007,

- D. Pletcher, A First Course in Electrode Processes. The Electrochemical Consultancy, 1991,

- A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications. 2. Ed., Wiley, 2001,

- M. Winter, R.J. Brodd; What are Batteries, Fuel Cells and Supercapacitors? in Chem. Rev. 2004, Vol. 104, pp. 4245-4269,

- A.J. Bard, G. Inzelt, F. Scholz (Eds.) Electrochemical Dictionary. 2. Aufl. Springer, Berlin 2012 (Available as an eBook, very good explanation in English), Page 7 of 39,

- Fischer, W. (1996). Stationary lead-acid batteries - an introductory handbook. Brilon, Germany: Hoppecke.

7.1.3 Water and Biomass Energy

_	
\sim	
•	

Module title:	Water and Biomass Energy
Module code:	pre042
Course:	Biomass Energy (WS, 5.06.M313) and Solar Thermal (WS, 5.06.M311)
Term:	Winter
Person in charge:	H. Torio
Lecturer:	Prof. Dr. Michael Wark, Dr. Herena Torio
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Sustainable Renewable Energy Technologies
	(SuRE) (Master); Mastermodule
Teaching Methods/ semester periods per week:	Lecture: 2 hrs/week and Seminar: 2 hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	After successful completion of the module students should be able to:
	- critically evaluate and compare major Renewable Energy
	conversion processes and technologies in solar thermal energy and biomass energy,
	- analyze various system components and their interconnec-
	tions within a complex Renewable Energy supply system,
	tional size and efficiency.
	- critically evaluate non-technical impact and side effects when implementing renewable energy supply systems.

Content:	 Biomass Energy (Lecture – 90 h workload) Energy mix overview; gas, heat, electricity, Pros and Cons of biomass, Chemical composition of biomass: sugar, cellulose, starch, fats. Oils, proteins, lignin, Natural photosynthesis in plants: chemical storage of solar energy; general mechanisms, Chemistry and Biology (microorganism) of Biogas Technology, Conversion processes of biomass: classification, main pathways, Introduction to catalysis used in biomass conversion, Chemical fuels (chemical energy storage) from biomass, routes to platform chemicals and separation processes, Technology concepts for bioenergy usage, Introduction into economical and legal constraints. Hydro and Marine Power (Lecture + Excursion - 90 h workload) Revision of hydraulic basics and their application to hydro and marine power Hydropower and marine power resources and their representation Technological and economical state of the art Description of such systems' components, their characteristics, their interaction in a system, their main features and their challenges
Assessment/type of examina- tion:	1 formal presentation between 5 and 10 pages report and between 10 and 15 minutes presentation and one written exam of 1 hour. Assessments related to the specific fields of renewable energy within the module

Biomass Energy

- R. Schlögl (Ed.), Chemical Energy Storage, De Gruyter, 2013, ISBN: 978-3-11-026407-4, Chapter 2, Pages 59-133,

D.L. Klass. Biomass for renewable energy, fuels, and chemicals, Chapter 4 Virgin Biomass Production, p. 91ff,
Food and Agriculture Organization of the UN (FAO)

http://www.fao.org,

- IEA Energy Technology Essentials - Biomass for Power Generation and CHP. http://www.iea.org/techno/ essentials3.pdf,

- R.A. Houghton, Forest Hall, and Scott J. Goetz. Importance of biomass in the global carbon cycle J. Geophys.Res., 114, 2009,

- Schlögl, Robert (2013). Chemical energy storage (Elektronische Ressource] ed.). Berlin [u.a.]: De Gruyter.,

- Twidell and Weir. Renewable Energy Resources, Chapter 10, http://www.4shared.com/document/HpYwRDPy/ Renewable_Energy_Resources_2nd.html,

- Wheildon's 2013, http://www.wheildons.co.uk/wp-content/uploads/2013/07/carbon-neutral.jpg,

- Waste-to-Energy Research and Technology Council (WtERT), 2009, http://www.wtert.eu/default.asp? Menue=13&ShowDok=12#Hydrolysis,

Hydro and Marine Power

- Charlier R.H., (2009) Ocean Energy: Tide and Tidal Power

- Chtrakar P (2005) Micro-hydropower design aids manual: Small Hydropower Promotion Project, Mini Grid Support Programme. 107p

- Croockewit J (2004) Handbook for developing micro hydro in British Columbia: BChydro. 69 p

- Giesecke J, Heimerl S, Mosonyi E (2014) Wasserkraftanlagen: Springer Vieweg. XXVI, 940 p

- Inversin AR (1986) Micro-hydropower sourcebook: NRECA International Foundation

- Meder K (2011) Environment Assessment and Watershed Action Planning related to GIZ ECO MHP Projects: Field Manual. GIZ. 24 p

7.1.4 Wind Energy Physics, Data and Analysis

Module title:	Wind Energy Physics, Data and Analysis
Module code:	phy644
Course:	Wind Energy Physics (WS,5.04.4061) and Wind Physics Measurements Project (SS, 5.04.4234)
Term:	Winter Winter and Summer
Person in charge:	Prof. Dr. M. Kühn
Lecturer:	Prof. Dr. Martin Kühn, Dr. Detlev Heinemann, Dr. Matthias Wächter, DiplPhys., Prof. Dr. Joachim Peinke
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
Teaching Methods/ semester periods per week:	attendance: $2^{*}28$ hrs, self-study: 124 hrs
Workload:	6
Credit points:	
Prerequisites acc. syllabus:	The module starts in the winter term: Wind Energy Phy- ics has to be taken before participating in Wind Physics Measurement Project
Recommended prerequisites:	
Aim/learning outcomes:	After successful completion of the module students should be able to: - Evaluate wind energy related measurements,- Interprete such measurements gained in the field of wind energy applications, - Critically evaluate measured data
Content:	The winter term lecture lecture teaches the basic knowl- edge in wind energy physics. Physical properties of fluids, wind characterization and anemometers, aerodynamic as- pects of wind energy conver sion, dimensional analysis, (pi- theorem), and wind turbine performance, design of wind turbines, electrical systems The sequentially following WPhyMPr adresses problems based on real wind data, which will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the fol- lowing four main topics, following the chronological order of the work process: Data handling(measurements, measurement technology, handling of wind data, assessment of measurement arte- facts in wind data, preparation of wind data for further processing); Energy Meteorology(geographical distribution of winds, wind regimes on different time and length scales, vertical wind profile, distribution of wind speed, differences between onshore and offshore conditions); Measure – Cor- relate – Predict (MCP)(averaging of wind data, bin-wise averaging of wind data, sources of long term wind data); LIDAR(analyses and conversion of data from LIDAR mea- surements)

Assessment/type of examina-	Portfolio
tion:	
Literature:	 R. Gasch , J. Twele : Wind Power Plants Fundamentals, Design, Construction and Operation, 2nd Ed., Springer Verlag, 2012, ISBN: 978 3 642 22937 4 S. Emeis : Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation, Springer, 2012 Evaluation of site specific wind conditions; MEASNET Guideline; Version 1; November 2009; free available in the internet: http://www.measnet.com/wpcontent/ uploads/2012/04/Measnet_SiteAssessment_V10.pdf IEC 61400 12 1:2005 Power performance measurements of electricity producing wind turbines; guideline

7.1.5 Computational Fluid Dynamics

Module title:	Computational Fluid Dynamics	
Module code:	phy616	
Course:	Computational Fluid Dynamics I and II, (SS, 5.04.4072 and 5.04.4075)	
Term:	Summer	
Person in charge:	Prof. Dr. L. Lukassen,	
Lecturer:	Prof. Dr. L. Lukassen, Prof. Dr. J. Peinke , Dr. B. Stoevesandt	
Language:	English	
Location	Oldenburg	
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Engineering Physics (Master); European Wind En- ergy Master Master Sustainable Renewable Energy Technologies (SuRE) (Master)	
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week, Excersise: 2hrs/week	
Workload:	Attendance: 56 hrs, Self study: 124 hrs	
Credit points:	6	
Prerequisites acc. syllabus:	Fluid Dynamics I	
Aim/learning outcomes:	Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confronta- tion with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models.	
Content:	 CFD I: The Navier-Stokes equations, filtering / averaging of Navier- Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, NS-solvers, RANS, URANS, LES, DNS, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy. CFD II: Introduction to different CFD models, such as OpenFOAM and PALM. Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric 	
Aggaggement /turns of groups	boundary layer.	
tion:	examination: Between 20 and 45 minutes or 1 Term paper: Between 15 and 30 pages	

J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002;

C. Hirsch, Numerical Computation of Internal and External Flows: Introduction to the Fundamentals of CFD, Vol 1: Fundamentals of Computational Fluid Dynamics, 2nd edition, Butterworth-Heinemann, Amsterdam;

P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, Berlin, 1998;

J. Fröhlich, Large Eddy Simulationen turbulenter Strömungen, Teubner, Wiesbaden, 2006 (in German)

7.1.6 Advanced Computing

Module title:	Advanced Computing		
Module code:	phy964		
Course:	???		
Term:	Term:		
Person in charge:	Prof. Dr. Martin Kühn, Prof. Dr. Simon Doclo		
Lecturer:			
Language:	English		
Location	Oldenburg		
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Biomedical Physics		
	Master Engineering Physics (Master); Schwerpunkt: Acoustics		
	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies		
Teaching Methods/ semester periods per week:	Lecture: 2hrs/week; Exersise: 2hrs/week		
Workload:	Attendance: 56 hrs, Self study: 124 hrs		
Credit points:	6		
Prerequisites acc. syllabus:			
Recommended prerequisites:	Basic knowledge in computing, knowledge in undergradu- ate mathematics and physics		
Aim/learning outcomes:	Learning of advanced programming concepts and their ap- plication in biomedical physics, acoustics, laser and optics, and renewable energies.		
Content:	Advanced programming concepts for C, python and Mat- lab; Artificial Intelligence and Data Science; Visual Com- puting; Software Engineering		
Assessment/type of examina- tion:	written exam: max 180 minutes or oral exam: max 30 minutes		
Literature:			

7.1.7 Advanced Engineering Topics in Renewable Energies

Module title:	Advanced Engineering Topics in Renewable Energies
Module code:	phy687
Course:	This module offers special as well as advanced courses in engineering science. The list of eligible courses will be up- dated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr. Martin Kühn
Lecturer:	Related to selected course/s
Language:	Related to selected course/s
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
Teaching Methods/ semester	Related to selected course/s
periods per week:	
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Related to selected course/s
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills in the field renewable energy technologies.
Content:	E.g. metrology, data logging, measurement methodology, construction, monitoring, control engineering, remote sensing.
Assessment/type of examina- tion:	Related to selected course/s
Literature:	Related to selected course/s

7.2 Specialization

7.2.1 Photovoltaic Physics

Module title:	Photovoltaic Physics
Module code:	phy609
Course:	Photovoltaic Physics (SS, 5.04.4063)
Term:	Summer
Person in charge:	Prof. Dr. M. Kühn
Lecturer:	Dr. Michael Richter, Dr. Levent Gütay
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re-
	newable Energies
	Master Sustainable Renewable Energy Technologies
	(SuRE) (Master); Mastermodule
Teaching Methods/ semester	Lecture: 4 hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	Solid-state-Pysics, semi-conductor Physics, Module Re-
	newable Energy Technologies I
Aim/learning outcomes:	describe schematically the events around the pn-junction
	under bias in the dark and under illumination, calculate
	the width of the space charge region, use solar cell data
	sheets in their professional career, discuss the concepts of
	solar cell materials, design and optimization, choose a PV
	technology for a given project
Content:	This specialization module covers the physics of photo-
	voltaics. The behaviour of solar cells is discussed from
	a fundamental physical point of view to explain the dif-
	ferences in performance and limits of various photovoltaic
	materials. Students learn how solar cells function, are de-
	signed and optimized, Optical and electronical properties
	of semiconductors, light absorption, Charge carrier gen-
	eration/recombination/life time, Charge carrier transport
	across the pn-junction in equilibrium and under light and
	voltage bias, Transport equations, Current-voltage charac-
	teristics, efficiency, Quantum efficiency, Design concepts to
	optimize the efficiency, Overview of the most important PV
	technologies
Assessment/type of examina-	written exam between 90 and 180 minutes or presentation
tion:	between 20 and 45 minutes or oral exam between 20 and
	45 minutes or homework between 15 and 30 pages or in-
	ternship report between 15 and 30 pages

Literature:

S. Hegedus, A. Luque, Handbook of Photovoltaic Science and Engineering, published John Wiley and Sons(2nd Edition 2011); Christiana Honsberg and Stuart Bowden, PVCDROM, http://www.pveducation.org/pvcdrom/instructions, Access date 2.10.2014; lecture notes for the respective courses

7.2.2 Wind Physics Student's Lab

۲ <u>۲</u> 1 1	
Module title:	Wind Physics Student's Lab
Module code:	phy646
Course:	Wind Physics Student's Lab; Currently two different sem-
	inars:
	• Dynamics and control of grid-connected wind turbines
	(WS 5 04 4238)
	• Wind turbine rotor in turbulent inflow (WS $5.04.4239$)
Town	Winter and Summer
Person in charge:	Prof. Dr. Kunn
Lecturer:	Andreas Schmidt
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re-
	newable Energies
Teaching Methods/ semester	Seminar with laboratory experiments for research-based
periods per week:	learning / Seminar mit Blockpraktikum zum forschungs-
perious per week.	hasiertan Lemon. 4 hrs/week
TT7 1 1 1	Attacher Scher College 104 ha
WORKIOAD:	Attendance: 56 nrs, Self study: 124 nrs
Credit points:	6
Prerequisites acc. syllabus:	Wind Energy Utilization (BA) or equivalent course, Design
	of Wind Energy Systems: in SAME SEMESTER or before
Recommended prerequisites:	Basic computer knowledge; mechanics; mathematical
1 I	methods for physics and engineering basic knowledge of
	wind energy utilization: previous knowledge of metrology
	basic knowledge of acredynamics. Prorecujates for "Dy
	basic knowledge of aerodynamics. I rerequisites for Dy-
	namics and control of grid-connected wind turbines : Func-
	tion of lift-driven wind energy converters; description of ro-
	tor behavior by means of dimensionless parameters, basics
	of electrotechnics. Prerequisites for "Wind turbine rotor in
	turbulent inflow": Basics of stochastics.
Aim/learning outcomes:	The "Wind Physics Student's Lab" aims to foster the learn-
, 0	ing process by own research activities of the students in
	wind physics and additionally to build up skills for scientific
	and amorimental work and scientific writing. Therefore
	and experimental work and scientific writing. Therefore,
	this course is also intended as preparation for the master
	thesis.
	The course is organized as seminar with integrated work
	in the laboratory. The students will investigate an individ-
	ual, self-formulated research question and will be guided
	by the supervisors through the research-based learning pro-
	cess The work in groups and discussion of solutions aims
	to improve skills in team working
	In order to introduce the students to surrent mind
	in order to introduce the students to current wind energy
	research, the course is offered in different versions. These
	versions represent the work of different research groups at
	ForWind – University Oldenburg. The seminars will be
	offered in subsequent semesters or in parallel.

The seminar "Dynamics and control of grid-connected wind turbines" is related to the work of the research group Wind Energy Systems (WESys). It intends to give a deeper insight into two fields of wind engineering: One is the grid connection and interaction of wind turbines and the other is their operational control as special case in the field of control engineering. The seminar uses an experimental system which allows to investigate control tasks and interaction mechanisms of the functional chain of wind field, rotor, drive train, generator, transformer and electric grid. The seminar consists of three main phases: 1st phase: Preparational learning

• building up basic competences

• identification of the technical tasks

• introduction to current research

• introduction to the experiment

• investigating standard situations, physical effects and functional principles by means of the experimental system 2nd phase: Research-based learning

• defining own research questions

• defining an experimental strategy

• planning the experiment

• set-up, execution, data acquisition and decommissioning of the experiment

3rd phase: Evaluation and documentation

• evaluating the experiment

• documentation with a short report (paper)

• presentation.

The seminar "Wind turbine rotor in turbulent inflow" is connected to the scientific work of the research group Turbulence, Wind Energy and Stochastics (TWIST). In this seminar, turbulent wind fields and their effects on wind turbines will be investigated. Students learn to measure wind flows in high resolutions and how turbulence can be described, investigated and evaluated for different purposes. The students gain a deep understanding of the phenomenon of turbulence. They perform own experiments in a wind tunnel with an active turbulence grid. They learn to establish their own research questions and are encouraged to develop own methods.

The seminar consists of three main phases:

1st phase: Preparational learning

- building up basic competences
- introduction to current research

• practical measurements of flows with different sensors in the wind tunnel

• evaluation methods of data of turbulent wind flows

2nd phase: Research-based learning

- defining own research questions
- defining an experimental strategy
- planning the experiment

• set-up, execution, data acquisition and decommissioning of experiments

3rd phase: Evaluation and documentation

Assessment /type of evening	Portfolio
Assessment/ type of examina-	1 01 (10110
tion:	
Literature:	English Language: Robert Gasch, Wind Power Plants –
	Fundamentals, Design, Construction and Operation, 2nd
	Ed., 2012, Springer-Verlag; ISBN: 978-3-642-22937-4
	German Language: Robert Gasch, Windkraftanlagen -
	Grundlagen und Entwurf, 9th Ed., 2016, Springer +
	Vieweg; ISBN: 978-3-658-12360-4
	German Language: CEwind eG / Alois Schaffarczyk,
	Einführung in die Windenergietechnik; 1st Ed. 2012, Carl
	Hanser Verlag, Munich
	English Language: Erich Hau, Wind Turbines: Fundamen-
	tals, Technologies, Application, Economics, 3rd Ed., 2013,
	Springer-Verlag; ISBN 978-3-642-27151-9
	German Language: Erich Hau, Windkraftanlagen. Grund-
	lagen, Technik, Einsatz, Wirtschaftlichkeit. 6th Ed., 2016,
	Springer-Verlag; ISBN: 978-3-662-53154-9

7.2.3 Future Power Supply Systems

\leq	
`	

Module title:	Future Power Supply Systems
Module code:	phy647
Course:	Future Power Supply Systems (SS, 5.06.306)
Term:	Summer
Person in charge:	Prof. Dr. Carsten Aggert
Lecturer:	Prof. Dr. Carsten Aggert
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule
Teaching Methods/ semester	Lecture and Seminar: 4 hrs/week
periods per week:	
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	Renewable Energy Technologies I
Recommended prerequisites:	Knowledge from module RE technology I, Mathematics
Aim/learning outcomes:	After successful completion of the module students should be able to - explain the management, power balancing and the provi- sion of ancillary services within future electricity grid con- figurations with high shares of fluctuating and distributed generation - perform power system simulation with related software tools - describe different grid-designs, including mini- and micro- grids - compare different markets for electricity (Futures' Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption) and assess the suitability of these concepts for promoting the implementation of higher shares of fluctuating distributed power generation within the electricity grid. - explain the technical principles and resulting limiting fac- tors of concepts and components required for power control within "Smart City", "Smart Grid", and "Smart Home" concepts

Content:	 Future Power Supply Systems: Technology and characteristics of conventional power plants based e. g. on coal, gas, and nuclear, Fundamentals, structure, technologies and operation of (AC-) electricity grids (incl. balancing power, voltage management, etc.), Fluctuating distributed generation: Characteristics and solutions on the transmission and distribution grid levels, incl. storage, vehicle-to-grid-concepts, smart inverters, heat pumps / CHP, etc, Interactions between technology and economics: The different electricity markets (Futures Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption) and their links to the physical world, "Smart City", "Smart Grid", "Smart Home", Mini- and Micro-Grids, Energy scenarios and modelling, Chemical energy carriers in the energy system: power-to-gas (e.g. methane) and power-to-liquids (e.g. methanel)
Assessment/type of examina- tion:	Report (presentation: 50 min, Term-paper: 5 pp.) or Ex- ercises (8 Exercises). In addition, active participation is required. The criteria to fulfil the requirement of the ac- tive participation are announced at the beginning of the term.
Literature:	 Future Power Supply Systems: Buchholz, B.M., Styczynski Z. (2014). Smart Grids - Fundamentals and Technologies in Electricity Networks. Springer Ed., Khartchenko, N. et al. (2013). Advanced Energy Systems, Second Edition (Energy Technology). CRC Press Inc. Hemami, A. (2015). Electricity and Electronics for Renewable Energy Technology: An Introduction (Power Electronics and Applications) CRC Press, Schlögl, R. (2013) Ed., Chemical Energy Storage, De Gruyter

7.2.4 Wind Resources and its Applications

Module title:	Wind Resources and its Applications
Module code:	phy648
Course:	Wind Resources and its Applications (SS, Advanced Wind Energy Meteorology, 5.04.4063 and SS, Wind Energy Application, 5.06.205)
Term:	Summer
Person in charge:	Prof. Dr. M. Kühn
Lecturer:	Dr. Igor Waldl, Dr. Gerald Steinfeld
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule
Teaching Methods/ semester periods per week:	Lecture: 4 hrs/week
Workload:	Attendance: 72 hrs, Self study: 108 hrs
Credit points:	6
Prerequisites acc. syllabus:	Energy Meteorology
Recommended prerequisites:	Knowledge in Basics Wind Energy, Fluid Dynamics I, Mat- lab,
Aim/learning outcomes:	assess different aspects of wind energy farms by modelling, comparison, explanation of wind energy potential, wind en- ergy farm's output, power curves, wind energy project de- velopment, assess in detail influences of meteorological/ climatological aspects on the performance of wind power systems, summarize physical processes governing atmospheric wind flows, value atmospheric boundary layer flow relevant for wind power conversion, argue methods for wind resource assessment and forecast- ing.

Content:	Advanced Wind Energy Meteorology (Lecture – 90 h work- load) Atmospheric Boundary Layer (turbulence, vertical struc- ture, special BL effects) Atmospheric Flow Modelling: Linear models, RANS and LES models Wind farm modelling Offshore-Specific Conditions Resource Assessment and Wind Power Forecasting Wind Measurements and Statistics Wind Energy Applications - from Wind Resource to Wind Farm Operations (Lecture – 90 h workload) Evaluation of Wind Resources Weibull Distribution Wind velocity measurements to determine energy yield Basics of Wind Atlas Analysis and Application Program (WAsP) Method, Partial models using WAsP Measure-Correlate-Predict (MCP) Method of long term corrections of wind measurement data in correlation to long term reference data Conditions for stable, neutral and instable atmospheric conditions Wind yield from wind distribution and the power curve Basics in appraising the yearly wind yield from a wind tur- bine. Wake Effect and Wind Farm Recovery of original wind fields in the downstream of wind turbines Basics of Risø Models Spacing and efficiency in wind farms Positive and Negative Effects of Wind Farms Wind Farm Business Income from the energy yield from wind farms Profit optimization by increase of energy production
	Income from the energy yield from wind farms Profit optimization by increase of energy production Wind farm project development Wind farm operation and Surveillance of power production vs. wind climate, power
	curves, and turbine availability
Assessment/type of examina- tion:	1 Written examination: 120 minutes or Oral examination: Between 30 and 45 minutes or Internship report: Between 15 and 20 pages in one lecture and regular active partici- pation in the other lecture

Advanced Wind Energy Meteorology

Holton, J.R. and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press, New York

Stull, R.B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Pub. Wind Energy Applications - from Wind Resource to Wind Farm Operations

Burton, T., N. Jenkins, D. Sharpe and E. Bossanyi, 2011: Wind Energy Handbook, Second Edition, John Wiley.

Gasch, R. and J. Twele, 2012: Wind Power Plants: Fundamentals, Design, Construction and Operation; Second Edition, Springer

http://www.av8n.com/how/htm/airfoils.html, Last access: 4/2016

http://www.windpower.org/en/, Last access: 4/2016

7.2.5 Design of Wind Energy Systems

Module title:	Design of Wind Energy Systems
Module code:	phy649
Course:	Design of Wind Energy Systems (SS, 5.04.4235)
Term:	Winter
Person in charge:	Prof. Dr. M. Kühn
Lecturer:	Prof. Dr. Martin Kühn, Dr. Vlaho Petrovic
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
	Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule
Teaching Methods/ semester periods per week:	Lecture and seminar: 2 and 2 hrs/week
Workload:	Attendance: 56 hrs, Self study: 108 hrs
Credit points:	6
Prerequisites acc. syllabus:	Wind Energy Utilization (Bachelor) or Wind Energy Physics (Master) or Basics of Wind Energy (Master SURE)
Recommended prerequisites:	Basics in Wind Energy Utilisation
Aim/learning outcomes:	The students attending the course will have the possibil- ity to expand and sharpen of their knowledge about wind turbine design from the basic courses. The lectures include topics covering the whole spectrum from early design phase to the operation of a wind turbine. Students will learn in exercises how to calculate and evaluate design aspects of wind energy converters. At the end of the lecture, they should be able to: - estimate the site specific energy yield, - calculate the aerodynamics of wind turbines using the blade element momentum theory, - model wind fields to obtain specific design situations for wind turbines, - estimate the influence of dynamics of a wind turbine, es- pecially in the context of fatigue loads, - transfer their knowledge to more complex topics such as simulation and measurements of dynamic loads, - calculate the economic aspects of wind turbine

Content:	This lecture and seminar on wind turbine design spans from the wind to the wind turbine and its components as well as from the physics, to engineering and techno-economical as well as organisational aspects. Lecture content: - introduction to wind turbine design, - introduction to aeroelastic simulations, - blade element momentum theory (BEM), - rotor design, - wind turbine control, - dynamic loading and structural dynamics, - measurements of performance and dynamic loads, - wind field modelling, - wake effects in wind turbine design, - offshore environmental conditions, - design load cases and certification, - fatigue loads, - component design, - offshore loads In the seminar part each student group performs analytical assignments and aero-elastic calculations on their own wind turbine design.
Assessment/type of examina- tion:	Internship report: Between 15 and 30 pages
Literature:	 T. Burton et. al.: Wind Energy Handbook. John Wiley, New York, 2nd ed., 2011; R. Gasch, J. Twele: Wind Power Plants. Springer, Berlin, 2nd ed., 2011.; Garrad Hassan, Bladed, Wind Turbine Design Software, Theory Manual; Selected papers from e.g. Wind Energy Journal, Wiley Interscience

7.2.6 Smart Grid Management

Module title:	Smart Grid Management
Module code:	inf511
Course:	Smart Grid Management (SS, 2.01.511)
Term:	Summer
Person in charge:	Prof. Dr. Sebastian Lehnhoff
Lecturer:	Prof. Dr. Sebastian Lehnhoff
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Informatik (Master); Angewandte Informatik Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule Master Umweltmodellierung (Master); Mastermodule Master Wirtschaftsinformatik (Master); Akzentset- zungsmodule der Informatik
Teaching Methods/ semester periods per week:	Lecture / excercise: 3 and 1 hrs/week
Workload:	Attendance: 72 hrs,Self study: 108 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	physics, digital information processing

Aim/learning outcomes: After successful completion of the course the students should be able to understand the existing structures and technical basis of energy systems to produce, transfer and distribute electricity and their interaction and dependency on each other. They should have developed an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems. The students are able to estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseable fluctuations of decentralised plants.

The students will be able to estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems. Regarding the requirements the students will be able to analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems.

Professional competence

The students

• understand the existing structures and the technical basis of energy systems producing, transferring and distributing electricity and their interaction and dependency on each other.

• develop an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems.

• estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.

• estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems.

Methodological competence

The students:

• analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems

• use advanced mathematical methods of network calculation

Social competencies

The students:

- create solutions in small teams
- discuss their solutions
- Self-competence

The students:

• reflect their own use of electricity as a limited resource

Content:	 In this course information technology, economical energy industry and technical basic knowledge and methods are analysed by using concrete Smart Grid approaches. The basic calculation methods for an intelligent grid management are introduced. This module deals with the technical and economical framework for a permissable electrical network as well as mathematical modelling and calculation methods to analyse conditions of electrical energy networks (in stationary conditions). These are: The organisation of the EU energy market (regulatory framework, responsibility in liberalisation of electrical energy systems) Establishment and operation of electrical energy supply networks (network topology, statutory duties of supply, supply quality/system services, malfunctions and protection systems) Network calculation (complex vector representation, effective/idle power, mathematical performance models/net model, transformation: node performance to node voltage and electricity, calculation of conductive current, current flow, fix-point-iteration, Newton-Raphson-Method, voltage drop, transformer model) Intelligent network management (Smart Grids), aggregation forms, machine learning approaches)
Assessment/type of examina- tion:	Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes
Literature:	Crastan V.: "Elektrische Energieversorgung II", Springer 2004 Heuck K., Dettman K. D., Schulz D.: "Elektische Energiev- ersorgung I", 7. Aufl., Vieweg 2007 Konstantin, P.: "Praxisbuch Energiewirtschaft", Springer 2006 Schwab, A.: "Elektroenergiesysteme, Springer 2009

7.2.7 Solar Energy Meteorology

/	
\leq	
`	

Module title:	Solar Energy Meteorology
Module code:	Pre114
Course:	5.04.4064 and $5.06.M211$
Term:	
Person in charge:	Torio, Herena Holtorf, Hans-Gerhard
Lecturer:	Torio, Herena Holtorf, Hans-Gerhard Schmidt, Thomas
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies Master Sustainable Renewable Energy Technologies (SuRE) (Master); Mastermodule
Teaching Methods/ semester	Lecture: 2hrs/week
periods per week:	Seminar: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	3 and 3
Prerequisites acc. syllabus:	
Recommended prerequisites:	Successful participation in "Energy Meteorology 5.06.M117"
Aim/learning outcomes:	After successful completion of the module students should be able to - explain the concepts of physical processes governing the surface solar irradiance available for solar energy applica- tions - model the solar radiation and show their expertise in ap- plication, adaptation and development of models - discuss state-of-the-art-methods in satellite-based irradi- ance estimation and solar power forecasting - discuss and present state of the art of the application of modern solar energy meteorology on a wide range (from residential systems to solar power plants, from solar ther- mal to photovoltaic systems)

Content:	 This specialization module covers more in-depth topics concerning solar energy meteorology. Based on students' knowledge about the solar resource, solar thermal and photovoltaic technology, students deepen their knowledge on the resource for such systems. I. Adv. Solar Energy Meteorology (Lecture - 90 h workload) Physics of radiative processes in the atmosphere Physical modelling of atmospheric radiative transfer (incl. computing tools)
	 Solar irradiance modelling for solar energy applications Solar spectral irradiance: Theory and relevance for solar energy systems Satellite-based estimation of solar irradiance
	Solar irradiance (and solar power) forecastingSolar radiation measurements: Basics and setup of high
	quality measurement system II. Solar Energy Meteorology Applications (Lecture and Sominar 00b workload)
	- sources of solar data and discussion of their quality
	o basic models.
	o measurements,
	o satellite models
	o data sets
	 validation and application of solar resource data sets forecasting of solar radiation: sky-camera forecasts, satellite-based forecasts, numerical weather predictions, statistical methods forecast validation
	- selected applications
	- irradiance and PV power forecasting - application of solar resource data for yield assessment
Assessment/type of examina- tion:	1 Written examination: 90 to 180 minutes and regular ac- tive participation
Media:	
Literature:	 S. Hegedus, A. Luque, Handbook of Photovoltaic Science and Engineering, published John Wiley and Sons (2nd Edi- tion 2011) MSG Cloud Physical Properties (CPP) by KNMI
	<pre>http://msgcpp.knmi.nl/mediawiki/index.php/MSG_ Cloud_Physical_Properties_(CPP)</pre>
	- CAMS Copernicus Atmospheric monitoring service https://atmosphere.copernicus.eu/catalogue#
	<pre>/product/urn:xwmo:md:int.ecmwf::copernicus:cams: prod:an:surface-solar-irradiation:pid327</pre>
	- https://wui.cmsaf.eu/safira/action/
	- https://nsrdb_prel_gov/
	- re. irc.ec.europa.eu/pvgis/
	101 1101001001001000 01000

7.2.8 Photovoltaic Systems

Module title:	Photovoltaic Systems
Module code:	Pre113
Course:	5.06.M207 and 5.06.M209
Term:	Winter
Person in charge:	Torio, Herena
	Holtorf, Hans-Gerhard
Lecturer:	Torio, Herena
	Holtorf, Hans-Gerhard
	Knipper, Martin
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re-
	newable Energies
	Master Sustainable Renewable Energy Technologies
	(SuRE) (Master); Mastermodule
Teaching Methods/ semester	Lecture: 2hrs/week
periods per week:	Seminar: 2hrs/week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	3 and 3
Recommended prerequisites:	
Aim/learning outcomes:	After successful completion of the module students should
	be able to:
	\cdot categorize and feature different PV systems
	o PV on-grid,
	o PV off-grid / stand alone,
	o PV-pumping,
	o PV-hybrid by their setup and by standard quality indi-
	cators.
	\cdot explain the operation principles of the listed PV systems
	\cdot explain concepts behind PV system design
	\cdot design a photovoltaic system by Fermi Estimate
	\cdot design a photovoltaic system by a simulation software
	\cdot be aware of the limitation of both design methods
	· discuss energy flow diagrams of PV systems
	\cdot describe in depth involved balance of system components
	e.g.
	o inverter,
	o charge controllers
	o cabling
	o generator stand storage battery with a focus on housing
	(ventilation)

Content:	This specialization module covers more in-depth topics con- cerning photovoltaics systems. The module consists of: Photovoltaic Systems Lecture (90h workload) Description and operation of PV System's balance of sys- tem components o inverter, o charge controllers o cabling o generator stand o storage battery with a focus on housing (ventilation) Quality indicators for PV Systems and their regional dif- ferences o PV on-grid, o PV off-grid / stand alone, o PV-pumping, o PV-hybrid Sizing of PV systems – back of the envelope approach as well as by a simulation software Photovoltaic Systems Seminar (90h workload) Within the seminar groups of up to five students select a PV system related research question, work on the solution and present their findings. In addition, external PV experts are invited to present from their work experience. An excursion to a PV power plant
Assessment/type of examina- tion:	concludes the lessons learned in the field. ; Presentation: Between 20 and 45 minutes and regular active participation
Literature:	 S. Hegedus, A. Luque, Handbook of Photovoltaic Science and Engineering, published John Wiley and Sons (2nd Edi- tion 2011) C.B.Honsberg and S.G.Bowden, "Photovoltaics Edu- cation Website," www.pveducation.org, 2019, https:// www.pveducation.org/pvcdrom/welcome-to-pvcdrom/ instructions, Access date 21/07/2021 Deutsche Gesellschaft fuer Solarenergie, Planning and in- stalling photovoltaic systems: a guide for installers, archi- tects and engineers. Earthscan, London, Third Edition, 2013 (ISBN-13: 978-1849713436) Heinrich Haeberlin, Photovoltaics: System Design and Practice, John Wiley and Sons, First Edition, Chichester, 2012.(ISBN-13: 978-1119992851) Konrad Mertens, Photovoltaik, Lehrbuch zu Grudlagen, Technologie und Praxis, 5. Aktualisierte Auflage GSES, Off-Grid PV Systems – Design and Installation, first edition international, April 2020 Lecture notes for the respective courses

7.2.9 Control of Wind Turbines and Wind Farms

Module title:	Specialization
Module code:	phy987
Course:	Control of Wind Turbines and Wind Farms
Term:	Summer
Person in charge:	Prof. Dr. M. Kühn
Lecturer:	Dr. Vlaho Petrović
Language:	English
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
	Master Sustainable Renewable Energy Technologies
	(SuRE) (Master); Mastermodule
Teaching Methods/ semester periods per week:	Lectures and exercises: 4 hours per week and home assignments
Workload:	Attendance: 72 hrs, Self study: 108 hrs
Credit points:	6
Prerequisites acc. syllabus:	Wind Energy Utilization (Bachelor) or Wind Energy Physics (Master) or Basics of Wind Energy (Master SURE) and Design of Wind Energy Systems (can be attended in par- allel)
Recommended prerequisites:	Basic knowledge in linear algebra and mathematical anal- ysis is required. A good grasp of the Matlab/Simulink en- vironment is required for exercises.
Aim/learning outcomes:	 After successful completion of the course, students will be able to independently apply different techniques from control engineering will have trained how to use methods from linear algebra and mathematical analysis for the design and analysis of control algorithms will be able to develop a control-oriented model of a wind turbine, and will have understood how to use it for the design and analysis of control algorithms will have understood relevant physical phenomena in a wind farm will have understood the structure and the main components of the control system in a wind farm will have understood the main objectives for a wind farm

Content: Assessment/type of examina- tion:	The course covers the main techniques used in wind turbine and wind farm control. The course is structured in five sections: Section I: Introduction to control in wind energy • Introduction to the governing physics • Control objectives in wind energy • Overview of the control system Section II: Control oriented modelling • Modelling in time domain • Modelling in frequency domain • Time and frequency response Section III: Standard wind turbine control • Torque and pitch control • Torque and pitch control • Tuning of a PI controller • Stability analysis • Control of coupled systems Section IV: Advanced wind turbine control • Advanced control design approaches • State space control • Estimation techniques Section V: Wind farm control • Wake control strategies • Active power control • Power maximization The content of the courses 'Control of Wind Turbines and Wind Farms' and ,Design of Wind Energy Systems' have been alined in such a manner that they can be attended in parallel. Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes or Internship re-
	port: Between 15 and 30 pages
Media:	Beamer, PCs with Matlab/Simulink for exercises
Literature:	Burton et al: Wind Energy Handbook, John Wiley, New York, Second Edition, 2011. Ogata: Modern Control Engineering, Prentice Hall, Upper Saddle River, New Jersey, Third Edition, 1997.

7.2.10 Advanced Laboratories in Renewable Energies

Module title:	Advanced Laboratories in Renewable Energies
Module code:	Phy967
Course:	Advanced Laboratories in Renewable Energies
Term:	Summer
Person in charge:	Prof. Dr. Martin Kühn
Lecturer:	Prof. Dr. Martin Kühn, Martin Kraft
Language:	English / German
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
Teaching Methods/ semester	Laboratory work 3 hours per week and seminar 1 hour per
periods per week:	week
Workload:	Attendance: 56 hrs, Self study: 124 hrs
Credit points:	6
Prerequisites acc. syllabus:	
Recommended prerequisites:	
Aim/learning outcomes:	Students acquire the competence to plan, execute, ana- lyze, document and present complex and advanced phys- ical experiments. They deepen their experience in working with state-of the-art measurement and analyzing equip- ment within the field of Experimental Physics applied in the field of renewable Energy. The Adv. Labs are research oriented.
Content:	Each student performs 3 labs selected form a pool of labs addressing advanced measurement techniques and equip- ment represented in the Renewable Energy research work of various research groups at the Institute of Physics. The pool includes topics on material analysis, optical measure- ment techniques and state-of-the-art technologies.
Assessment/type of examina- tion:	3 labs with 3 protocols plus Homework tasks
Media:	data projector presentation, Blackboard
Literature	Script

7.2.11 Advanced Topics in Renewable Energies

Module title:	Advanced Topics in Renewable Energies
Module code:	phy689
Course:	This module offers special as well as advanced courses in Renweable Energies. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.
Term:	winter or summer
Person in charge:	Prof. Dr.M. Kühn
Lecturer:	Related to selected course/s
Language:	Related to selected course/s
Location	Oldenburg
Curriculum allocation:	Master Engineering Physics (Master); Schwerpunkt: Re- newable Energies
Teaching Methods/ semester	Related to selected course/s
periods per week:	
Workload:	Overall workload of 180 h
Credit points:	3 + 3 or 6
Prerequisites acc. syllabus	
Recommended prerequisites:	Related to selected course/s
Aim/learning outcomes:	The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.
Content:	E.g. Fluid dynamics, metrology, data logging, measure- ment methodology, construction, monitoring, control engi- neering, remote sensing.
Assessment/type of examina- tion:	Related to selected course/s
Literature:	Related to selected course/s