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Abstract

Introduction: Par ki ns on(@®DB) isdai debdi@tsn@ and prevalent
neurodegenerative disease affecting around 1% of the population over the
age of 60. The exact cause in most cases is unknown. One conunon
motoric symptom of PD is hyposmiaa dysfunctionof olfaction This
symptom precedes most moteymptoms ands highly correlated with
cognitive decline. The preserstudy aims to determine if alterationsn
restingstate networks (RSN)and brain structureorrelate with hyposmia
and/or PD. It is prediced that PD patients with senee hyposmia will
display changes ibrain connectivity within and betwedRSNscompared

to the control group

Methods: 45 cognitively normalvolunteers underwent &@&MRI scanat

rest 15 partcipants were healthgontols, 15 were PD patients with severe

hyposmia, and.5 were PD patients with frmild hyposmia Hyposmia was

assessed based on scores from a smell recognition test-pSlifie data

was measuredand publicizedby Yoneyana et al. (2018) An ICA-based

analyss methodwith a low dimensionalityspecification,in combination

with dualregressionwas utilized to identify interpretable RSNs and

compare them betweeparticipans with additional regressord-reesirfer

software was selectetb produceboth cortical thicknessand subcortical
volumemedi an values for each participantds

Results The results of these analysegpport the null hypothesis.
There wereno significant differencedn any independent components
reflective of canaical RSNsbetwea groups, or within the entire group
relatedto smelling scores or cognitiohe median volume for several
subcortical regions and mediahickness value®f cortical regiors were
statistically independent from thelinical effects of PDand hyposmian
this study (p > 0.05)

Discussion  The results of the ICAcombined with duakregression
analysis reject the hypothesis that theveuld be significant changeis
RSNs as a consequeneé® pathologyandhyposmia and there were also no
reportabledifferencesin brain morphometryThis suggestshat PD patients
on medicationmaintain strikingly ntact RSNs and brain structureThis
result couldalternativelybe attributed toa number oimethodologicaktudy
limitations. Thesame dataset ithe Yoneyama et al. (2018&tudy yielded
several significant results between group RSNs and cortical thickness
values Thus, the results presented here highligih€occurringissue MRI
replicationstudiesapplyingalternative methodological choicés the same
data can produce rather varied results.The neuroimaging of potential
changes related t®D, dopamine regulatorynedicatiors, and hyposmia
requires furtheattention.
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1 Introduction

1.1 Parkinsonds Disease

James Parkinson is the man regardedcfarerentlycategorizing ad
describing the deadly and prevalent disease that is now hisakenie is quite
remarkable that even in 18Parkinson felt the unyielding need to differentiate
betweencertaintypes of tremor. In doing so, he discovered a vigorous method
for discrimnating between hislnessof i nt erest, the AShaking
ailments thatancause tremblingHis writings elaborately describe symptoms
and other observians relative to the pathognomaglditionally, Parkinson even
makes a prediction that tliksease is ays$function of the CNS rather than the
PNS.His suggestiorabout he specific anatomical regisanderling the disease
pathologyis now undersiod to be false, however, with regard to the time
period and lack ohoninvasive imagingechnologyhis prediction is still highly
respectedHis groundbreakingessay on the shaking palsy paved the way for
over 200 year s0O wodelilitatingorfalady le was damesh on t hi
Parkinsonods demandr @dlat ndther edime&ysbdeé&s as
agpropriate modes of relief, or even a
18172002, pp. 23p

Thesemanyyears offollow up research have onlartially satisfied the
ambitionsof James Parkinson.o dat e, Par kinsondés Disease
as achronig progressive adultonset neurodegenerative disease that has no
cure. The cause of the disease is also unknowmoist casesThere have been
several reported genetic and environmental faskors;nonetheless the disease
still remains overwhelmingly idpathic. PD affects around 1% of the
population over 6§earsold and roughly 4% of those over the age of 80. The
duration of the disease can last betweeld 7years on average; symptoms
increasing in severity lead to deathdirectly (Sveinbjorsdottir, 216).

Fortunately, dedicated researchers have been able to shed light on the specifics
of the diseasebs {mator Bymptamg,as welhas possible and non

treatment methods.

The symptoms of PD ardivided into two main categories: motor and
non-motor. The motor symptoms are generally the hallmark indications of the
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disease. The Movement Disorder Society (MDS) provides specific diagnostic
guidelines for identification of these motor symptoms that are described as:
Bradykinesia in combination withgidity, resting tremor, or bottBradykinesia

is defined specifically as slownessin initiating movement accompanied by
progressivelydiminishedspeed/amplitude with each motor repetit{®ostuma

et al., 2015)These motor symptonmaso progressivelybecome worseéut can

be treated. Most commonly, motor symptoms are treated widbpda which is

a precursor to the neurotransmitter dopanjifreamzadeh & Surguchov, 2018)

The etiology of these motor symptoms related to PD can be thoroughly
explained as thedirect result of dopaminergic neuron death within the
substantia nigralhe substantia nigra is a collection of subcortical nuclei, part
of the basal ganglia, located in the midbrain. It contains two parts, the pars
reticulata and the pars compacta, eath different functions and connections.
The pars reticulateeceives projections from the striatum and sends inhibitory
signals to the thalamus via GABAergic neurons. The pars complaeteegion
affected most in PD, contairs mostly dopaminergic neuronthat project
excitatory signal®onto the striatumWhen PD related cell death occurs in this
region, it disrupts the nigrostriatal pathway which is responsible for initiating
and calibrating movement$his disruption of a major motor pathwayectly
expains why the motor dysfunctions occur. However, the cause underlying the
substantial death of these DA neurassot directly known(Schapira, 2006)
Histopathologsts have consistently observednfestatiors of Lewy bodies
within the substantia nigra amdher brain regions of PD patients. The role of
these Lewy bodies, which are tangles made up of mainly aipmaclein
proteins, are still very much uncle@gibb et al., 1988; Schapira, 2006; Doty,
2012).

The noamotor symptoms of PD tend to be sonmesvovershadowed by
themore obviousnotorsymptoms althoughby somethey are considered to be
equally as debilitatingThese normotor manifestations are numerous, and
broadly categorized as: sleep dysfunction, autonomic dysfungigychiatric
dysfuncton, and hyposmia.Autonomic problems tend to be mainly
gastrointestinal, however drops in blood pressure, sexual dysfunction, excessive

sweating, and other symptoms asoreported. Sleep cycle abnormalities are
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also observed in two thirds of PD patgntalong with chronic daytime
sleepiness. The psychiatric problems that arise as a result, afd&pendent of
the medication inducedside effectsare visual hallucinations,depression,
anxiety, and dementiaSome of these nemotor symptoms make an
apparance long before thdirst noticeable tremorsreveal themselves
(Sveinbjornsdottir, 2016)This means that understanditigat the pathological
changespertaining tothese normotor occurrencess of clinical importance.
Diagnostic procedures rely on $ucesearchThe last category of nemotor
symptoms that can present up to 10 years before maphoptomsis hyposmia
(Babaet al. 201).

1.2 Hyposmiaand Smell Tests

The partial to complete loss of smelling capabilities, hyposmia, is
relatively commonsensory disorder that tends to worsen with @derphy et
al., 2002) Hyposmia also decreases taste perceptian be an issue of safety,
and can be brief or permanent depending on the specific cause. The causes of
hyposmia are most commonly a result ddfect problems with the nose or
sinusessuch as severe allergies, influenza, nasal pogjsure to chemicals,
or injury to the head/nose. Medications can sometimes also cause a loss of
smell. Thesefactors are usually responsible for a brief loss shell that
eventually returns to normal. There are some cases though, where hyposmia
occurs in combination with more serious, lelegm conditions. Several studies
have shown a relationship between hyposmia and demémidgptemporal
dementia,A |l z h esi deeasdéranks et al., 2015)PD (Yoneyama et al.,
2018; Baba et al., 2011; Bohnen et al., 2008; Doty, 20h2)tiple sclerosis,
type 1 diabetesand Lewy Body disease. When hyposmia occurs suddenly and
without an obvious cause, it could very well meaaninous sign of neurological
malfunction(Goncalves & Goldstein, 2016)lyposmia is diagnosed first by a
p hy s i physacal é&xamination in combination with medical history, and if
no obvioussourcecan beestablisheda diagnoss can be madeising MRI
(Yousem et al., 1996 smell stick tes{Kobal et al.1996; Hummel et al.,
1997/2007)or a scratch and smell test (Doty et al., 1984).



A smell stick test izonducted with a pelike device that can release a
certain smell at varied amounss.scratd and smell test on the other hand, is a
paper test where odors are exposed after scratching mitraencapsulated
seal Thesetypes oftests aralsoefficaciousfor collectinga smellingscorein
experimeral settings, incluoshg the study that providedheir data for the
present investigation. The nasalchemosensorpdor identificationbatteries,
which haveadditionally been developed for different countriegth different
familiar odors can reliably provide ra overviewof an individuads ability to
identify familiar smells, ability to discriminate between different smells, and at
which threshold odors affest perceived.The smell stickmeasures compile to
provide a TDI scoreThemodernii Sni f f i n6é Sty dewdtoped byt e st bat
Kobal, Hummel, andcolleagues in 1996 ixommonly used to diagnose
hyposmia anosmia, or normosmizsed on a collection of normative data from
well over 3000 participantéobal et al., 1996)The UPSIT, or the University
of Pennsylvania Smell Identification Testas deviped in 1984 byDoty and
colleagues and is currently the most widely used tool for olfaction sensory
measurements in the world. It is available 28 languages with several
international variations and can be saffiministered. This test is also
considerd to beveryvalid with testretest réability of 0.94(Doty, 2012)

These smell tests areonsidered quiteeliable in the dagnosis of
hyposmia and other ydfunctions of smellingwithin healthy populations
However, in recent years there has also seeme criticism over whether or not
the tests accurately measure odor sensation and percaptiegll as previously
reported in clinical populationdn recent publications, the sensitivity and
specificity measuresegarding the UPSIT and similérief internationalt e st s 6
abilities to diagnose PD have been lower than expeBtedriguezViolante et
al. (2014) reported the UPSIT sensitivity to be 79.7% and sensitivity to be
68.5% using a cut off score of >=2&r Mexican participantsThe ability for
the test to diagnose PD patients was calculated to be with 75.3%. These lower
than expected findings may be due either to cultural limitations, or something
physiological (Rodrigue¥iolante et al., 2014)

Another method being used footentially identify the pesence of
hyposmia or smell ykfunction is MRI analysisjn both task and resting
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conditions. Yousem et al. (1996)und that those with hyposmia or anosmia
from birth, 6884% showed anearly compete loss of the olfactory bulb and
tract. In additionto some observable subcortical biomarkers, in 2010 Bitter and
colleagues used neuroimaging to observe gray matter and white matter
morphometric differences. Astoundingly they report significant loss of both
gray and white matter volume in the brains of dg/idanosmicpatients as
compared to agmatched controls; the following regions with significant gray
matter differences were: insular cortex, anterior cingulate cortex, orbitofrontal
cortex, cerebellum, fusiform gyrus, precuneus, middle temporal gyrds a
piriform cortex. The regions of the brain that displayed white matter volume
loss were under the insular cortard middle frontal gyrus, as well &sthe
cerebellum(Bitter et al., 2010).To better understand these changes, a brief
background on olfdory cortical and subcorticaleuroanatomy anpathwayss

provided in the following section.
1.3 Olfaction Basics

The humanchemosensory sense of smelb&onishing to say the very
least, for our melling capabilities possefise potential to disaminate between
trillions of tiny molecular combination®\ review article written by lmlogist
Stuart Firestein (20019utlines the basics of the olfactory system in humans
and similar mammals. Firestein states firstly that there are two different
olfactay systems at play in most animatie first primary system is mostly
conscious and consists of detecting food smells, rot, danger, and other scents
necessary to stay alive; the other secondary system that is less conscious in
humansis for smelling out gotential receptive mate. Ielevantreference to
the present study, th@verview of theanatomical organization of the olfactory
system will bestrictly limited to the primary sense of smelithin humans.

The first noteworthy peripheral structure ighe olfactory
neuroepithelium, which is a patch of mucus covered skin abdui 1caed
at the uppermost paof the nasal cavity. This epithelium is covered with 10 to
20 million olfactory sensory cells that come in an estimatedlifferent types.
Thesebipolar neuras detect andespond to molecular combinations present in

odor molecules, with the puspe of sending along these unique molecular



codes through a thin part of the skull (cribriform plate) to the outer layer of the
olfactory bulb. This dhctory bulb and its tract aresome of the most
anatomically recognizable structures locatédaterally on the inferior
forebrain. The olfactory bulb is the transduction hub, windfiactory sensory

cells sendther complex chemicalcodes of detected malelesto converge,
firstly, on round glomeruli cellsThese cells arspatiallyorganizedo integrate

and simplify the sensory input, that is then passed on through a layer of mostly
interneuron, to mitral cells, and then to the olfactory tract. Thesalrodlls are

few, but their function within the olfactory bulb and tract are highly demp

and essentially, they integrate the odor sensations in order to transport them for

quick perceptior{Blumenfeld, 2010; Firestein, 2001)

The olfactory tract traqmrts signals to a number of other cortical and
subcortical regionsThe five main ones beinghe anterior olfactory nucleus
(AON), olfactory tubercle, amygdala, piriform cortex, and entorhinal cortex.
The AON projects inhibitory signals back onto theaotbry bulb, while the
piriform cortex is responsible for identifying characteristics of the odor in terms
of both its chemical structure and similzategorical properties. The piriform
cortex sends projections to a number of different regions, incluthagamus,
hypothalamus, amygdala, hippocampus, and orbitofrontal cortexp@tieular
pathway sends signals from the piriform cortex to the mediodorsal nucleus of
the thalamus, and then to the orbitofrontal cortex for conscious processing. The
entorhinal or t ex 6 s projecti om she anfygdala daod signal
hippocampusare weltknown for providing us with emotional, memory, and
autonomic responsés smells The olfactory system is anatomically close to to
the limbic system, which could explain why sresathn sometimes evoke strong

emotional memorie@Blumenfeld 2010).

These complex inner workings of olfaction make it sometimes difficult to
understand the root and pathology of olfactory dysfunctions. With the puzzling
connection between smallysfunction and neurodegenerative disease, it is of
great i mportance to understand the ol fac
and functions. Then we may better be equipped to find neurophysiological

warning signs in the futur®©ne hope that researchdnave is the availability



and growing popularity of clinical MRI research, such as resting state and brain

morphometry.
1.4  RestingState fMRI

Functional magnetic resonance imaging of the brain has completely
revolutionized the waynedical professionaland researchensnderstandoth
the normal and abnormal structure and fundtigrof the human brainSince
the beginning of the 199006s, the use of
today there are now well overO®0 studies published mentioning fMRI the
title. This popularity is due to its nanvasive and relatively quick data
acquisitionwhich produces results of excellent spatial resolution. The temporal
(time) resolution is also nawful, and data analysis can also be completed
rather effortlessl with the currentarray of available fMRI analysis software
packages (Poldrack et al., 2009)hese software packagesuch as FSL
(FMRI Bb6s Sof )amd3IPd|(Statistibal Rarametric Mappingllow
raw fMRI data to be preprocessed and statistically analyzed, so that the changes
i n the brai ntos ledel$ mayde \osxalizgde arstatistically
interpreted as changeslocalizedbrain activation.

The result of fMRI studies is either a spatial map statistically
representing localization of brain function in response to stimuli or a spatial
map d intrinsic connectivity. Restingtate fMRI (rsfMRI) is a subfield of
fMRI analysis that focuses exclusivelyn owhat happens in the brain
independent operformingt a s k s, d urhereforg rsflMRI eam provide
images reflective ofbrain connectivity which can be measured with the
assumption that: brain regions that spontaneously activate with similar signals
at different spatial locations at around the same time are functionally connected.
At times interpretation may be difficult because connectesirbregions may
not always influence each other directly, but rather indireotlfthere may be
another brain region thathas an unnoticed influencéNonetheless, fMRI
analysis of human participants and patients at rest is very important for

establishinga baseline of brain functioning.

The past years of rsfMRI have providednare comprehensive list of

different brain connectivity networksalled resting state networks (REBN
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which are observably active duringst andlessen in activation during task
performanceThe most notabldeRSNin terms of its consistemeproducibilityis

the default mode network (DMN) which includes the connected brain areas:
posterior cingulate cortex, precuneus, medial prefrontal cortex, inferior parietal
lobule, and lateraiemporal cortex. In contrasttask relatedhetwork called the
dorsal attention network (DAN), correlates negatively with the DMN and it
contains regions associated with goakented behavior. Utilizing rsfMRI as a
tool to observe reproducible maps daftigation has several potentialinical
implicationsas well, because changesieshi basel i ned net wor ks co
a potentialneurological antbr psychological dysfunctioiiBijsterbosch et at.,
2017; Yeo et al., 2011)

The usage of rsfMRIn clinical practice has thpromisingpotential to
provide biomarkers for certain neuropsychological diseases and disorders.
Biomarkers are consistenbservableneasures of a normal medical state, and
with these it is possible to compare and categorize diffestates as
pathological In the realm of neuropsychologgomparingnormal RSN to
seemingly abnormal RSN=uld help medical professionals to accurately and
swiftly identify indications ofdi seases and disorders such
disease (AD), PD, demga, schizophrenia, anxiety, pesaumatic stress,
ADHD, autism, and many more. A prime example of this was found by
researcheKoch and colleague010), in a study they conducted attempting to
find a good analysis method for accuratdlggnosng AD usng resting state
fMRI data. The researchers found that using a combination of Independent
Component Analysis (ICA}based techniquewith time course correlation
analyses enabledhe categorical separation dfealthy controls from AD
patients; the reporte accuracy was 97.2%, with sensitivity 100% and
specificity 95.2% (Koch et al. 2010).

When rsfMRI is utilized to examine the brains of PD patients,
interesting findings have been report&hahremani et al. published research in
2018 reporting differeres in connectivity outside of the motor networks. Motor
network alterations in PD patients compared to controls are commonly
observed and also unsurprisif@g/u et al., 2009) however changes in the

DMN, for example, are very intriguingp find. Ghahremaniand colleagues
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used a seebtased correlation analysis as well as a novel persistent homology
method to observe decreased global connectivity in PD paté&ntsedication
compared to controls both within and outside of the DMN. They also reported
an increae in local brain connectivity in PD patients, and they concluded that
these widespread connectivity differenees an indication that PD impacts the
functioning and connectivity of the entire brain (Ghahremani et al., 20h8).
following section overvies another method of MRI analysis used in the

present study, brain matter morphometry.
1.5 Brain Morphometry

The human brain isearly as individual to every person as their own
finger print with varying sulci, gyri, ath subcortical structuresToday isit
actually relatively easy to observe every different l@rasmrchitecturewith
sharp detail. MRI machines ofTesla and higher provide detailed anatomical
brain images, which in turn makespiossible for researchers to study the size
and shape of thbrain as a wholer in segregated part3his computational
method of measuring brain tissue is called brain morphometry, and today it is
widely used as a tool for finding abnormal anatomical differented
consistently reflect the effects of aging, gendthe environment, disease,
disorder,geneticsand more. MRI brain tissue measurements can be produced
for both cortical and subcortical regions by utilizing one of two majodern
methods: voxebased or surfaekased morphometr{Clarkson et al., 2Qt).
There are other methods such as deformation and tbased morphometry,

however they will not be further mentioned in this paper.
1.5.1 Cortical Measures

Voxel-based morphometry is thatightly older method of the two, first
mentionedin 1995 (Wight et al.)and then the methods were updated and
coherently standardized in 2000 (Ashburner & Friston). Suitfased
morphometryis a more complex computatimnmethod that arose to combat
some limitations of the voxdlased methods. Both measuremematsgies
involve a segmentation algorithm that separates the white matter, gray matter,
and cerebrospinal fluid (CBFising brightness/intensity valyes well asome

form of Iimage registratignormalization Voxelbased methods use
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preprocessed anatoraid i mages and each individual

brain, to allow a statistical comparison obrtical size, thickness, volume,
densityetc. Voxel-based morphometry is straightforward and simple; however,
voxels are geometric cubewith rather irdired biological interpretabilitythus

the methodcan bevulnerableto inaccuracies terms of localizatior{Clarkson

et al., 2011; Tucholka et al., 201Burfacebasedmorphology on the other
hand is more complex computationalBssentiallythe method andlgorithms
producecortical volume, thickness, and surface area measures by applying a
triangular meshsurface model to both the pial and white matter cortical
boundariesased on withirsubject ceregistration of common cortical folding
patterns (FischR012; Tucholka et al. 2012)

Full, coherent comparisesnand explanatiom of voxel/surfacebased
cortical morphometry methodare rather lengthy, but thenain concepts that
surfacebased methods are matemplexand have been consistentgported
to be more sensitive and reliable than vokelsed methodgClarkson et al.,
2011; Greve, 2011; Fischl, 2012; Tucholka et al. 2012). Sulfased methods
are used in the present investigattonproduce cortical thickness values and
will therefore be furtheexplained. The most popular software for completing
surfacebasedcortical morphometry is Freesfer (Fischl, 2012), which was
developed in order to easily apply necessary algorisms and deformations to
several input TAweighted anitomical images. Freesfer has been used to
observe morphometrical differences between subjects and groups for the last
decadewith high reliability and spatial accuracy.Diseases and ageing are
generally responsible for mosef the noticeable cortical thicless changes in
humansand Freegrfer cortical analysis has been reported to be very useful in
detectingsuchchangegFischl, 2012Fjell et al., 2006Righart et al 2017) A
recent 2018 study by &lziunas and colleagues used the software to find
significant corticalthicknessdifferences in PD patients relative to thgrecific
manifestations o$leep disturbances study in 2016 by Geritts and researches
reported cortical thickness and surface area changes in PD patients compared to
controls both in general and in relatido cognition. These are just two

examplesbut the point remains that Freeter is a widely used corticand
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valid measurement tdavith several clinical applications (Geritts et al., 2016;
Radziunas et al., 2018).

1.5.2 Subcortical Measurements

The process of quantifying the brain in terms/ofumebecomes more
complicated below the cortex. Subcortical brain regions such as parts of the
basal ganglia, the amygdala, thalamus, hippocampuscatcbevarying in
density with tissue borders seeming rather arbitrary. Segmentation and
categorization of subcortical structures may be done manually or automatically.
Scanrescan reliability measures based on automatic segmentation tend to be
much lower for subcortical structurdsut manual segmentatios uinfortunately
very time consuming and impracticdMorey et al., 2010).Freesurfer
developers decided farogram thesegregaon of the subcorticalbrain into 40
interpretable structures by designing an automatic process in which every single

voxelintre i ndi vi dual 6s normali zed brain is <c

oL}

atlas they constructedThis voxelbased method is very pragmatic and
interpretable, and like cortical methods, has several clinical and applied benefits
(Fischl, 2012).

Changes in sutwortical volumes have been reported in several clinical
populations such as AD patients, schizophrenic patiestgerelydepressed
individuals and many additionalgroups. A 2015 article published Mature
Molecular Psychiatryreported findings by van rg et al., which werea
comprehensive list of subcortical regions affected by schizophieasad on a
sample size of over 2,028 patients and 2,540 heatthyrols. This study used
Freesr f er 6s aut omat i that sheghmenic patientsigplay t o f i nd
decreased volume in the amygdala, hippocampus, thalamus, and accumbens as
well as increased volumes in the ventricles and pallidum (van Erp et al., 2015).
Subcortical changes in Powever, are less prominent with some studies
reporting no signifiant findings. Messinaand colleagues (2011) used
Freesir f er 6s segmentation to search for suk
patients, multiple system atrophy patients, progressive supranuclear palsy

patients, and healthy controls. The researchers foundraegubcortical
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atrophies inall clinical groups except for the PD group, which produced no

significant differences at all (Messina et al., 2011).
16 Parkinsonés Disease and Ol facti on

The puzzling connection betwe®&D and i common andearly-onset
olfactory symptom is one that should be investigatearoughly However,
brain activity and structat changes due tthe noamotor symptoms oPD,
specifically hyposmia can berather complicate to observe with MRI. Very
few studes have attempted to find an observable relationship between the
hyposmia and PDregardless of the potential clinidaénefits, because imaging
studies already have been reportimgonsistentresults when imaging PD
pathologyalone. A metaanalysis pubBhed in 2017 assembldrain imaging
attempts to find PD biomarkersand the results werguite direct:
rsMRI/structural MRIstudies aiming to successfully distinguish PD patients
from healthy controls, rarely produce significant findings unless the Rénfmat
are already further along in disease progression and/or off medication at the
time of scanning.Unfortunately if PD cannot beconsistentlyimaged and
identified in the early premotor stages, the opportunity to utilize rsMRI or
brain morphometry aa diagnostic tool diminishe§luite, 2017) By all means,
there are a few tadkased fMRI and PET studies reporting significant findings
related to olfaction and PD, but they are few indeed (Hummel et al., 30£0;
al., 205b; & Westermann et al., 20p8Hummelet al. (2010) for example, found
significant activity decreases in the amygdala, hippocampus, and ventral
striatum in PD patients compared to controls when introduced to odors in the
scanner.Even though there are limited publications exhibitmgtable brain
changes in PD patients with hyposmia, there is still optimism for future findings
as MRI technology and analysis methods consistently evolve.

Some sructural and functional MRI research in recent ydeasbeen
able to display some results identifying brain changes related tmgnitive
declinein PD patientgDoty, 2012).0Other sudieshave also reliably reported
that severely hyposmic PD patients have a much greater chaslse tevelop
or possess cognitive and psychotic symptolharley et al. in 2011, found a
strong correlation between PD patients with hyposmia and executive
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functioning deficits, memory deficits, and psychostic symptoms. They then
concluded that hyposmia pathognomonic of other nonmotor symptoms, and it
may not only seve & a pre-diagnosticbiomarker for PD, but also amna
indication for disease progression amdevelopment ofmore debilitating
nonmotor symptoms(Morley et al.,, 201l Since the nature oblfactory
dysfunction is both &ailure of sensory and cognitiveystemswith very strong
correlatiors to other aspects of cognition, imaging hyposmia in PD patients
could yieldgroundbreakinglinical interpretationsFor example, MR&s a tool

to calculatethe potential risk of PD patientsdeveloping mild cognitive
impairmens or evendementigBaba et al., 2012; Fullard et al., 2016; Morley et
al., 2011)

1.6.1 Yoneyama et al. 2018 study

The rapidly growing clinical attention to resting state fMRBRhd
structural brain morphometgparks hope to an approaching revelation of clear
understandingabout the manifestation of neutogical and psychological
diseasan greaterdetail. To date, the olfactory functioning in PD patients has
rarely demonstrated observable significant altengtim brain connectivity or
tissue atrophy. One exception is the paper that provided the data for the present
study. Yoneyama and colleagues performed three types of esalyshe brain
scans of 4&ognitively normalparticipants a third of which were déalthyage
matchedcontrols, a third were PD patients with mild or no hyposmia, and
finally a third of the group were PD patients with severe hyposmia. More
information on the patient demographics and categorization methods can be
found in the methods séah 2.1. The analys methods selectedy Yoneyama
et al. were a cortical greynatter volume analysis and both a sdeased
correlationconnectivityanalysisas well asa whole brain canonical resting state

fMRI connectivityanalysig(Yoneyama et al., 20)8

The results of the voxddased grey matter volume comparison
displayed significant increases and decreases in grey matter between controls
and the PD group with severe hyposmia. The decreases were observed in the
PD hyposmia group in the following regics : Athe bilateral cCu

associative visual area, precuneus, middle temporal gyrus, superior frontal
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gyrus, middle frontal gyrus, inferior frontal gyrus corresponding to the
operculum, superior temporal gyrus, precentral gyrus, and middle temporal
gyruso ( Yoneyama The grey anatter vilubnd iBcreaspspvere 6 ) .
reported in the posterior insula and surrounding regions in the brains of the PD
severe hyposmia patients, and the changes were also significantly correlated to
their smelling scas. These increase volume findings were also significant
when compared to the PD group withyposmia. Figure 1 is a visual
representation of the significantly different clusters. The interpretation provided
by Yoneyama and colleagues for these decreasesthat these affected brain
regions correlate to higher level olfactory functioning in terms of odor intensity
and quality discrimination, odor recognition, and passive smelling. The reported
increase in grey matter, however, is a bit more abstract &iauldito explain

(Yoneyama et al., 2018).

a. Decreased gray matter volume in Parkinson’s disease with severe hyposmia than control

b. Increased gray matter volume in Parkinson’s disease with severe hyposmia (PD-SH (-)) than
control and Parkinson'’s disease without severe hyposmia (PD-SH (+)) R . <
egression with OSIT-J

PD-SH (-) > control PD-SH (+) > control PD-SH (-) > PD-SH (+) in Parkinson’s disease

FWECc p < 0.05 (cluster size: 386, FWECc p < 0.05 (cluster size: FWECc p < 0.05 (cluster size: FWECc p < 0.05 (cluster size:
p <0.001) 386, p < 0.001) 266, p < 0.001) 343, p<0.001)

Figure 1 the grey matter. volume decreases' andcincreases: reporte
Yoneyama et:al; (2018yan 'be observedhabove! The yellow:clusters
significantly different in-size - between groups (p'<-0.05) after thelfan
wise-error correction formultiple comparisons; and the: cluster: significe
threshold is:setto p </0:001. (Yoneyama et@l.~20187;dpg 1)

The resul ts o fbasddocarelgtiameaays(SCA)eaverequite

notable with significant and widespread changes in connectivity between the
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three nucl ei of t he amy prainaregeons.iiThesee d s 0
differences of decreases and increased functional connectivity were observed
between the PD patients with severe hyposmia and the healthy control group.
There were also mild significant connectivity decreases between the PD group
with severe hyposmia and the PD group withdthiese findings were also
examined with duategression and werggnificantly correlated with indidual

smellingand cognitive performance scores (Yoneyama et al., 2018).

Finally, Yoneyama et al. applied a dataven ICA analysis paired with
dualregression to search for and discover changes in canonical resting state
brain network connectivity. They uncovered a decrease in connectivity between
controls and PD Patients with severggphsmia within the precuneus network,
as well as an increase in connectivitythin the high and primary visual
networls. Both of these findings were significant (p 6s05). Significant
changes between controls and PD hyposmic patients were also reported
between several canonical networks and brain regions outside of these networks

(Yoneyama et al., 2018). These significant results will be presenkggure 2

_ Decreased functional connectivity Increased functional connectivity

Precuneus LECN High Visual Primary Visual

. Jn,

b. Between
specific
network and

outside brain Salience  Ventral DMN Dorsal DMN
regions

Figure 2 These are theGICA-DR rsfMRI results reported from the
Yoneyama et al. 2018 paper. In sectianabove, the within network
functional connectivity changes can be observed, both increases
decreases. In sectidnthe betwer network connectivity altations are alsc
presented. Thaignificant between group differences (p < 0.05) are ¢
betweenthe HC and PDSH, and are ceoreded for multiple comparisons
(Yoneyama et al., 2018, pp. 10).
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1.6.2 Hypotheses

The study by Yoneyama et al. (2018) published novel and astonishing
significant differences between control participants, and cognitively normal PD
patients with and without severe olfactory deficits. The authors were helpful in
providing public access to their study détaat is analyzed in the present study.
Lack of prior, consistent results in the search for seemingly elssatistical
differences in brain structure and connectivity in PD patients with and without
olfactory ceficits, makethe task ofchoosing analysis methods and forming
hypotheses rather dauntingmust first be noted, thalhé present studg by no
meansan exact/directeplication studyconversely it is a conceptual replication
study with contrasting ntleodological decisionsvith the goal of producing

similar results.

A group ICA-baseddata analysis paired with duadgression was
selected to search for rsfMRI connectivity betwgeoup differences and
additionally withingroup differences relative temelling scores. It is
hypothesized that there will be significant differences in resting state networks
between the healthy control group and PD group with severe hyposmia. An
analysis of both subcortical and cortical brain volume morphometry was also
peformed with the intention of discovering brain volume discrepancies
between groupsThe hypothesis is that there will be significant cortical
differences between groups, specifically the severely hyposmic PD group and
controls. Hypothesized changes in smuitical volumes as well as overall
specifically defined brain regions or networks affected by PD and hyposmia

cannot be hypothesized due to lack of available and reliable published results.

2 Methods

2.1 Dataset

The dataset used for the presentestigation was downloaded from a
previous study published in 2018 by Yoneyama and colleagues. The data zip
file was downloaded from a website called OpenNe&ugo(Access number

ds00024%, and contained the structural and functional, raw fMRI data from 4
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participants. Alsgrovided in the file was alistofthear t i @ge®alitd s 6
scoresACE-Rs cor e s, and PD participanisé
monthsas well as theidiagnosis age. The MRI scanning specifics wals®
made availabland will be stated in the MRI acquisition sect@i.4on page

19.

2.1.1 Participants

The 45(N = 45) included participantsvere recruited and scanned by
researchers at the Nagoya University Department of Neuroldigyarticipants
were between the ag of 5575 years old, 25 females and 20 mdfesale:n =
25; male: n = 20)All participants that reported having a history of other
neurological/psychological déases and/or a family history @&farkinsonism
were excluded. To help minimize the potenfiar motion artifacts tremor
dominant PD patients as well as patients with focal deep white matter
abnormalities, characterized by severe hyperintensities in teeighted MRI
images, were also excludethe clinical PD participants were diagnosedter
the age of 4@&nd diagnosedccording the UK Brain Bank criteritheir disease
progressions were categorized based on the Hoehn Yahr (HY).dtdgewed
consent signed by all participargadethical approval procedures were carried
out by Yoneyama2018) and colleagues in collaboration with the Nagoya

University Graduate School of Medicine ethics committée.table of

respe

participant 6s demApgendixpAhi ¢cs i s provided 1in

2.1.2 Neurocognitive Tests

All 45 participants were tested with the Odstick Identification Test
for the Japanese @T-J)Kobayashi, 2015)This smell test is one comprised
of 12 different odors that are familiar to Japanese people, aiglused
clinically in Japanquite often. The smell is presentédm a perlike device

and participarg must selecone of six possible answers; four main answers

contain the one correct answer and the three other incorrect answers, and the

last two possible answers are either that they do not know what they are
smelling or that they cannot smell anythiagall. Based on the final scores of
the healthy controls (@2 possible), all PD participants were categorized into

two separate groups. The healthy control groug daneanOSIT-J score of
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8.312 with a standard deviatiofED) of 2.2 which is within thenormative

range for the age group. PD patients with scores at least 1 SD below the control
groups (>6/12) were categorized as having mild/moderate hypd¢BDid1H)

and patients scoring more than 2 SDs below the controls (>4/12) were
categorized as havingevere hyposmigdPD/SH) Scoring divided the PD
patients into two groups of 15 people, coincidentally creating three equally
sized groupsHC (n = 15), PD/MH (n = 15), and PD/SH (n = 15). It is
important to note that the mean age betweertbgroup M = 63.3 years, SD

= 5.2 years) and PBH group(M = 70.7 years, SD= 4.8 years) differs
significantly (p < .001)Yoneyama et al., 2018)

All participants were also tesd for potential cognitive impairments
with the Addenbroodd s Cogni t i v e seEIACER)TRetACERN Revi
is a test batteryor evaluation of cognition within five different categories:
orientation and attention, memory, verbal fluency, language, and visuospatial
ability. The ACER has an overall maximum score of 100, and the test also
provides a Mini Mental State Exam (MMSE) score-3@ possible). All
participants scoring below or equal to 88 on the ATRvere considered to
have some cognitivenpairment and thereforevere excluded from the study
(Yoneyama et al. 2018)

2.1.3 PD Evaluaions

Prior to Neurocognitive testing, all PD participants were thoroughly
examined and categorized. The stage of the diggageessiorfor each patient
was calculated utilizing the modified Hoehn and Yabale containing stages
0-5 (modified version entains additional stages 1.5 and 2.5). All patients
included in the present study were between stages 1 and 3, most were in stage 2
(M = 2.0). Whet her or not PD patientsdé di
dominant, left sidelominantor bilateral wasalso recordedEvery PD patient
was on medication, and a calculated Levadopa Equivalent Daily Dose (LEDD)
scoreis provided. Finally, all PD patients wesvaluatedand scored with the
Movement Disorder Societ§ponsored Revision af the Un
DiseaseRating Scale (MDSUPDRS) parts one through four. Part one rates non

motor symptoms in everyday life, part two rates motor symptoms in everyday
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life, part three scores a motor examination, and part four rates motor
complications on a O 4 scale. patients who reporteedxperiencing
hallucinations, anxiety, depression, dopamine dysregulation syndrome, apathy,
and/or psychotic behaviors were also exclu@ézheyma et al. 2018)

2.1.4 MRI Data Acquisition

All MRI scans were acquired at the Nagdyaiversity, Brainand Mind
Research Center with Siemens Magnetom Verio 3.0 Tesla scanAef34-
channel head coil wagsed,and PD patients canned AONO medi cati c
scan speci fi cs-waghted inmges (fepelitibonotime [TR] & .51
s, echatime [TE] = 2.48 ms, 192 sagittal slices withrin thickness, field of
view [FOV] = 256 mm, 256 x 256 matrix size) were acquired for anatomical
reference. Total scanning time for the-Weighted images was 349 seconds.
rsfMRI scans (8 min, eyes closed)wealso acquired (TR = 2.5 s, TE = 30 ms,
39 transverse slices with a @m interslice interval and 3nm thickness,
FOV = 192 mm, 64 | 64 matrix dimension
(Yoneyama etla 2018, pp. 4).

2.2 Resting-State Analysis
2.2.1 Preprocessing

Before preprocessing, the brain images of each subject were visually
inspectedor potential problems or artifact§he raw Tlweightedimages were
thenprepocessed initially wittF MR1 B6s Sof tR8kh vesionsio®r ar y (
(FMRI B6s S o ary, vOaforce UKL, iSrhith et al., 2004anatomical
preprocessing script, fsl_andthis script runs the images through its standard
preprocessing pipeline of reorientation to the WB# template(Evans et al.,
1993) cropping, bias field correction, regisioat, brain extraction, tissue
segmentation, and suintical structure segmentatiorlowever a follow-up
visual inspection of theutput preprocesseahatomicalbrainimagesrevealed
obvious technicalsisues with the brain extraction step, which uses torégis
values to discriminate the skull from the brain, and then remove the skull and
everything outside of it from the image. The threshold determimhgh
tissues are classified as brain matter or skull was then altered several times,

with only slight mprovements. Therefore, the anatomical preprocessing was
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redone using théAdvancedNormalization Tools Software package (ANTS)
(Avants et al., 2011)which has very different methods of brain extraction,
registration, and segmentatiofhe brain extractioms done by using a hybrid
segmentation/templateased strategy, and the ANTs compatiblet@rplate
selected was the available OASIS brain template created freamale of
adults with awider range ofage (Avants et al., 2010)The resulting output
prepiocessedrl 1-weighted imagesvere much more accurately extracted and

usablejn contrast

T2-weightedBOLD functional imageswvere preprocessed usingSLs
FEAT(FMRIEx pert Analysis Tool, FMRI BG6s Softw
Smith et al., 2004Jenkinsoret al. 2012) The first four volumes wereemoved
to correct for artifacts relative to the
field reaches equilibrium. The BOLDmagesfrom each subjectvere then
motion corrected withMCFLIRT (Jenkinson et al., 20010R2) and brain
extractedvas completedavith BET. A spatial smoothingvith a6 mm Gaussian
kernel (FWHM)was applied and the images were thegisteredwith ther
correspondingstructural images produced by ANTs. Both structural and
functional images wer@ormalized to the MNI152 standard space wath
isotropicvoxel resolution of approximately 2 x 2 x 2 cubic mhhe highpass

filter was not used, to prepare for the following noise reduction.
2.2.2 ICA-AROMA

To prepare for théCA-basedyroupanalysis the preprocessed2 scans
underwent a individual ICA-basedstochasticnoise reductiorstrategycalled
ICA-AROMA (ICA-based Automati®Removalof Motion Artifacts; Pruim et
al., 2015) This robust FSL compatible,nonparametric method statistically
divides BOLD data into independentand spatially structured components.
These components can then be categorizedras | 0 i@ companants
reflective of a BOLD signal influx or conversatpisecomponentseflective of
biological or hardware related artitac The resulting ICA-AROMA spatial
map componentsand accompanyingfrequency spectravalues were first
checked for quality, and thehe automatially andcorrecteddenoisell output
images were deemedsuitable for the following analis ICA-AROMAG
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autanated classification system works kgmploying duakegression and
regressing out the noise componertg corrected data used in the group
analyss were correctedon-aggressively This nonaggressive categorization
mears the algorithm only removesomporents uniquely uncorrelated with
obvious BOLD activity component€onversely, strict aggressive regression
techniques remove all components with unexplained variance even if some of

the variance is shared with the real signal compor{eniism et al. 2015)

The advantage to using this IGAROMA is mainly that it is an
extremely datalriven method that requires no prior hypotheses about what
constitutes noise artifactshis method simply anatgs brain signals in their
entirety at every voxel, and then prdes a clear categorization of these signals.
The other benefit to this method is thigplieserves the temporal characteristics
and degrees offreedom (tDoF) in the data.This consequently improves the
statistical power of further comparisons, as welbesrall reproducibility. ICA
AROMA has been evaluated in comparison to offidenoising techniques,
such as motion scrubbing, nuisance regression with28 motion parameters,
spike regession, and ICA-IX. The ICAAROMA method hasconsistently
been reprted to perform very accuratelg comparison ICA-AROMA also
d o etsregoire a retrainingclassifier like the alternative IGKIX (Salimi
Khorshidi et al., 2014; Graffanti et al., 20I¢thod(Pruim et al., 2015)

2.2.3 GICA and Dual-Regression

FSL6 s MELODIC (Multivariate Exploratory Linear Optimized
Decompositioninto Independent Compennt s , FMRI B6s Software
Oxford, UK) function decomposes the noiserrectedBOLD imagesfrom each
individual subject temporally concatenates theamalyzesthe temporal and
spatial patterns ofactivation signalsand finally separateshesepatterns into
statisticallyindependent components refi@etof the entire or partial canonical
resting state networks. Tlgmensions, onumber ofoutputcomponentscan
be either automatically generated or set pridr standard image for
normalizationcan be eithea standardemplate such a®ne generated using the
MNI, or a template created from tipea r t | cdatgpFarrthe présent study, a
template for theGICA was generatedusing the data fronthe 15 HCs. This
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template created in MELODIC wadso 2 x 2 x 2 cubic mm in resolution with

12 DoF.The ICA analysis was run twice, both with 20 and 30 components to

examine the diffeences in resuling interpretability of restingstate networks

relative to the dimensiomlity choices 20 i 30 componentsare highly

recommended as the proper dimensionality for the model to be an optimal fit.

Functional images we high pasdiltered with a cutoff value of 1% sconds
(0.007Hz)each subjectds functional data was r
structuralimages andhormalized to the HC template creatddme courses

were also variancenormalizd (Bijsterbosch et al 2017 F MRI1 B6s Soft war e
Library, Oxford, (K).

For the 20and 30 componenCA results, dualregression was applied
using a simple duategressiorshell script andgroup comparisomontrast files
created in FS& s G L M Dusakrdgregsion analysis of tHEA components
operatesand outputs resulis three stags the first $age find and outputs the
subjectspecific time coumss using grodCA spatial maps. The second locates
subjectspecific spatiamaps using théme course$rom stage one. Finallyhe
third gage perforra agroupanalysis using thetagetwo spatial mapsogether
with contrasffiles. The permutation number to correct for multiple comparisons
was set to 500and the statistidavalues were calculated with an FSL function,
randomize (Winkler et al., 2014) which employs auseful clusterwise
threshold enhancement techniqii& CE) (Smith & Nichols, 2009)

The maindesignfiles and contrastsvere set up to run an ANOVA
statisticallycomparing the components of all three groups, and three additional
design files were created with age, smellsgpres, and cognition scores as
additional regresss (ANCOVA). No significant effects within-groups could
be observeds a resulof the covariateage;thereforethe effects of age were
not regressed out. The final outpués both 20 and 30 componesftistical
maps containinglustes of activation differences between the three groups
every componenand accompanying significance valuégtifact components
not reflective of interpretable brain activity were mahuabentified and
removed from furthe interpretation The concept of this group ICA in

combination with dualegression can be visualizedfigure 3
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Identify Templates using For eackistbiect
Group ICA (or other strategy) CactLIs

A. Dual Regression Stage 1: Identify subject-specific timecourses for the template networks
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B. Dual Regression Stage 2: Identify subject-specific spatial maps corresponding to
each template network
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Figure 3:Group ICA (Nckerson et al.2017)

Dualregression paired with the ICBased analysis produces a method
that has consistently performed well in comparison to roteehniques for
restingstate network comparison. The advantage to this method is that it is
datadriven, thus requiring no hypotheses or regions of intesestcted
beforehandike in seedbased rsfMRI methods€very voxel is analyzed and
there is a dinmished potential of missing a significant difference in BOLD
signal between subjects or groupslternative ICAbased methods commonly
ut i | i zper offbeacctki ono f or bet weThermullipleb j e c t st
linear regressiorapproach presentetlere fiestimates spatial and temporal
dynamics at the subject level basedegression against the original data rather
than estimating subjespecific maps byne ans o r o§ beatctieo n 6
backprojection approach the estimated spatiaps necessarilydiwithin the
space defined by (the pseudoinverse of) the ingiabjectspecific major
Eigenspaces (PCA). As such, the final betwseject comparison (e.qg.
inference on the betwegroup difference) becomes dependentthe initial
subjectspecific redation stage®. Bdckmann et al., 2009, pp.).1This
alternative method is quitefficient, in terms of computatiorut thestatistical
comparison interpreted from these bgchjection maps tend to present a lot of
Typeone and tweerrors (Beckmann et &009 Zuo et al., 2010 Nickerson et

al. (2017) provides a comprehensive explanation and evaluation of this group
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ICA-duatregression (GICADR) approach, and also reports that this method is

excellent in terms of validity, reliability, and overall repucbility.
2.3  Brain Morphometry

Both corticalthickness valueand subcortical braiissuevolumes were
extracted withthe popularautomatedrreesurfersoftware (Martinos Imaging
Centre) Freesurferequires no prior preprocessing amdrks auomaticallyby:
removingall nonbrain tissue using éhybrid watershed algoritho(Segonne et
al.,, 2004) a custom bias field correctiotransforming the imageso the
Talairach standardized bra{hancaster et al., 200), segmenting most visual
brain straetures, preforming an intensity normalizationaligning and
parcellating images based on cortical folding pattéBesikan et al., 2006;
Fischl et al., 2004)estimating architectonic boundaries from training data,
mapping cortical thickness/volume/suda@area measures, and constructing
surface models of the cerebrumeonemisphere at a timé-ischl & Dale,
2000. For all 45 subjectsa directorycontaining allT1-weighted structural

images was input with a script, and automaticpitycessed byreesurfe.

The following comparison ofcortical gray matter mediarhitkness
valuesandmedian subcortical structure volumeasindependently conducted
The cortical regions and their accompanying labels were parcellated based on
the Destriexx et al. (2010) das. The cortical atlas i9ased on a parcellation
scheme thag¢ssentially divideshe cortexbased on patterns of caxdil folding.
The gyri and sulcare categorized b curvature valughreshold, with agyrus
including cortex visibleon thepial surfa@ and a sulcus is marked as nonvisible
tissue (Fischl et al., 2004; Destrieux et al., 20T, 40 subcortical regions
were segmented and | abeled with Freesur fe
al., 2002). Both the median values for ttseibcortical vaime as well as median
thickness values of the cortex were extracted into a table. From the 40
subcortical regionshe ventricles CSF, white matter, brain stem, etc. values
were deleted from further analysiBhe remaining 3Zubcortical volumesor
each prticipant were analyzedin SPSSversion 25.0 for Macintosh (IMB
Corp.) where they were determined to be abnormdisgributed;therefore a
KruskalWallis nonparametridi-test was performed. Th&2 median cortical
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thickness value$or each hemispher@ere also compared IBPSS however,
the values were more normally distribute@herefore, betweengroups

comparisons were made with an ANCOVA.

3 Results

3.1 GICA i Dual-Regression Results

The ICA-based group analysis was run with 20 andigQre 4is an

IC1
IC2
IC4
Figure 4 the spatial images t
cE the left are the outpu
independent components (IC
from the initial ICA analysis,
oG after the denoising and befol

dualregression. These are 12
the 20 total components,
components were removed al
IC7 considered to be artifac
components. The 4 brain imag:
selected for each compone
IC8 were chosen because thi
provide the bds spatial
interpretability. The horizonta
IC10 plane image sequences (
dorsally; from the bottom of the
brain (left) to the top (right).
IC11 The left hemisphere is picture
on the top part on the image
right hemisphere on the botton
[Tic12 These images provide an iigist
into the robust gICA method fo
resting state analysis. This dat
IC13 driven method is exploratory
and all components wer
generated based on tempol
ici6| and spatial patterns within th
dataset.
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imageof 12 out of the 20 ICshat were deemedepresentative of partial or
complete canonical resting state networks, and the remaining eight artifact
components were excluded. The dregression comparison @omponents
between all three groups (ANOVA) yielded no significdifterences irthe IC
networks The same analysis was completed two additional times with each

i ndividual 6s s meR dverall gognfienscoresas regressord, C E

the resultinglifferentiating clusters were also nonsignificant.

The sameANOVA was completed on the second KoAtputwith 30
components, 16 of whichvere considered to bdi r e BOLD activation

componentgfigure 5. The group comparison revealed a cluster afation in

IC1 ’;;\ )“l, 9!‘» ;;? IC10
Uy Sy By S
IC2 IC11
IC3 1IC12
IC4 IC13
IC5 1C14
IC6 IC16
IC8 1C18
| , , IC9 IC22

Figure 5 Above are the spatial maps of thelB3 selected from th80ICs, rather
than20. SomdCslook identical to thd Csin Figure 4 while somelC maps sem
to be less interpretable and split. For example, IC&igure 4 seems to be ¢
combination of IC9 and IC22 in this figur€éhese images were produced beft
the dualregression analysis and do not represdringes between groups. The
images peftC are going ventrally in this figure (top to bottom), and the images
mirrored with the right hemisphere visualized on the left side.
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the cerebellar component, more activategthin the control groupthan the
PD/SD(p = 0.019). This cluster waslatively small, made up of approximately

176 voxels In addition, applyinga Bonferroni correction for multiple
comparisong0.05/# of usable components) would set the significance threshold
to p < 0.003. Therefore, this result is not considered significant. The smelling
scores and cognition scores were also added as additional regressors in the

group comparison, @e again with no significariindings.
3.2  Subcortical Volume Results

A nonparametric independensamples KruskalWallis H-test was
performedin SPSS(IBM Corp.; version 25.0jo find significant group effects
in the medium volumes of6 subcortical segentsin each hemisphereNo
significant differences can be reported. T3 overall subcortical regions
separated by hemispheimnd their corresponding\mlues, ranging fronp <
0.0731 0.915are available ilAppendix B

3.3 Cortical Thickness Results

Median thickness values calculated for all participants by Freesurfer,
across all cortical regionsereautomatically parcellated utilizing the Destne
Atlas (Destrieux et al., 20)0These values were then analyzed in SP&Sion
25.0 (IMB Corp.)and vere determined to be normally distributed (p = 0.003).
Therefore, an ANCOVA was selected to identify the potential group effect with
total intercranial volumand ageas regressarof no interest. The results of the
ANCOVA producel no significant findingscomparing HCs, PD/MHs, and
PD/SHs.

4 Discussion

4.1  Summary of Results

There were no significant results observed in the comparison of
canonical resting state networks between Kt group PDYMH group and

PD/ISH group There were also no reportable drfnces in subcortical brain
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volume in 32 predefined structures as a result of PD or hypo$iorawere

there significant changes in cortical thickness between groups.
4.2  Presenation of RSNs

The results support the null hypothesis, that PD patientsesadopa
have relatively preserved restistpte networks completely independent of the
norrmotor symptom hyposmialhere arevery few studies reporting a severe
changeinthe FCof PPat i ent s i n t he(Yaneyamaemae di cat i on
2018. The contadictoryresult of significantly unaltered resting connectivity in
earlierstage PD patients on medication is one that has beame often
reported Baggio and colleagues released a study this year (2019) comparing
restingstate networks ofPD patients on medication, MS patients on
medication, and healthy controls with almost the exact same ICA and dual
regression methods in the present study.irThedings were the same: they
only repored significant redhg-state network alterations in the cerebellar
component between PD patients and MS patients, and none between the PD

patients andhe healthy control group (Baggio et al., 2019).

Baggio et al. also released a study in 2015 comparing PD patients
medicationwith and withoutmeasurablecognitive declne to healthy controls
using the same methodolggand only found significant restirgiate network
changes correlated with cognitive decjinet PD pathologyBell et al. (2015)
also report a medication induced preservation of brain connectivity when
conparing PD patients both on and off their Levedopa medicine with HC
Therefore, thestrongassumptioncan bemade thathe absence of significant
differences in FC between PD patients and conirolthe present study is a
direct consequence tiie PD patiats being scanned on medicati@aggio et
al., 2015;201% Bell et al. 2013.

4.3 GICA-DR Methodology

The completely conflicting results of the ICA/dualgression analysis
presented here n compari son t ®01%pobiishedaendts, e t al . 0
illuminate a widespread issue in fMRI researf¥iRI study resultsare often
unreproducible even with the exact same dataardt similar methodology

This study was a conceptuaplication;thereforemethodological choicasust
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be compared and righttyl criticized. To begin, Yoneyama and colleagues

regressed out effects of age and gender, using the data from the HC, before each

analysis was ever performethis was a rather unnecessary step, because in the

present analysis th@ICA-DR was completed wit age as a regressor only to

discover that age had no significant effect on FC. Regressing out variables prior

to normalization that dond6ét have an obvio
not recommended because it coulthecessarilydisrupt thedata, potentially

causing more type 1 errofBain et al. 2018).

The next methodological limitation ité Yoneyame et al. (2018) study
was that they preprocessed their anatomical isvagieg FSLFEAT(F MR1 B0 s
Software Library, Oxford, UK; Smith et al., 20Q¥enkinsoret al.2012, which
of course included the BET brain extraction function. This is problematic,
becausavhen this same preprocessing step was performed in the current study
the resulting Tdweighted images were extracted incorrectly and nohyway
usable. This resulted in the switch to AN(Pssantset al., 2010)for structural
image preprocessing and brain extraction. The following imagdeigare 6
shows the difference in performance bet we

ANTSs in one of the &althy control subjects.

BET BRAIN EXTRACTION

Figure 6: Above are two examples of structural-Weighted brain images, preprocessed :
extracted with two different software packages and skull stripping methods. The images a
the same subject (HC 6) . The ANTs brain
tool default settings.
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It is unclear whether or not the researchers in the previous study used the

default settings for the brain extraction, which produced the result pictured

bel ow. It I's also not known progtamg FSLOsS

performed so poorly on this dataset.

The remaining choices in methodology that differ between the current
investigation and the prior will not be criticized, only stated. The denoising
technique choseby Yoneyama et al. (2018) was a nuisanceaggjonof brain
signals correlated with head motion, as well as the mean and temporally shifted
signals from theCSF and white matter. This method is relativeypod;
however, ICA-based noise reduction methods have been reportedly more
accurate and repradible due to their datalriven complexity(Prium et al.,

2015 Carone et al. 2037 The final GICA-DR analysis performed was
essentially the same, except Yoneyama and researchers (2018haigddl|
standard brain template as opposed to a custom onethanpdnly ran the
analysis with 30 components. Therefore, it can be reasonably inferred that the
drastic differences in FC results are due to differences in preprogessing
denoisingmethods and/or the choice to use a custom {8@dsed templated for

the du&regression rather than a standard.one

One limitation toGICA itself, is that the selection of components is
typically done manually, which leaves room for human error. Most of the
components and their respective timequency spectra were rather edey
interpret, but there were still a few components that were more difficult to
categorizeGICA also presents another reproducibility issue, and it is apparent
when the same analysis is run more than once. Each run throughGiCthe
(as well as the simg subject ICA denoising) produces componeimsa
different order and maybe even slightly varidthesevariancesmay be slight,
but it is not feasible to ever expect the sameact output component
Nonetheless, the traddf is that this method is congiely expbraory and
requires no prior assumptions about the temporal/spatial patterns or RSNs
(Bijsterbosch et al. 2017)One additional limitation to the prese@ICA
analysis would be that tH8ICA template for the dualegression analysis was
createdwith the HC group, and this is not recommended. This decision was
made with the assumpti on tobmuhbetviR&N s
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subjects but it still may have caused some statistical bid€as-based analysis

methods also tend to perform peoron small sample sizes and noisy data
(Bijsterbosch et al., 2017). The number o
too small, but the data quality for some subjects was rather noisy.

4.4 Preservation of Brain Structure

No statistically signifiant changes in subcorticak cortical regios
consequent of PD or hyposmia can be reggbBrain atrophy observations play
a notablerole in the detection afisease or disease progressiarfew studies
report being ableto use brain morphometry techo&p to accurately
discriminate between PDpatients without dementia or othemnonmotor
symptomsand HCs(Adeli et al., 2016Bowman et al., 201&eng et al., 2017
& Nemmi et al., 2019 Though, most brain morphometry researchonly
suggestsatrophic changs in brain matter relative to PRith othernon-motor
symptomssuch asdementigPan et al., 2013yisuathallucinationglbarretxe
Bilbao et al., 2010)pr depressiolKostic et al., 2010)Wattendorf et al. (2009)
even reported significant differerecen brain volume in both the piriform cortex

and amygdala in PD patients with hyposmia.

On the other handthere are a multitude of studies reporting the
opposite, and stating that atrophic changes in brain volume or cortical thickness
in cognitively nomal PD patients are incredijbsubtle and nearly impossible to
image in the early stagéblessna et al, 2011;Peran et al., 2018; Pitcher et al.,
2012. Messina and colleagues, for exampmeh ser ved the brainds v
characteristics in HCsrpgress/e supranuclear palgyatients multiple system
atrophy patients, and PD patient$he researchers only reported significant
differences in volume between the PD group and other clinical groups, and PD
brains were indistinguishable from the brains imafjedh the HC group. In
addition,ametaanal ysi s of techni quesAtiopghy i mage PD
ultimately occurs in PD; however, in previous studies of those with mild PD it
is rathercontroversial as to whether there is atrophy, no change or aagecr
in brain volume @ruite, 2017, pp. 2)Therefore, it is assumed that the findings
in this present study highlighthecontroversyofwh et her or not i tés p

use structural brain images and morphometryto consistently discriminate
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betweenmild PD patients categorized as cognitively norraad healthy

controls.
4.5  Freesurfer Methodology

Yoneyama and cabgues reported a number of gray matter volume
changes in the PD/SH group compared to HC, and the present study reports
none. Yoneyama et.g@erformed their voxebased gray matter volume analysis
manually with SPM. Fresarfer (Martinos Imaging Centreutomatically
produced thecortical thickness values and subcortical volumedor all
participantsin this current study, and it has even beeported that Fresarfer
performs very similarly to manual voxbhsed methods in clinical populations
(Lehmannet al., 2009).So, theinability to reproduce these resultssesmewhat
puzzling. An assumption caibre made that the Yoneyama et al. reseascher
regressed out effects of age and gender before the analysis, and that step was
skipped in this studyAnother limitation in the present study is that the images
and values produced by Freesurfer were completely automated, and it would
have been preferabland wise to apply a quality control on the data to correct
for any problems.

Another potential reason for the lack of several morphological changes
might be that Fresairfer performed poorer due to thesianethnicity of the
participants and theistatistically differentvolumes, thicknesses, and surface
areas in comparison to Caucasian bré{isee et al., 2011; Tang et al., 2018)
Tang et al. (2018have reported several reproducible differences in brain
structure between Chinese (East Asian) braim$ Caucasian brains in all four
lobes.The commonly used brain templates and automated software pipelines,
including Fresurfer, were contracted from mostly western brains. To the best
of my knowledge, it has not been proven that these atlases or softackages
perform worse on brains of different ethnicities, however it is a reasonable
speculation considering corrections are often made based on age and gender
differences.A more likely explanation that may have caused a null finding,
would be that themages had too many artifacts for Bee f er 6 s aut omat e

preprocessing to overcome. The raw datthis studywas observed, anahce
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againin some participants the data was relatively ndighartinos Imaging

Centre)
45 Conclusion

The results ofthis study were in no way agroundbreakingor
significant as the results publisheg Yoneyama et al. (2018). Methodology
changes with the same dataset shdwddle, supposedlyeproduced slightly
altered results, bulternativelythe significant resultsrere nonexistentThis is
not an issue to take lightly, because it is unfortunately very reflective of the
common credibility criticisms that exist within fMRI research. Credible results
should in turn be reproducibleput with the increasing number of aysis
pipelines ad methodtechniqueghere are more opportunities to find a desired
result rather than a valid onEortunately Yoneyama and research associates
are responsible for this current study existing by their decision to make their
data public,which should be applauded. This is one way that the fields of
cognitive neuroscience and psychology can evolve in terms of validity, along
with researchers choosing to publish their analysis methods with excruciating
detail. Another step in the right dicon would be the development of
standardized brain tergiks for an array of different ethnicities that are
compatible with the major fMRI analysis software packages. Whether or not
hyposmic related brain changes will be observed consistently enough with
f MR to serve as a bi oma ritk matholodicalr Par kin
cognitive symptoms is a topic that requires further investigation. Nonetheless,
advancements in technologynd ethical googbracticeshine hope for a better

future of reproducible ngoscience and psychology research.
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Appendices

Appendix A: Participant Demographics (Yoneyama et al., 2018, table 1)

Table 1. Patient demographics.

PD with severe hyposmia PD with no/mild hyposmia Healthy controls P values
Number 15 15 15 NS
Male/Female 718 6/9 718 NS

Age at examination 70.7(4.8) 644 (7.2) 63.3(5.2) p =001
Duration (y) 5.9(3.7) 6.1(3.2) NA NS
ACE-R 94.3(3.4) 96.1(3.1) 97.3(2.9) NS
MMSE 29.1(1.1) 290 (1.3) 295 (0.6) NS

OSIT-] 1.7(1.1) 7.5(1.5) 10.4(1.3) p < 0.0001

Laterality (R/L/B) 7711 4/11/0 NA NS
LEDD 455.9(377.8) 394.7(277.0) NA NS
Hoehn and Yahr stages 2.0(0.4) 2.0(0.5) NA NS
MDSUPDRS-1 5.1(4.2) 4.6(3.9) NA NS
MDSUPDRS-1T 7.5(4.5) 10.3(6.5) NA NS
MDSUPDRS-111 19.3(7.9) 21.2(9.4) NA NS
MDSUPDRS-IV 1.9(3.5) 2.0(3.3) NA NS

Data are means + standard deviation (SD). PD, Parkinson’s disease; ACE-R, Addenbrooke’s Cognitive Examination-Revised; MMSE, mini-mental state examination; R,
right side predominant; L, left side predominant; B, bilateral; LEDD, levodopa equivalent dose; MDS-UPDRS, Movernent Disorder Society-Sponsored Revision of the
Unified Parkinson’s Disease Rating Scale; NS, not significantly different; N A, not applicable.
Comparisons of the differences in gender and laterality were performed using the chi-square test. Hoehn and Yahr stages and the MDSUPDRS-IV scores were
compared using the Student’s t-test. To compare duration, MDSUPDRS-I/II/1I1 scores and LEDD, we used the Mann- Whitney U test. To compare age at examination,
MMSE and ACE-R, we used one-way analysis of variance. To evaluate differences in OSIT-] we used in the Kruskal -Wallis test.
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Appendix B: Subcortical volumes; SPSS output
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Asymptotic significances are displayed. The significance level is .05,
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The medians of Right-Putamen Independent- Fetain the
29 arethe same across categories  Samples 185 nu
of WARDOOD] . Median Test hypothesis.
The distribution of Right- Indeper dent- Retain the
30 Putamen is the same across Kruspl-:aj wiallis AF3 null
categories of WARODOOOL. Test - hypothesis.
The medians of Right-Pallidum  Independent- Retain the
31 arethesame across categories  Samples 215 null
of WARDOOD] . Median Test hypothesis.
The distribution of Right - Indepen dent- Retain the
32 Pallidum is the same across Kruspkaj wiallis 4023 nu
categaries of WARODOOOL. Test - hypathesis.
The medians of Right- Independent- Retain the
33 Hippocampus arethe same Samples 15 null
across categories of WARDODOL.  Median Test hypothesis.
The distribution of Right- haependent- Retain the
3 Hippocampus is the same ackss g Lo allis S33 null ]
categaries of WARODOOOL. Test hypothesis.
The medians of Right-Amygdala Independent- Retain the
35 arethe same across categories  Samples A15 null
of WARDODODL . Median Test hypothesis.
The distribution of Right- Independent- Retain the
36 Amygdalais the same across Kmspkaj wiallis AB37 0 null
cateqaries of WARODOOOL. Test - hypathesis.
The medians of Right- Independent- Retain the
37 Accumbens-area are the same Samples A15  null
across categories of WARDOOOL.  Median Test hypothesis.
The distribution of Right - Independent- Retain the
38 Accumbens-areais the same Kmspkaj wiallis A8 null
across categaries of WARODDOOL . Test - hypothesis.
The medians of Right-WentralDC  Independent- Retain the
39 arethesame across categories  Samples 241 null
of WARDOOD] . Median Test hypothesis.
The distribution of Right- Indepen dent- Retain the
40 ‘entralDC is the same acrass Kruspkaj wiallis G325 null
categories of WAROOOOL. Test - hypothesis.
The medians of CC_Pasteriorare  Independent- Retain the
41 thesame across categories of Samples 185 null
WARDOOOL. Median Test hypothesis.

Asympiotic significances are displayed. The significance level is .05,
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