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Introduction

What are generative models?

What is modelled?

What is generated?

Data.

Data.

A generative model is a model of data – nothing more.

So we could actually stop at this point, or couldn’t we?
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 1

c=2

c=0,1,2,...,9

y
Recognition System
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 1

c=0 or c=6?

c=0,1,2,...,9

y

Recognition System

Answer should be probabilistic:

c=0 p=0.61...
c=1 p=0.0...01
c=2 p=0.0...01
...
c=6 p=0.38...
c=7 p=0.0...01
...
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 1

c=0 or c=6?

c=0,1,2,...,9

y

Recognition System

Answer should be probabilistic.

Posterior probability:

p(c|y)
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 1

c=0 or c=6?

c=0,1,2,...,9

y p(c|y) =
p(y|c) p(c)

Σ p(y|c’) p(c’)
c’

Generative model  +  Bayes’ rule

posterior probability p(c|y)
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 2

c

c=car, aeroplane, tree, ...

y
Recognition System

Posterior probability:

p(c|y)Image taken from
Bishop, ECCV ‘04 
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

Example 2

c

c = hills with street and sun,
sandcastle with hedgehog,
snake with ...,
synapse and transmitters ...

y
Recognition System

Posterior probability:

p(c|y)
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Introduction

Generative models try to infer knowledge from input
using an explicit representation of the input.

c

y

Recognition System

Posterior probability:

p(c|y)
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Introduction

Generative models try to infer knowledge from input
using an explicit representation of the input.

c

y

Recognition System

Posterior probability:

p(c|y)
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Introduction

Generative models try to infer knowledge from input
using an explicit representation of the input.

Image from "Computational
Cognitive Neuroscience",
RC O’Reilly and Y Munakata,
MIT Press, 2000.
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Introduction

What are generative models used for?

Example 3

e.g., c=0,1,2,3

y

Recognition System

Answer should be probabilistic.

Posterior probability:

p(c|y)

Data analysis

c
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Introduction - Learning

But how does our black-box generative model acquire
the knowledge for internal representations?

c

y

It can learn it.

Internal Representation

Generative models can learn from examples.

usually unsupervised
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Introduction

What are generative models used for?

Inference  – given an input a generative model allows to extract
`higher-level’ knowledge

c

c=0,1,2,...,9

y
Recognition System

Learning  – given a set of data points, a generative model can
learn a data representation
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Optimal Coding

There is an appealing theoretical result for
generative models:

c=0 or c=6?

c=0,1,2,...,9

y

Recognition System

Probabilistic answer:

c=0 p=0.61...
c=1 p=0.0...01
c=2 p=0.0...01
...
c=6 p=0.38...
c=7 p=0.0...01
...

If the right model is used, knowledge extraction is optimal.
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Generative vs. Discriminative 
Models

c

y

Internal Representation

p(c|y)

Usual Features:

- internal representation
  (for inference and learning)
- recurrent processing
- probabilistic
- slow

recurrency

feed-forward processing

y

c - no or limited internal
  representation
- feed-forward
- often deterministic
- fast

Recognition.

Classification.

generative

discriminative
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Generative vs. Discriminative 
Models

y

c

There is currently a debate. The brain seems to provide evidence for both.

c

y

  
`Rapid’ but slower recurrent processing.

`Ultra Rapid’ feed-forward sweep (e.g. S. Thorpe).

=> Early classification.

=> Elaborate Recognition. 
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Classical Examples of
Generative Models
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A) Mixture of Gaussians

This and following
slides are taken
from:
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A) Mixture of Gaussians
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A) Mixture of Gaussians
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A) Mixture of Gaussians
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A) Mixture of Gaussians
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A) Mixture of Gaussians
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A) Mixture of Gaussians

-> also see matlab program for 1-dim, and blackboard
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B) Principle Component Analysis

-> matlab program,
    and blackboard 
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C) Sparse Coding / Independent
     Component Analysis
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C) Sparse Coding / Independent
     Component Analysis

linear projection + noise

sampling from prior
-> matlab program 

     dotted = Gaussian
     solid = Cauchy
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C) Sparse Coding / Independent
     Component Analysis
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Discussion

   - Generative models provide a common principled framework

   - k-Means is a special form of a Mixture of Gaussians model

   - ICA is a special form of Sparse Coding

   - Generative models enable optimal coding
But: learning often takes too long => approximations

   - Generative models allow for the incorporation of ones beliefs

   - The brain (or part of it) might be interpretable as a generative model

   - Simple-cell receptive fields might be evidence for optimal coding
But: Sparse Coding / ICA might be too simple
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How people see the relation between 
generative models and neuroscience:

   - generative models are elaborate functional models,
they are the best way to approach many problems,
but leave me alone with neuroscience

   - generative models are a very good way to described the
function of the brain or the function of a brain area,
neuroscience is to study how they are implemented

   - generative models are a great tool that allows to study
how information can be processed,
good inspiration for neuroscience

   - generative models are a statistical / computer science tool,
neuroscience is something different,
the brain is best understood using other approaches
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Further Reading

  
  

Pattern Recognition and Machine Learning
C. M. Bishop, ISBN: 978-0-387-31073-2, Springer, 2006. 

Theoretical Neuroscience – Computational and Mathematical Modeling of Neural Systems
P. Dayan and L. F. Abbott, ISBN: 0-262-04199-5, MIT Press, 2001.

Information Theory, Inference, and Learning Algorithms
D. MacKay, ISBN-10: 0521642981, Cambridge University Press, 2003.

Computational Cognitive Neuroscience
RC O’Reilly and Y Munakata, ISBN-10: 0262650541, MIT Press, 2000.

... and many more
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Thanks.


