
Input normalization and synaptic scaling – two sides of the same coin

Christian Keck1, Cristina Savin1,2, Jörg Lücke1
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To maintain sensitivity to a range of stimulus intensities, neurons adapt their input gain through multiple mecha-
nisms. On the one hand, global feedforward inhibition normalizes the input to neurons on a fast timescale (Poille
et al 2009). On the other, homeostatic mechanisms such as synaptic scaling regulate the strength of synapses to
maintain a certain total incoming drive (Turrigiano & Nelson 2004). Although often studied in isolation, these
mechanisms have been observed to co-occur in various cells (e.g., CA1 pyramidal neurons), suggesting there may
be some computational advantage in combining input normalization and synaptic scaling. What this advantage
could be, however, remains unclear.

Using a probabilistic approach, we show here that input normalization and synaptic scaling interact synergis-
tically during unsupervised learning. We consider a neural network with soft winner-take-all dynamics receiving
normalized inputs from an input layer. To study learning in such a network we model the input using a generative
model with Poisson noise, treating the normalization as an explicit input constraint. We demonstrate analytically
and numerically that the optimal maximum likelihood solutions for the generative model can be recovered by
simple Hebbian plasticity and synaptic scaling in the network. Notably, we find that synaptic scaling mirrors the
normalization of neural input patterns, autonomously adjusting the norm of the weights to that of the input.

Our results suggest a close connection between input normalization and synaptic scaling, which could be
relevant for cortical processing. We show that, beyond its conventional use as a mechanism to remove undesired
pattern variations (e.g., stimulus intensities), input normalization makes standard neural processing and learning
optimal on the constraint stimulus space. Moreover, as learning tends to be easier in this space, it is tempting to
consider the interplay between normalization and synaptic scaling as a general strategy to facilitate learning in
neural circuits.
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Methods. To compare the network and the generative model,
we derived parameter update rules for the generative model us-
ing constraint optimization based on EM. We have shown that
the maximum likelihood solutions are equivalent to the steady-
state solutions of neural learning dynamics, in the limit of in-
finitely many data points. The softmax activation is typical for
mixture models, while the standard forms for postsynaptic in-
put Ic and synaptic plasticity ∆Wcd are a consequence of the
input constraint. We confirmed our analytical results using nu-
merical simulations for artificial (generated) data and for real
data (MNIST digits).


