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SINGING VOICES ATTRACT AUDITORY ATTENTION IN

music unlike other sounds. In a previous study, we
investigated the salience of instruments and vocals using
a detection task in which cued target sounds were to be
detected in musical mixtures. The presentation order of
cue and mixture signals influenced the detection of all
targets except the lead vocals, indicating that listeners
focus on voices regardless of whether these are cued or
not, highlighting a unique vocal salience in music mix-
tures. The aim of the present online study was to inves-
tigate the extent to which phonological cues, musical
features of the main melody, or frequency micro-
modulation (FMM) inherent in singing voices contrib-
ute to this vocal salience. FMM was either eliminated by
using an autotune effect (Experiment 1) or transferred
to other instruments (Experiment 2). Detection accu-
racy was influenced by presentation order for all instru-
mental targets and the autotuned vocals, but not for the
unmodified vocals, suggesting that neither the phono-
logical cues that could provide a facilitated processing of
speech-like sounds nor the musical features of the main
melody are sufficient to drive vocal salience. Transfer-
ring FMM from vocals to instruments or autotuned
vocals reduced the magnitude of the order effect con-
siderably. These findings suggest that FMM is an impor-
tant acoustical feature contributing to vocal salience in
musical mixtures.
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W HO HAS NOT EXPERIENCED IT: WHILE LIS-

tening to music, the ear seamlessly picks up
a catchy vocal melody from a musical mix. A

melody emerges in the mind of the listeners, seemingly
independent from the musical background that it was
embedded in. Notwithstanding the ease of auditory pro-
cessing, multi-instrumental music confronts listeners
with complex acoustic scenes, in which instruments and
voices overlap in both time and frequency. Despite the

potential complexity of musical scenes, the auditory
system analyzes and groups musical mixtures into
representations of individual streams. This ability to
organize sounds into perceptual streams is referred to
as auditory scene analysis (ASA; Bregman & McAdams,
1994). This framework assumes that ASA is determined
by primitive (bottom-up) and schema-driven (top-
down) processing. The latter is thought to incorporate
processes of scene parsing based on attention, memory,
and knowledge. Selective attention in ASA has been
studied using an interleaved melody recognition para-
digm with simple melodies (Bey & McAdams, 2002),
which has listeners detect a target sound in a mixture.
The target can be presented before or after the mixture
and the resulting difference in detection accuracy is
assumed to be due to processes of selective attention.
In a previous study (Bürgel et al., 2021), we found that
all sound categories except the lead vocals showed
effects of selective attention. Because accuracy was par-
ticularly high and independent of selective attention for
vocals, we dubbed this pattern of results vocal salience.
Here, we wished to further explore the basis of vocal
salience in popular music. Generally, this approach
extends previous research by using mixtures of popular
music as highly realistic and representative stimuli for
ASA research.

Auditory attention, such as the reflex-like focusing on
a loud sound or deliberate listening to an instrument in
a mixture, modulates the cognitive representation of the
acoustic scene by allocating processing resources to dis-
tinct elements of a scene (e.g., Shamma et al., 2011;
Sussman, 2017). Studies of auditory attention in musical
scenes found that the voice occupies a unique role
among other sound sources, enabling the voice to stand
out from other instruments in a mixture: When human
listeners are asked to recognize isolated voices and
instruments, responses to voices occur faster and with
higher accuracy (Agus et al., 2012). Moreover, voice
sounds require a shorter time of exposure for recogni-
tion compared to other musical instrument sounds
(Isnard et al., 2019; Suied et al., 2014). When comparing
vocal melodies and instrumental melodies, previously
presented vocal melodies are more precisely recognized
compared to instrumental melodies (Weiss et al., 2012).
Neurophysiological experiments underpin this unique
role of the vocals, showing an enhanced cortical
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response when vocal signals are presented in isolation
among speech and non-vocal environmental sounds
(Belin et al., 2022; Belin et al., 2000), and among other
instruments (Gunji et al., 2003; Levy et al., 2001). Fur-
ther, when presented in a musical mixture, specific neu-
ral populations were found that respond distinctively to
music with singing voices but not to instrumental music
(Norman-Haignere et al., 2022).

This facilitated processing of vocals also plays out in
multi-instrumental musical mixtures. Previously, we
investigated the detection of cued target instruments
and voices in short excerpts of popular music mixtures
(Bürgel et al., 2021). The cue consisted of an isolated
instrument or voice and was either presented before or
after the mixture. Notably, all target signals except the
lead vocals showed a clear surplus of detection accuracy
when the target cue was presented before the mixture,
highlighting the intrinsic salience of the vocals that
attracts the listener’s attention regardless of the presen-
tation of a cue. This salience persisted and was
unmatched by other instruments, even when the instru-
ments and vocals were matched in sound level or were
spectrally filtered to pass through the mixture
unmasked.

The question arises as to which features of vocal sig-
nals contribute to their unique role among natural
sounds. Here, we considered three candidate features.
First, it may seem reasonable to suggest that the unique
salience of vocals could arise from the phonological
information they contain. Language specific processing
may potentially activate increased attentional resources
(Signoret et al., 2011). Second, another feature contrib-
uting to the unique presence of the vocals could be their
favorable musical role in the multi-instrument mixtures.
In Western popular music, the lead vocals contribute
the main melody of a song and thus are composed to
possess a prominent role with respect to the accompa-
nying instruments and background vocals. When listen-
ing to music hierarchically structured into main melody
and accompaniment, previous studies have shown that
attention is drawn towards the main melody (Ragert
et al., 2014).

Third, a more acoustically based candidate feature
may be related to frequency micro-modulation (FMM).
Here, we understand FMM as non-stationary frequency
changes in acoustic signals, usually less than one semi-
tone, which are not perceived as irregular or as intona-
tion errors. In singing, FMM tends to be caused by
imperfect control of intonation caused by vocal-motor
control adjustments of the human voice (Hutchins et al.,
2014) and is present even in highly trained singers (e.g.,
Hutchins & Campbell, 2009; Mori et al., 2004; Sundberg

et al., 1996). Even though pitch detection for vocals
seems to be less precise than for musical instruments
(Gao & Oxenham, 2022; Hutchins et al., 2012; Sundberg
et al., 2013), FMM influences the perception of intona-
tion (Larrouy-Maestri & Pfordresher 2018), is known to
facilitate the prominence of vowel sounds (Marin &
McAdams, 1991; McAdams, 1989), and evokes cortical
responses that can be traced by neurophysiological mea-
surements (Saitou et al., 2005). Experiments with speech
signals indicate that both the exaggeration and reduc-
tion of the modulations result in decreased speech intel-
ligibility (Miller et al., 2010); frequency modulations
naturally inherent in speech signals were associated
with highest speech intelligibility scores.

The purpose of the present study is to further inves-
tigate the unique ability of the vocals to be the focal
point of auditory attention in musical scenes (vocal
salience), which was found in our previous experiments
(Bürgel et al., 2021). More precisely, we investigate how
these three candidate features contribute to vocal
salience. We analyze the role of FMM as well as phono-
logical cues in natural singing voices, either by elimi-
nating the modulations in the vocals (Experiment 1) or
by transferring the modulations to instruments (Exper-
iment 2). We further examine how having instruments
play the vocal melody affects their salience in the mix-
ture (Experiment 1 & Experiment 2). We use the same
experimental paradigm as in our prior experiments
(Bürgel et al., 2021): participants were asked to detect
a cued target signal (vocal or instrument) embedded in
a mixture of multiple instruments. Because detection
accuracy is influenced not only by the salience of the
target but also by factors such as sound level or spectral
masking (Bürgel et al, 2021; Siedenburg et al., 2019), we
test the effect of the presentation order of target cue and
mixture to isolate how the detection of the target signal
is modulated by auditory attention. For one half of the
participants, the target cue is presented first and fol-
lowed by the mixture, allowing the cue to be used to
‘‘search’’ the mixture for the target. This order is used to
measure detection accuracy in a facilitated listening sit-
uation where participants have prior knowledge of the
target. For the other half of participants, the presenta-
tion order is reversed, with the mixture presented first,
so that the detection of targets strongly depends on the
salience of the target in the mixture. A comparison
between both presentation orders allows us to quantify
the influence of the effect of selective attention through
the surplus of the accuracy in the target-mixture condi-
tion compared to the mixture-target condition.

For the conditions where FMM is eliminated from the
vocal signals, we speculate on two possible outcomes:
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Either the facilitated detection for singing voices
remains intact because it is driven by phonological cues
that encourage a facilitated processing of speech-like
sounds, and that are retained throughout the pitch
quantization. Alternatively, detection of singing voices
degrades, because vocal salience is a result of the human
sensitivity towards FMM. Considering the role of the
melodic material, we speculate that in trials in which
instruments replace the vocals and play the main mel-
ody detection accuracy is clearly facilitated. For trans-
ferring the melody and FMM of the lead vocals to
instruments, we expect that the presence of FMM that
are uncommon for the instruments introduces a cue
that results in an increase of detection accuracy com-
pared to conditions presenting the main melody with-
out FMM. If the FMM is driving the facilitated detection
of vocals, this transfer of FMM may decrease or even
eliminate the effect of presentation order.

Method

PARTICIPANTS

All participants were recruited via an online call for
participation on the e-learning platform of the Univer-
sity of Oldenburg. The call included a briefing, a link to
the online experiments, and inclusion criteria such as
the use of headphones, a stable internet connection, and
self-reported normal hearing. Participants could take
part in the experiment online at any time during
a one-month time window. Participants who took part
in Experiment 1 were not permitted to take part in
Experiment 2. A total of 69 participants (age: M =
25.1, SD = 3.5) took part in Experiment 1 and 70 parti-
cipants (age: M = 24.7, SD = 3.5) in Experiment 2.

In Experiment 1, the overall scores of individual lis-
teners were distributed bimodally, with three partici-
pants exhibiting drastically worse results (< 60%
correct responses) compared to most other listeners,
indicating that they did not actively participate in the
experiment and were therefore discarded from the anal-
ysis. A histogram with overall accuracies of included
and excluded participants is shown in the Supplemen-
tary Materials (see Individual results) accompanying the
online version of this paper at mp.ucpress.edu. The
same was true for two participants in Experiment 2 (<
60% correct responses). The results of 67 participants
(age: M = 25.1, SD = 3.2) in Experiment 1 and 67 parti-
cipants (age: M = 24.7, SD = 3.4) in Experiment 2 were
analyzed. In both experiments, participants were ran-
domly assigned to one of two groups that determined
the order in which the target cue and mixture were
presented: 33 participants (age: M = 24.8, SD = 3.3) in

Experiment 1 and 33 participants (age: M = 24.8,
SD = 3.3) in Experiment 2 were assigned to the order
in which the target was presented before the mixture.
For the reverse order, 34 (age: M = 25.3, SD = 3) parti-
cipants in Experiment 1 and 35 participants (age:
M = 24.7, SD = 3.8) in Experiment 2 were assigned.
We acquired information on the participants’ musical
abilities using a subset of the Gold-MSI (Müllensiefen
et al., 2014) consisting of nine questions on music per-
ception abilities and seven questions on music training.

STIMULI AND TASK

Stimuli were generated in MATLAB by extracting two-
second excerpts of a single target instrument or vocals
and a mixture of multiple instruments and vocals from
a multitrack music database (‘‘MedleyDB,’’ https://
medleydb.weebly.com/), see Figure 1A for a schematic.
The database consisted of 127 royalty-free songs cover-
ing a wide range of popular music genres, with individ-
ual audio files for each instrument and vocals. The
majority of the songs had English lyrics. Instruments
and vocals were mixed so that the overall mix adhered
to the conventions of popular music. We coarsely cate-
gorized the instruments and vocals in the database as:
Backing Vocals, Bass, Drums, Guitars, Lead Vocals,
Piano, Percussion, Strings, Synthesizer, Winds. For each
excerpt, a to-be attended instrument or vocal was cho-
sen (target). Remaining instruments or voices in the
excerpts that did not belong to the same category as the
target functioned as maskers (mixture). Instruments or
voices in the excerpt that belonged to the same category
as the target were not included in the excerpt. In the
case where the lead vocals were assigned as the target, all
backing vocals were also excluded. Guitar, synthesizer,
and winds were selected as instrument targets and the
category lead vocals was selected as vocal targets. For
guitar, synthesizer and wind targets that were adapted to
the main melody, excerpts of the lead vocals were used
as the basis.

To examine song excerpts for potential stimuli, we
computed an instrument and vocal activity analysis for
each song, indicating which instrument or vocals were
likely audible in a given time frame. The activity analysis
was created by calculating the sound level of each
instrument and vocal in each song using a 500 ms slid-
ing window. In each window, the root-mean-square
value (RMS) of the sound level was calculated. For each
instrument or vocal, the instrument or vocal was con-
sidered active in a time window, when the sound level in
the window was above -20 dB relative to the maximum
sound level of the entire song of the respective instru-
ment or vocal. To further control the complexity of
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musical scenes in our stimuli, we removed all time
windows from the activity map in which fewer than
five and more than nine instruments or vocals were
active. For each target category, we drew a 2000 ms
excerpt with four adjacent, previously unused 500 ms
time windows in which the target category and up to
seven other vocals or instrument categories were con-
sidered active. Time slices were drawn from pseudo-
randomly selected songs, with a preference to use the
same song as infrequently as possible. In this way a total
of 30 excerpts for each instrument target and 150
excerpts for vocal targets were drawn. The excerpts for
the vocal target were then subdivided to be used either
as vocal target, pitch-quantized vocal targets (autotune),
or instrument targets playing the main melody. Further-
more, the excerpts contained sung English words, which
could foster a potential facilitated processing of phono-
logical features.

One hundred and twenty vocal tracks were pitch
quantized using the pitch correction software Melodyne
(Melodyne Version 5, Celemony Software). The corre-
sponding manipulation of FMM is illustrated in
Figure 1B by two exemplary excerpts and in the

Supplementary Materials Figure 2. Quantization was set
to both match pitch to a tempered scale and to eliminate
all FMM, resulting in a robotic voice quality typical of
the autotune effect. Thirty vocal tracks were modified in
this way and were used as targets for the ‘‘autotune’’
category. The pitch of the remaining 90 quantized vocal
tracks was used as a basis for the instrument main mel-
ody targets by having the melodies being played by
three different MIDI-based instruments that corre-
sponded to a guitar, synthesizer, or wind sound, thus
creating 30 tracks for each of the three instruments.
MIDI notes were programmed manually to accurately
match the vocals in pitch, on- and offset times. For
Experiment 2, the original frequency trajectory of the
unquantized vocal tracks was reapplied to the autotuned
vocals und instrument main melody targets by using the
Auto-Tune Pro Plugin (Auto-Tune Pro, Antares).

Three monophonic signals were compiled from each
two-second excerpt: 1) a signal containing only the tar-
get, 2) a signal containing a mixture of five to eight
instruments or vocals from non-target categories plus
the target, and 3) a signal containing a mixture of six to
nine instruments or vocals without the target. For mix-
tures, the full number of instruments that were also
present in the original excerpt of the song were used.
A logarithmic fade-in and fade-out with a duration of
200 ms was applied to the beginning and end of all
extracted signals. The sound level ratio between the
target and the mixture was adjusted to -10 dB (cf., Bür-
gel et al., 2021). For half of the trials, the mixture signals
were arranged to contain the target signals; for the other
half, the mixture did not contain the target signal. To
prevent the presence of the three MIDI instruments
from serving as a cue of the target, the lead vocals of
the mix were replaced by one of the MIDI instruments
using the same sound level as the vocals in one-third of
the excerpts where an accompanying instrument was
the target. Stimuli were created using the isolated target
signal and a mixture signal in which the target was
either present or absent. A 500 ms pause was inserted
between the two signals, resulting in a total stimulus
duration of 4500 ms. By interchanging the presentation
order of target and mixture signal, two order conditions
were created: In the ‘‘Target-Mixture’’ condition, the
target signal was followed by a pause and the mixture
signal; in the ‘‘Mixture-Target’’ condition, the presenta-
tion order was reversed. For use on the online platform,
stimuli were converted from WAV format to MP3 at
a bit rate of 320 kbit/s. Example stimuli and sound
samples are provided on the website: https://uol.de/en/
musik-wahrnehmung/sound-examples/akrs

FIGURE 1. Schematic overview of the methods. (A) Stimulus extraction:

Short excerpts from the open source “medleyDB” multitrack database

were used. Songs were drawn randomly without replacement. From each

excerpt, two signals were extracted: One signal containing only the

target signal, another signal either containing the mixture with or

without the target signal. See the text for details. (B) Vocal

manipulation: Lead vocal excerpts were pitch-quantized to create

autotune or instrument main melody targets (lead) in Experiment 1.

The original frequency trajectory of the unquantized vocal tracks was

reapplied to the autotune und instrument main melody targets in

Experiment 2. The gray waveform represents the amplitude of the

excerpt over time. Within the waveform, colored lines indicate the

frequency trajectory. The light and dark gray shades indicate divisions

of a chromatic scale in semitone steps.
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PROCEDURE

The experiments were approved by the ethics committee
of the University of Oldenburg and conducted online via
the web platform www.testable.org. Experiment 1 and
Experiment 2 were identical in design, used the same
song excerpts, and differed only in the absence (Experi-
ment 1) or presence (Experiment 2) of FMM in the
autotune and main melody instrument targets. Partici-
pants were automatically assigned to one of two groups,
determining the presentation order of target cue and
mixture. In the first group all stimuli appeared in the
‘‘Target-Mixture’’ presentation order, whereas for the sec-
ond group the order was reversed to the ‘‘Mixture-Target’’
order. Each experiment used the same excerpts and was
structured into five consecutive segments.

In the first segment, participants had to complete
a headphone screening task based on Milne et al.
(2021). Here, a sequence of three white noise signals
were presented, with one of the noise signals being
phase shifted by 180 degrees in a narrow frequency
band at around 600 Hz on the left headphone channel.
When headphones were worn, the phase shift is per-
ceived as a narrow tone embedded in the broadband
noise. The task began with an instruction and a presen-
tation of the noise signal, a 600 Hz tone in isolation and
three mixtures of the tone in noise. Listeners had to
detect the tone and passed the test if five out of six
responses were correct. Participants who did not pass
the headphone screening were returned to the instruc-
tion panel and reminded that they must pass the head-
phone screening before they were allowed to continue.

After the headphone screening, three song excerpts
were presented to provide an impression of the dynamic
range of the stimuli. During the presentation, partici-
pants were instructed to adjust the sound to a comfort-
able level. This was followed by a training phase, to
familiarize participants with the detection task. Partici-
pants were presented with stimuli that were very similar
but different from those used in the main experiment
and were asked whether the target was present or absent
in the mixture. Participants were allowed as much time
as they needed to respond to the questions. To help
participants understand the task, feedback was given
after each answer. One stimulus with target and one
without target in the mixture among the target cate-
gories lead vocals, autotune, guitar (accompaniment),
synth (accompaniment), and winds (accompaniment)
were presented. After the ten stimuli, participants had
the option to repeat the training section or to continue
with the main experiment.

During the main experiment, the same procedure as
in the training was used, but no feedback was given. In

this section, a total of 240 stimuli were presented in
random order, corresponding to 30 stimuli for each of
the eight target categories.

The final section of the experiment consisted of
a questionnaire regarding personal data, questions from
the Gold-MSI and a debriefing that presented the
achieved average detection accuracy. On average parti-
cipants took 41 minutes to complete the experiments.

BEHAVIORAL ANALYSIS

Detection accuracy was determined directly from parti-
cipants’ responses. Following recommendations by the
American Statistical Association (Wasserstein et al.,
2019), we avoid assigning binary labels of ‘‘significance’’
to empirical results but instead provide confidence
intervals of estimates where possible. Accuracies are
always structured as a pair, with the first indicating the
result of the target-mixture condition and the second
indicating the result of the mixture-target condition. We
provide mean detection accuracies followed by round
brackets containing the decrease or increase through
a change in presentation order.

Generalized binominal mixed-effect models (GLME;
West et al., 2014) were used for statistical analyses. All
mixed-effects analyses were computed in MATLAB
using the glme function in the Statistics and Machine
Learning Toolbox (Statistics and Machine Learning
Toolbox Release 8.7, MathWorks Inc.). Our model
included random intercepts for each participant and
item (i.e., stimulus). All binary categorical predictors
were sum-coded. To summarize the main effects and
interactions, results are presented in the form of an
ANOVA table, with fixed effects coefficients provided
as statistical parameter (F) and probability (p), derived
from the GLME models via MATLAB’s anova function.
A detailed view of the behavioral results, models and
statistic evaluations are presented in the Supplementary
Materials (see Tables 1–4).

FREQUENCY MICRO-MODULATION ANALYSIS

To measure the difference in FMM between the original
vocal and its pitch-quantized counterparts, we evaluated
the range of FMM in short time windows for unmodified
vocal excerpts and pitch-quantized vocals and instru-
ments (see Supplementary Materials Figure 3). We used
a sliding window of 10 ms over the duration of the
excerpt and extracted f0 via the MATLAB function pitch.
Given that the extraction contained artifacts such as
irregular fluctuations, which occurred especially in the
offsets and onsets of the vocals, additional artifact sup-
pression was applied to the extracted f0s. The artifact
rejection was based on a threshold for tonal components
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in the time window (harmonic ratio) as provided in the
pitch function, excluding samples below a harmonic ratio
of 75%. Additionally, a threshold for maximum f0 dis-
tance within a 100 ms sliding time window with 50%
overlap was applied, excluding frequencies with a distance
greater than one octave relative to the median pitch
within the time window. For each excerpt and signal, the
FMM range was obtained within a 100 ms sliding win-
dow by evaluating the difference in cents between the
highest and lowest note. As a final step, the median
across the windows was evaluated for each excerpt and
signal. This excluded the relative rare time windows that
contained tonal transitions. Results are presented in Fig-
ure 2 and the Supplementary Materials (see Table 5). The
pitch-quantized vocal alteration showed the smallest
FMM range of 0.09 semitones, whereas the FMM range
of 0.51 semitones for unquantized vocals and of 0.63
semitones for the quantized alteration with FMM were
considerably higher. Autotune excerpts generated
directly from pitch-quantized voices showed a higher

range than the excerpts generated by MIDI instruments.
An additional analysis of the distance analysis between
estimated f0 to perfect tempered scale tone is included in
the Supplementary Materials.

Results

EXPERIMENT 1 — PITCH-QUANTIZED TARGETS

Detection accuracies of Experiment 1 are displayed in
Figure 3 (for numerical values, see Supplementary
Materials Table 1). A GLME included presentation
order and target categories as fixed effects (see Supple-
mentary Materials Table 2). Accuracy varied by presen-
tation order and target category: averaged across target
categories, the Target-Mixture condition yielded
a higher accuracy of 88% compared to the reverse
Mixture-Target condition 80% (-8%). A decline of the
accuracy between the two orders was present in almost
every target category but differed in size. These effects
were reflected by the GLME model, with pronounced

FIGURE 2. Frequency modulation analysis. To quantify the change in frequency micro-modulations between the original lead vocals, their pitch-

quantized counterparts and their pitch-quantized counterparts with added frequency micro-modulation (FMM), the extracted f0 trajectories were

transformed to cents and the f0 range in 100 ms time windows was evaluated. The median of the range was computed across all stimuli (30 excerpts) in

each target category. “Quantized” refers to the FMM range in the autotune or melody instruments without FMM as used in Experiment 1. “Quantizedþ
FMM” refers to the FMM range in the autotune or melody instruments with FMM as used in Experiment 2.
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effects for the presentation order, F = 9.78, p = .002, the
targets, F = 15.10, p < .001, and the interaction between
the order and targets, F = 5.93, p < .001. For readability,
the following results are presented in pairs, with the first
detection rate indicating the accuracy for the Target-
Mixture order, and the subsequent detection rate indi-
cating the accuracy for the Mixture-Target order. When
examining the target categories, the best performing
category was lead vocals with an accuracy of 99% and
a minuscule decrease to 97% (-2%). The quantized
voice had an accuracy of 96% but showed a decline to
87% (-9%). Targets in which the original lead vocals
were replaced with an instrument showed the following
accuracies: guitar from 90% to 80% (-10%), synths
from 93% to 81% (-12%) and winds from 86% to
78% (-8%). Targets containing the instrumental
excerpts taken from the original mixtures reached the
following accuracies: guitar from 78% to 69% (-9%), the
synths from 79% to 64% (-15%) and the winds from
88% to 78% (-10%).

Inspecting differences between instrument categories
part of the accompaniment and those playing the main
melody (guitar, synths, winds), the main melody instru-
ments yielded clearly higher accuracies. However, the
average accuracy of all main melody targets decreased
considerably between presentation orders, from 89% to
79% (-10%). A similar decrease was observed for the
accompanying categories with a decline from 82% to
71% (-11%). Differences between the two instrument
types were analyzed using a GLME that included pre-
sentation order and instrument types as fixed effects
(see Supplementary Materials Table 3). The model
reflected the differences between accompaniment and
main melody targets, F = 6.95, p = .009, and the influ-
ence of the presentation order, F = 9.78, p < .002. The
presentation order affected each instrument in a similar
way as indicated by the lack of an interaction effect
between order and instrument type, F = 0.91, p =
.340. The winds category behaved differently compared
to the other instruments as it showed no benefit when

FIGURE 3. Detection accuracies for Experiment 1. Six instruments and two vocal categories were used as targets. Each instrument category was used

twice either using the instrument track which was present in the excerpt (acc) or replacing the lead vocals in the excerpt by MIDI instruments using the

same melody as the vocals (lead). The “x” marks the mean detection accuracy for a given target category in the presentation order “Target-Mixture.”

The “þ” marks the mean detection accuracy for a given target category in the presentation order “Mixture-Target.” Error bars indicate 95%

confidence intervals. Asterisks left and right to the average of a category present average accuracies of individual participants for the given condition.
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playing the main melody, but rather a minor increase
when playing in the accompaniment in the Target-
Mixture order (þ2%) and a decrease of the same quan-
tity in the Mixture-Target order (-2%).

In summary, there was an effect of presentation order
for all targets except the original vocals. Targets were
detected considerably better when the isolated target
was presented first, followed by the mixture. This was
also evident when target instruments that otherwise
played in the accompaniment replaced the vocals in the
main melody. In contrast to the original vocals with
FMM, the pitch-corrected vocals without FMM showed
a clear effect of presentation order. This raised the ques-
tion of whether transferring FMM from vocals to
instrumental signals could increase their salience. Thus,
we repeated the experiment with a slight modification of
the targets: we transferred the FMM of the original
vocals to the respective pitch quantized vocal and main
melody instrument targets.

EXPERIMENT 2 — TARGETS WITH FREQUENCY MICRO-MODULATIONS

The average detection accuracies of the second experi-
ment are displayed in Figure 4 (for numerical values, see

Supplementary Materials Table 1). A GLME included
presentation order and target categories as fixed effects
(see Supplementary Materials Table 2). Accuracy dif-
fered depending on the target category and order of
presentation, which was also evident in our model,
Order: F = 0.41, p = .03; Target: F = 11.05, p < .001;
Interaction: F = 3.49, p = .001. Similar to Experiment 1,
when inspecting the difference of presentation orders by
averaging over target categories, the Target-Mixture
condition held a higher accuracy of 90% than the
Mixture-Target condition with an accuracy of 82%
(-9%). When looking into the target categories, targets
maintaining the original frequency trajectory of the
vocals (lead vocals, autotune, and main melody instru-
ments) revealed a clearly smaller decrease between both
presentation orders than the accompanying instrument
categories. This result was most pronounced in the lead
vocals, which performed best with an accuracy of 98%
and a decrease to 95% (-3%).

Inspecting the differences between the instrument
categories playing an accompanying role and those
replacing the lead vocals, the main melody instruments
yielded higher accuracies. Average accuracies of all main

FIGURE 4. Detection accuracies for Experiment 2. Six instrumental and two vocal categories were used as targets. Each instrument category was

used twice either using the instrument track which was present in the excerpt (acc) or replacing the lead vocals in the excerpt by MIDI instruments

using the same melody and frequency trajectory as the vocals (lead). Graphical conventions are otherwise identical to Figure 3.
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melody targets decreased across presentation orders
from 91% to 87% (-4%). A larger decrease was shown
for the targets part of the accompaniment with a decline
from 83% to 70% (-13%). Differences between the two
instrument types were analyzed using a GLME that
included presentation order and musical material
(accompaniment vs. main melody) as fixed effects (see
Supplementary Materials Table 3). Our model reflected
the differences between accompaniment and main mel-
ody targets, F = 9.15, p = .003, the influence of the
presentation order, F = 0.414, p = .003, and in contrast
to Experiment 1, that the presentation order affected the
accompaniment and instrument targets differently by
revealing an effect of the interaction between order and
instrument type, F = 47.17, p = .001.

MUSICAL EXPERIENCE

Musical experience was analyzed in a questionnaire using
a subset of the Gold-MSI. Nine questions regarding per-
ceptual abilities and seven questions regarding music
training were included in the questionnaire. Scores
between 1 and 7 could be obtained for each question.
For Experiment 1, participants reached a score of 43.4
in the perceptual abilities subscale and a score of 22.4 in
the music training subscale. The correlation based on
perception abilities for the Target-Mixture order was R2

= .001 (p = .89) and for the Mixture-Target at R2 = .05 (p
= .22). Similar results were shown for the set regarding
music training, with a correlation for the Target-Mixture
order of R2 = .008 (p = .23) and for the Mixture-Target
order R2 = .054 (p = .20). Regarding Experiment 2, par-
ticipants reached an average score of 43.1 in the percep-
tual abilities’ subscale and an average score of 19.4 in the
music training subscale. As in Experiment 1, no notable
correlations were found between the individual musical
experience scores and detection accuracies. The correla-
tion based on perception abilities for the Target-Mixture
order was R2 = .003 (p = .80) and for the Mixture-Target
at R2 = .07 (p = .28). Similar results were shown for the
set regarding musical training, with a correlation for the
Target-Mixture order of R2 = .025 (p = .23) and for the
Mixture-Target order R2 = .112 (p = .10). Because we did
not specifically recruit separate groups of participants
with diverse degrees of musical experience, the lack of
an effect of musical experience observed here was not
surprising and consistent with previous research (Bürgel
et al., 2021).

COMPARISON OF BOTH EXPERIMENTS

The stimuli between Experiment 1 and Experiment 2
differed only in the exclusion of FMM (Experiment 1)
and the inclusion of FMM (Experiment 2) for the

autotune vocals and target instruments playing the
main melody. The average detection accuracy across all
instruments between the two presentation orders
revealed a slightly better performance in Experiment 2
with a miniscule difference of two percentage points
between experiments in both presentation orders. Stim-
uli that remained consistent across experiments showed
differences in accuracy from zero to four percentage
points. Yet overall performance was similar, with an
average difference between the vocals and accompany-
ing instruments of less than one percentage point. A
direct comparison of detection accuracies in both
experiments for the autotune and main melody instru-
ments is shown in Figure 5A. There were negligible
differences in the Target-Mixture condition by about
one percentage point. However, in the Mixture-Target
condition, the autotune and melody instruments in
Experiment 2 showed an enhanced detection of six per-
centage points compared to Experiment 1. To statisti-
cally evaluate the differences between both experiments,
a GLME was utilized that included presentation order,
musical role, and the different experiments as fixed
effects. The model corroborated the influence of FMM
(see Supplementary Materials Table 4) by indicating no
interaction between presentation order and musical role
when averaged across both experiments, F = 0.62,
p = .430, but a three-way interaction between presenta-
tion order, musical role, and experiment, F = 11.23,
p < .001. This underlines that the presence of FMM in
Experiment 2 boosted performance in the otherwise
difficult Mixture-Target condition of the main melody
targets (see Fig. 5A). In addition, a strong correlation of
R2 = .90 was found between the FMM range and the
order effect expressed as difference in detection accu-
racy of both presentation orders (see Figure 5B). Taken
together, this further suggests that FMM enriches the
vocals by an important factor for creating auditory
salience in musical scenes.

Discussion

In the present study, we analyzed the acoustical and
musical underpinnings of the lead vocals, which con-
tribute to their role as an elevated point of auditory
attention in musical mixtures (vocal salience). We inves-
tigated the influence of frequency micro-modulation
(FMM) of the lead vocals and the role of the main
melody in hearing out individual instruments from
a mix. Specifically, participants were asked to detect
cued vocals and instruments in two-second excerpts
of Western popular music. To investigate the influence
of attentional cues on the detection of the target, the
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presentation order of cue and mixture was swapped
between participants, whereby the comparison between
both orders revealed to which degree detection was
modulated by attention (order effect). To analyze the
role of the main melody for contribution to the vocal
salience, instrument targets were either used in their
role as part of the musical accompaniment or they were
used as a replacement for the lead vocals; that is, they
played the melody of the vocals. We added a vocal target
category with pitch-quantized lead vocals, eliminating
FMM inherent in the vocals (Experiment 1). Addition-
ally, we repeated a modified version of the experiment in
which we transferred the FMM of the lead vocals to the
pitch-quantized vocals and the instruments replacing
the vocals (Experiment 2).

ORDER EFFECT AND VOCAL SALIENCE

Consistent with classic studies (e.g., Bey & McAdams
2002), the presentation order of the cue played a key
role in our results. When the cue preceded the mixture,
listeners were able use this information to direct selec-
tive attention towards the cued signal. This resulted in
higher detection rates compared to when the cue was
presented subsequent to the mixture. Consistent with

our previous experiments (Bürgel et al., 2021) and our
hypothesis, this effect was evident in all target categories
except the lead vocals, which showed only a slight
decrease of accuracy when the cue was presented after
the mixture. This finding highlights a unique vocal
salience that enables the vocals to attract the listeners’
attention, even when listening blindly into a musical
scene. The present study used a different database of
music excerpts compared to our previous work (Bürgel
et al., 2021). The consistency of our findings across
different music databases supports our general hypoth-
esis that vocal salience in mixtures of popular music is
not the result of a specific mixing strategy in music
production, but rather an effect inherent in vocal sig-
nals. Previous studies have established a perceptually
privileged role of the voice through the presentation
of isolated voices and instruments (e.g., Agus et al.,
2012; Gunji et al., 2003; Levy et al., 2001). Our present
results extend this line of research by demonstrating
that this effect is also present in musical mixtures.

EFFECT OF MAIN MELODY

When the guitar and synthesizer replaced the vocals as
the main melody of a song, overall detection accuracy

FIGURE 5. Influence of frequency micro-modulations. (A) Detection accuracy in selected conditions from Experiment 1 (x-axis) and Experiment 2

(y-axis): Two-dimensional error bars indicate 95% confidence intervals. Note that for the presented target categories, average accuracies in the

“Mixture-first” conditions were significantly higher in Experiment 2 (with FMM) compared to Experiment 1 (without FMM), whereas this was not the

case for “Target-first” conditions. (B) Correlation of frequency micro-modulation range and order effect: The FMM range is represented by the median

range of each lead-melody target from Experiment 1 and Experiment 2. The order effect is quantified for each lead-melody target as the difference

between the average detection accuracy of the “Target-first” and “Mixture-first” conditions in the respective experiment and condition.
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improved, supporting our hypothesis and previous stud-
ies (Ragert et al., 2014) of a stronger perceptual salience
of melody instruments over accompaniment instru-
ments. Surprisingly, wind instruments showed no
improvement whatsoever. One likely reason for this con-
trasting effect relates to the specific musical role of the
different categories of instruments as part of the accom-
paniment. Whereas the guitar and synthesizer mostly
played chord-based progressions in our excerpts, the
winds played accompanying melodies. Consequently, the
transition to the melody of the lead vocal might be
a rather small change for the wind instruments, but
a more drastic change of musical material for guitars and
synthesizers. Nonetheless, it is important to note that the
differences between the two presentation orders were still
present and almost unaffected for instruments playing
the vocal melodies. This implies that instruments playing
the main melody are generally easier to detect, but play-
ing the main melody does not automatically guarantee
salience in a musical mixture (i.e., does not automatically
attract auditory attention without a cue signal). It should
be kept in mind that we used a consistent MIDI instru-
ment for each of the individual instrument categories,
which potentially may have added detection cues,
although such cues would have been identical for both
presentation orders. Whereas the timbre of accompany-
ing instruments could vary between excerpts (because we
used the original instruments within a song), the timbre
of the three instruments playing the vocal melody did not
vary. Even though we attempted to balance this aspect of
experimental design by interspersing excerpts in which
the vocals were replaced by instruments while the target
was an accompaniment instrument, we cannot rule out
that participants became accustomed to the timbre of the
MIDI instruments over the duration of the experiment
and implicitly memorized specific timbral properties of
the MIDI instruments (Agus et al., 2010; Siedenburg &
McAdams, 2018; Siedenburg & Müllensiefen, 2019).

EFFECT OF FREQUENCY MICRO-MODULATIONS

The pitch-quantized vocal category showed degradation
in the Mixture-Target order, while also performing
somewhat worse compared to the lead vocals in the
Target-Mixture order. This suggests that excessively
pitch-corrected voices do not capture listeners’ atten-
tion to the same extent as more naturalistic singing
voices and therefore are more likely to fuse with ele-
ments of the accompaniment in musical mixtures. This
pattern of results further refutes the assumption that
phonological cues are the basis of vocal salience because
pitch quantization did not affect the phonological con-
tent of the vocals. One reason for the loss of attentional

cues in the quantized vocals appears to be the lack of
FMM, which was reduced compared to the original
vocals. An acoustical analysis corroborated this inter-
pretation by revealing a greater range of FMM for the
unquantized vocals and instruments compared to their
quantized counterparts that strongly correlated with the
strength of the order effect. This finding is consistent
with previous studies that have shown specific facili-
tated processing of speech with naturalistic frequency
modulations, which is more intelligible compared to
speech without, with decreased or exaggerated modula-
tions (e.g., Miller et al., 2010; Wingfield et al., 1984).
Furthermore, FMM has been shown to facilitate the
detection of concurrently presented vowel sounds
(Marin & McAdams, 1991; McAdams, 1989). Our
findings extend the literature in this regard by
demonstrating that the salience of vocals in musical
mixtures strongly relies on frequency modulations that
are present in naturalistic singing voices, helping the
vocals to stand out from the mixture and attract listen-
ers’ attention.

The influence of FMM was further corroborated in
our second experiment. We repeated the experiment
using the same excerpts while adding the FMM of the
original vocal excerpts to the instruments substituting
the main melodies and quantized vocals. For the signals
with artificially added FMM, our results showed a con-
siderably reduced difference between the presentation
orders in comparison to the first experiment. Interest-
ingly, when the cue was presented before the mixture,
the targets achieved very similar results across both
experiments. This contradicted our hypothesis because
the additional FMM did not increase overall detection
but only seemed to increase the detection in the
Mixture-Target order. Thus, the modulations appeared
to increase the salience of the target when no prior cue
was provided, drawing the attention towards the target
in a similar way as seen in the lead vocals.

Curiously, even the pitch-quantized vocals with
micro-modulations showed small differences between
the orders of presentation, although the differences to
the original vocals were supposed to be eliminated
by the transfer of FMM. This result implies that
although the micro-modulations make a strong contri-
bution to vocal salience, it seems that the full salience
effect may emerge from the conjunction of multiple
features of the vocals. One of the features might be the
pitch offset of the unaltered vocals that was eliminated
by quantizing the pitch to a tempered scale. These into-
nation deviations occur even in professional singers
(Hutchins & Campbell, 2009; Mori et al., 2004; Sund-
berg et al., 1996) and are an inevitable consequence of
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imperfect motor controls of the voice (Hutchins et al.,
2014.). Even though these deviations were unlikely to be
perceived as intonation errors (Hutchins et al., 2012), it
is possible that these deviations yield auditory grouping
cues that let the vocals stand out of the mixture. Fur-
thermore, singers intentionally create such deviations to
add expressivity to the sound (Sundberg et al., 2013)
and therefore may add an important cue to the unal-
tered vocals, that is lost in pitch-quantization.

More speculatively, the pitch quantization and re-
introduction of pitch variation may have also altered
timbral features of the vocals. Timbre is a multidimen-
sional attribute (Siedenburg et al., 2019) that enables the
discrimination and identification of sound sources (e.g.,
sounds from a keyboard vs. a guitar), even though they
may match in other acoustic cues such as loudness and
pitch. Previous studies focusing on the recognition of
instruments and voices showed that the human singing
voice has an advantage over other instruments suppos-
edly based on timbre alone (Agus et al., 2012; Isnard
et al., 2019; Suied et al., 2014). Voice specific cortical
areas remain selective to timbre of naturalistic vocal
sounds even when vocal and non-vocal sounds where
matched in acoustic cues (Bélizaire et al., 2007). Further,
the facilitated recognition and cortical selective was
observed only for natural vocals and was absent when
‘‘chimeras,’’ i.e., interpolations between instruments and
vocals were presented (Agus et al., 2012; Agus et. al.,
2017). Even though we think that in the present experi-
ments timbre changes were subtle, if noticeable at all,
this interpretation would suggest that vocal salience
could be a result of the joint contribution of timbre and
pitch cues in auditory scene analysis. A distortion of
such joint features due to the autotuning and f0-
modulation could have hindered voice-specific proces-
sing to occur, thus hindering the full salience effect to
arise for our modified vocals.

In summary, in line with previous experiments, the
detectability of all non-vocal instruments was affected

by a change in the presentation order, whereas lead
vocals were detected with similarly high accuracies in
both presentation orders. This effect corroborates
a unique vocal salience that automatically attracts lis-
teners’ attention. Instruments replacing vocals showed
better detection accuracies compared to instruments
playing as part of the musical accompaniment, but still
exhibited reduced accuracy when the mixture preceded
the target. Even for pitch-quantized vocals, this depen-
dency on presentation order was evident, implying that
phonological features that engage a facilitated proces-
sing of speech sounds are not sufficient to drive vocal
salience. The difference between the presentation orders
decreased considerably when the FMM originally pres-
ent in the vocals were transferred to the instruments
and pitch-quantized vocals. Overall, this also implies
that excessive pitch correction may strip vocals of
a unique acoustical feature that helps turning the
human voice into a focal point of musical scenes.
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