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Sound onsets are commonly considered to play a privileged role in the identification of musical
instruments, but the underlying acoustic features remain unclear. By using sounds resynthesized
with and without rapidly varying transients (not to be confused with the onset as a whole), this
study set out to specify precisely the role of transients and quasi-stationary components in the per-
ception of musical instrument sounds. In experiment 1, listeners were trained to identify ten instru-
ments from 250 ms sounds. In a subsequent test phase, listeners identified instruments from 64 ms
segments of sounds presented with or without transient components, either taken from the onset, or
from the middle portion of the sounds. The omission of transient components at the onset impaired
overall identification accuracy only by 6%, even though experiment 2 suggested that their omission
was discriminable. Shifting the position of the gate from the onset to the middle portion of the tone
impaired overall identification accuracy by 25%. Taken together, these findings confirm the promi-
nent status of onsets in musical instrument identification, but suggest that rapidly varying transients
are less indicative of instrument identity compared to the relatively slow buildup of sinusoidal com-
ponents during onsets. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5091778
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I. INTRODUCTION

It is a common idea in music psychoacoustics that tim-
bre cues at sound onsets are of central importance for the
identification of musical instruments by human listeners.
Acoustical explorations of this idea may date back as far as
the 1940s, when the advent of tape recording technology
allowed sounds to be systematically manipulated by means
of cutting and splicing. The radio engineer and musician
Pierre Schaeffer pioneered in testing the perceptual implica-
tions of different temporal gatings of sounds (cf. Schaeffer,
2017) and made the observation that sounds such as piano
tones lose aspects of their identity if presented bare of
onsets. This has led to the idea that onset information is per-
ceptually more valuable compared to other sound compo-
nents that are present in the so-called steady state, the
portion of a tone where its waveform (or short-time spec-
trum) is relatively constant. As of today, however, surpris-
ingly little is known about the specific acoustic ingredients
that give rise to this effect.

A component of specific importance to onsets is the so-
called transient. Here, transients are defined as short-lived and
chaotic bursts of acoustical energy, such as the sound of the
hammer hitting the piano string (without the sound from the
harmonically vibrating string). It is important to note that
according to this definition, transients should not be confused
with the full onset: all sounds have onsets but not necessarily
pronounced transients—think of a clarinet tone with a smooth
attack. Neither do transients exclusively occur at the onset—
think of the return of the hopper of the harpsichord at the

release of the key (usually accompanied by sustained har-
monic resonance in the soundboard).

Regarding the perceptual identification of instruments,
rapidly varying onset transients are often claimed to be of
prime importance, particularly in the audio processing litera-
ture (Daudet, 2005; Zaunschirm et al., 2012), although no
definitive proof has been provided to date. There yet exist
alternative acoustic properties of sound onsets that could
bear diagnostic information about sound identity, such as the
comparatively slow buildup of sinusoids which could be par-
ticularly informative at sound onsets (Grey, 1977). The pri-
mary goal of the present study was to better understand the
relevance of transients and more slowly varying sinusoidal
components for the identification of musical sounds.

A. Previous research

Rigorous empirical research on instrument identification
has emerged in the 1960s. Early studies used tape recordings
of musical instrument tones that were manipulated by means
of cutting and splicing for experimental purposes. In a well-
known study, Saldanha and Corso (1964) suggested that sev-
eral factors contribute to the identification of orchestral
instruments: pitch, the presence of vibrato, the experimental
session (test/re-test), and the presented excerpt (onset, steady
state, offset). Although identification accuracy was generally
poor (around 40% correct identifications), offsets did not
bear perceptually useful information and shortening the
steady state from 9 to 3 s did not negatively affect the results.
On the contrary, discarding onsets decreased identification
accuracy by 15 percentage points, although performance
remained above chance. Unfortunately, no clear criteriona)Electronic mail: kai.siedenburg@uni-oldenburg.de
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was provided as to how the endings of onsets were deter-
mined and hence the durations of the segments that were
used as onsets remained unclear.

Other research from around that time came to similar
conclusions regarding the role of onsets. Clark et al. (1963)
presented excerpts from the onset or steady part of recorded
instrument tones to listeners with durations varying from 60
to 600 ms. The authors observed that even short portions
such as the first 60 ms of tones contained sufficient informa-
tion for musicians to discriminate instruments. Using
recorded tones of 6 s duration, Elliott (1975) observed that
discarding the first and last half second from sustained
instrument tones with an overall duration of 6 s significantly
impaired identification performance of several orchestral
instruments.

Exploring timbre dissimilarity perception, Grey (1977)
used musical instrument tones emulated by additive synthe-
sis and observed that the ordering of sounds along one
dimension of a timbre space obtained from dissimilarity rat-
ings corresponded to the synchronicity of the onsets of
sounds’ sinusoidal components. Also studying dissimilarity
ratings, Iverson and Krumhansl (1993) tested the role of
onsets by using three sets of tones: full tones (duration:
2–3.3 s), onsets (first 80 ms), and the remainder (first 80 ms
removed). They found strong commonalities between the
multidimensional scaling solutions of all three sets, which
were interpreted as reflecting a form of acoustical invariance
across segments. However, today it is known that an excerpt
of 80 ms can be more than enough for instrument identifica-
tion (Suied et al., 2014), making it likely that listeners also
relied on instrument identity or sound source properties in
their dissimilarity judgments (cf. Siedenburg et al., 2016).
Unfortunately, it thus seems hard to differentiate whether the
supposed invariance in Iverson and Krumhansl (1993) arose
from invariance of aspects of the sensory representations or
from invariance in the inferred sound source mechanism
(which in turn may have affected dissimilarity judgments) or
a combination of both aspects.

Subsequent research has shown that relatively short
durations are necessary to discriminate instruments.
Robinson and Patterson (1995) presented listeners with short
sound excerpts, excised from synthetic emulations of brass,
flute, harpsichord, and string sounds. For the identification of
isolated sounds, it was observed that even for single cycles
of periodic tones (corresponding to 2.9–30.5 s depending on
pitch), musicians and nonmusicians achieved an impressive
performance of around 75% and 50% of correct responses,
respectively. Note that because cycles were presented repeat-
edly, no temporal cues (onset, offset) were present in the
sounds, which highlights the importance of spectral cues for
instrument identification. In a similar vein, Suied et al.
(2014) tested the minimal duration required for the correct
recognition of sound source categories. Listeners heard
cosine-shaped gated segments of musical sounds and were
required to respond to target categories (sung voices, percus-
sion sounds, string instrument sounds). Categorization per-
formance was above chance for surprisingly short gates,
4 ms for voices and 8 ms for instruments, and scores were at
ceiling at 64 ms gate duration. Mixed results were obtained

for the effect of onset information: instrumental, but not
vocal sounds benefited from gates being positioned at sound
onsets.

Most recently, Thoret et al. (2016, 2017) showed that
instrument identification is determined by specific
instrument-specific spectrotemporal modulations, although
their approach did not allow them to draw specific conclu-
sions about the role of onsets. Ogg et al. (2017) studied the
minimal duration required to discriminate between musical
instrument sounds, human speech, and human environmental
sounds. They found that listeners required 25 ms for robust
discrimination and that the presence of onsets was beneficial,
even for vocal sounds.

Two conclusions may be drawn from this review regard-
ing the role of onsets in instrument identification. First, the
presence of the onset portion appears to improve sound iden-
tification but does not seem to be strictly necessary for cor-
rect identification. The relative importance of onsets appears
to depend on the specific instrument at hand. Second, and
more generally, whether implemented by digital gating or by
excised tape, the experimental approach of presenting tem-
poral segments has conceptually remained identical through-
out the last 60 years (even though the analog scalpel may be
less precise than today’s digital means). This approach
assumes that sounds can be meaningfully separated into dis-
crete temporal states. However, as will be demonstrated in
Sec. II, short-lived transients and quasi-stationary sinusoidal
components cannot be strictly separated in time because
both regimes overlap and one dynamically transforms into
the other (Levine and Smith, 2007; Reuter, 1995). Therefore,
the studies outlined above can only, to a limited degree,
allow for conclusions about the importance of specific
acoustical components such as transients—more flexible
tools for separating signal components (sharpened acoustical
scalpels) are needed.

B. The present study

The goal of this study was to use a novel transient/sta-
tionary separation algorithm to circumvent some of the
methodological limitations of the literature. This algorithm
is described in Sec. II. In the main experiment described in
Sec. III, listeners identified short segments extracted from
the sounds of ten musical instruments. These segments were
processed by the separation algorithm and contained station-
ary and transient information, or only stationary information.
Segments were extracted from the onset or from the middle
portion of the sound. The goal of an additional control exper-
iment described in Sec. IV was to assess whether the tran-
sient components were generally discriminable.

II. TRANSIENT SEPARATION

A. Description of the algorithm

Developments in audio signal processing have made it
possible to separate overlapping stationary and transient
components from mixtures (for a general review, see M€uller,
2015, Chap. 8). A classical approach to this problem was
provided by Serra and Smith (1990), approximating
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transients in a global manner by time-varying filtered noise.
Recently, the present author presented a more fine-grained
algorithm to estimate transients by using an iterative multi-
resolution analysis (Siedenburg and Doclo, 2017). The algo-
rithm exploits the orthogonal orientation of components in the
time-frequency plane: Whereas the quasi-stationary (S) com-
ponents are sparse in frequency and persistent over time, rap-
idly varying transient (T) are sparsely distributed in time and
persistent across frequency. Both types of components are
extracted iteratively from Short-Term Fourier Transform
(STFT) representations, using long window lengths (46 ms)
for stationary components, yielding spectral precision, and
short window lengths (3 ms) for transient components, yield-
ing temporal precision. In technical terms, the separation pro-
cess is based on a shrinkage operation of STFT coefficients
that specifically extracts coefficients which are part of groups
of relatively strong coefficients that extend over time or fre-
quency (so-called neighborhoods, see Siedenburg and Doclo,
2017; Siedenburg and D€orfler, 2011). The result is an approxi-
mation of the original signal y in terms of three components,
y¼ SþTþ e, where e denotes the residual signal. The resid-
ual signal usually is of rather low energy and captures rever-
beration and microphone noise, but also faint phase-distorted
versions of the stationary and transient components. The algo-
rithm accurately separates stationary and transient compo-
nents in synthetic examples and provides plausible separation
results for recorded audio signals from acoustic musical
instruments (although by definition there is no ground truth in
this case). In the following experiment, S and SþT were
used to study instrument identification. Consequently, if there
was unintended distortion from the signal processing, it would
have appeared not only in S but also in SþT.

B. Acoustic analyses

Figure 1 depicts the example of an A4 (440 Hz) piano
sound of 250 ms duration. Throughout this study, the same

settings of the algorithm were used as described in the origi-
nal publication (Siedenburg and Doclo, 2017). The algorithm
separates the impulsive sound of the hammer from the
vibrating string (sound examples are provided as part of the
supplementary material1). Figure 1(A) depicts the spectro-
gram (using a window length of 25 ms) of the original sound
and a zoom into the onset is shown in Fig. 1(B). Figure 1
illustrates that beyond harmonic components, there is tran-
sient energy present in the onset portion of the sound.
Moreover, the more detailed visualization in Fig. 1(B) sug-
gests that the partial tones do not all start at the same time,
but that lower components precede higher ones. Figures 1(C)
and 1(D) depict the waveform of the separated stationary
and transient components. The extracted time-frequency
coefficients are shown in Figs. 1(E) and 1(F). Stationary
components are sparse in frequency (although some subhar-
monic energy seems to be captured by the stationary esti-
mate because of its relatively long extension in time).
Transients have impulsive characteristics. Notably, the
extracted transients are short-lived but overlap in time with
the stationary components. This example hence demon-
strates the limitations of considering musical sounds as a
sequence of discrete states that can be neatly spliced apart in
the time domain. To the contrary, components overlap and
are continuously transformed over time, and thus transient
components should not be confused with onsets as a whole.

The residual signal is depicted in Figs. 1(G) and 1(H). It
is visible that the residual contains residual traces of both the
harmonic stationary components and the impulsive transient
of this piano tone.

In the perceptual experiment reported below, ten instru-
ments at 12 different pitch levels were used (see Sec. III B 2
for details). Analyses indicated that these sounds had transi-
ents of much lower overall energy compared to the station-
ary components. Specifically, the stationary-to-transient
energy level ratios averaged across pitch was highest for the
vibraphone (mean 18 dB), followed by the marimba (24 dB),

FIG. 1. (Color online) Example of a piano sound A4 (440 Hz) of 250 ms separated into stationary and transient components. (A) Spectrogram of original sound
(window length 25 ms). (B) Zoom into first 16 ms of the original sound’s spectrogram. (C) Waveform of separated stationary components (dark blue) and tran-
sients (light red). (D) Zoom into first 16 ms of the separated components’ waveform. (E) Estimated stationary coefficients. (F) Estimated transient coefficients.
(G) Waveform of residual. (H) Spectrogram of residual.
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trumpet (28 dB), guitar (30 dB), piano (31 dB), cello (36 dB),
harp (40 dB), violin (42 dB), flute (44 dB), and finally the
clarinet (52 dB) with the weakest transient. Somewhat sur-
prisingly, these ratios indicate that it is not generally possible
to infer the sound excitation mechanisms of instruments by
virtue of the relative transient energies, because the harp (an
impulsive instrument) had lower relative transient energy
compared to the trumpet (a sustained instrument).

The temporal evolution of transient and stationary
energy is depicted in Fig. 2 (rows 1–2). Figure 2 shows the
average temporal and spectral envelopes of the stationary
and transient signal components (for temporal envelopes,
gray background indicates the positioning of the gates in
experiment 1). Here, temporal envelopes were extracted by
computing the magnitude of the analytic signal, filtered with
a third-order Butterworth lowpass-filter at a cutoff frequency
of 50 Hz. The levels plotted in Fig. 2 correspond to signal
intensities taken to the power of 0.3 (following Steven’s law
to approximate loudness). Figure 2 shows that the extracted
transients do not extend much further than 64 ms into the

tone and exhibit exponential decay characteristics for the
impulsive instruments. This also holds, albeit to a much
smaller degree, for the trumpet, violin, and cello. For the
flute and clarinet, however, transients are of very low inten-
sity, potentially more reflecting continuous blowing noise.
Regarding the stationary component, Fig. 2 further indicates
marked differences in envelope slope of impulsively excited
instruments (top row) compared to sustained instruments
(bottom row), the latter only reaching their energy peak in
the middle portion of the tone.

The two bottom rows of Fig. 2 shows the average spec-
tral power for the original signal, and the stationary and tran-
sient components (as for temporal envelopes raised to the
power of 0.3 to reflect loudness). Spectral envelopes were
obtained by smoothing the computed magnitude spectra by
using a first-order Butterworth lowpass filter with a cutoff
frequency of 1000 Hz. Figure 2 illustrates that the extracted
transients had energy at relatively high frequencies, with
spectral peaks at frequencies around or higher than 1 kHz.
Figure 2 also highlights the distinct spectral shapes of the

FIG. 2. (Color online) Temporal amplitude envelopes (rows 1–2) and spectral envelopes (rows 3–4). Level corresponds to signal intensity raised by 0.3 to
approximate loudness according to Steven’s law. Original sounds: gray, separated stationary components: blue, transient components: red, dashed-dotted.
Lines depict averages across all 12 pitch levels. For temporal amplitude envelopes (rows 1–2), shaded areas correspond to the position of the gating used in
experiment 1.
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instruments’ stationary components compared to the rela-
tively similar spectral shapes of transient components.
Experiment 1 tested the perceptual relevance of these
components.

III. EXPERIMENT 1: INSTRUMENT IDENTIFICATION

A. Rationale

The present experiment compared instrument identifica-
tion for harmonic instrument sounds resynthesized with and
without transient components. In order to avoid ceiling perfor-
mance and to be able to account for the importance of the
onset position, sounds were gated with short gates of 64 ms
duration. The resulting segments were taken from the onset of
the original sounds and presented with and without transient
components. In order to obtain an estimate about the general
relevance of the onset, a third signal condition was tested that
presented segments obtained from the middle portion of
sounds (128–196 ms) with stationary and transient compo-
nents. Note, however, that in the present sound set, the energy
of transients was very small for the middle portion (see Fig.
2). Therefore, excerpts from the middle portion with only sta-
tionary components were not included in the experiment.

B. Methods

1. Participants

Eighteen listeners (13 female, 4 male, 1 other) with self-
reported normal hearing and a mean age of M¼ 26.1 yr
[standard deviation (SD)¼ 6.7, range: 21–48] participated in
this experiment. Participants had played their primary musi-
cal instrument for an average of M¼ 9.3 yr (SD¼ 6.6, range:
1–22) and were dedicating M¼ 10.5 h per week to musical
activities (SD¼ 11.0, range: 1–35). Participants were
recruited via advertisements at the University of Oldenburg
online job board and received a compensation with 10 EUR
per hour.

2. Stimuli and apparatus

Stimuli were derived from orchestral instrument sam-
ples, obtained from the Vienna Symphonic Library (http://
vsl.co.at). The following instruments were used in this study:
piano, guitar, harp, vibraphone, marimba, trumpet, clarinet,
flute, violin, and cello. Guitar samples were obtained from a
Yamaha P155 synthesizer. Each instrument was played at 12
pitch levels: C4 (262 Hz) to B4 (494 Hz). From the stereo
samples, only the left channels were used. Tones were
played at forte dynamics and conceived as 8th-notes at a
tempo of 120 quarter notes per minute, corresponding to a
duration of 250 ms. The actual recordings were longer than
this and of varying duration, so a 25 ms raised cosine func-
tion was applied as fade out to obtain a consistent duration
of 250 ms.

In the experiments by Suied et al. (2014), instrument
categorization performance levelled off at a duration of
64 ms. Hence, this gate duration was chosen for the current
experiment in order to ensure that participants would be able
to perform the task. Furthermore, this gate duration was short

enough to meaningfully compare different placings of the gate
within sounds. When the gate started at the beginning of the
sound (0–64 ms: @0 ms), the original onset was preserved and
a raised-cosine fade-out was used (cf. Suied et al., 2014).
When the gate was positioned in the middle of the sound
(128–192 ms: @128 ms), both a raised-cosine fade-in and
fade-out was used. Gated sounds were normalized in root-
mean-square energy. The decomposition algorithm described
above was used to extract the stationary and transient signal
components from the gated sounds. Overall, there were three
signal conditions: (1) stationary (S) and transient (T) compo-
nents gated at the onset (Sþ T@0 ms), (2) stationary compo-
nents at the onset (S@0 ms), and (3) stationary and transient
components in the middle of the tone (SþT@128 ms). Figure
3 shows the gating function and the temporal envelopes of the
individual components for an exemplary piano tone.

The experiment was run with MATLAB and sounds were
converted with an RME Fireface audio interface at an audio
sampling frequency of 44.1 kHz and 24 bit resolution. Sounds
were presented diotically over Sennheiser HDA 200 head-
phones at an average level of 65 dBA sound pressure level, as
calibrated by a Norsonic Nor140 sound-level meter with a
G.R.A.S. IEC 60711 artificial ear to which the headphones
were coupled. Listeners were tested individually in a sound-
proof lab and provided responses on a computer mouse.

3. Procedure

The experiment comprised a training and test phase.
The training phase was conducted to ensure that participants
were familiar with the full range of perceptual features that
characterized the test sounds. In the training phase, the origi-
nal sounds were used. First, participants were exposed to all
sounds at 12 pitch levels from each one of the ten instru-
ments at an inter-onset interval of 750 ms. The order of the
presentation of individual sounds and instruments was ran-
domized. In order to further provide visual anchors, pictures
of the instruments were presented concurrently. Pictures had
been obtained from a web search and depicted standard
tokens of the instruments in front of a white background.

In the second part of the training, participants were
trained to identify sounds presented in isolation, as in the
main experiment. The test contained each of the ten instru-
ments at six randomly drawn pitch levels. In every trial,

FIG. 3. (Color online) Illustration of the windows used to create the experi-
mental signal conditions for the example of a piano tone. The figure shows
the amplitude envelopes of stationary components (S), transient components
(T), and the gating windows (W) with start positions at 0 ms or at 128 ms.
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participants listened to a randomly drawn sound and were
required to select the corresponding instrument label from a
list of alternatives presented on a computer screen. Feedback
about the correct response was provided with instrument
labels and pictures. Overall, this amounted to 60 trials of
training with response feedback and took around 12 min.

All participants continued with the main experiment,
where sounds from the same ten instruments were presented
at 12 pitch levels for the three signal conditions, SþT@0 ms,
S@0 ms, SþT@128 ms, described above (Sec. III B 2). The
signal conditions were blocked and blocks were presented in
random order. There were 120 sounds per block; each block
took around 25 min to complete and there were obligatory
pauses of at least 5 min between blocks. Before the start of
each experimental block, participants went through a passive
exposure phase with the original sounds, as in the first part of
the training. This exposure phase was implemented to ensure
that potential differences across blocks were due to the signal
conditions, and not due to memory loss of the reference that
was established or consolidated during the initial training.

To avoid response bias through a fixed order of the
instrument labels on the screen, the list order was random-
ized for each experimental block. Otherwise, the procedure
was identical to the second part of the training although no
feedback was provided. The experiment was self-paced.

C. Results

Figure 4 shows the average scores for the training and
all experimental conditions, together with individual profiles
from all participants. In the training, identification perfor-
mance was high (proportion of correct identifications:
M¼ 0.84). In the main experiment, average performance in
the SþT@0 ms signal condition was around seven percent-
age points below the training score (M¼ 0.77) and slightly
higher compared to the S@0 ms condition (M¼ 0.71). In the
SþT@128 ms signal condition, there was a strong inflation
of confusions (M¼ 0.52).

Figure 5 depicts average confusion matrices for the
training phase and all experimental conditions. In the

training, it is visible that, surprisingly, the cello and trumpet
were frequently confused (although this only occurred in the
training). In the main experiment, frequent within-family
confusions occurred for the SþT@0 ms signal condition, in
particular for the violin and cello (strings), and the clarinet
and flute (winds). The qualitative confusion patterns were
very similar for the S@0 ms signal condition. In the
SþT@128 ms condition, the three impulsive instruments
piano, guitar, and harp were frequently confused and even
attributed to wind instruments such as the clarinet. Among
the sustained (i.e., continuously excited) instruments, the
flute was particularly poorly identified, and often confused
with the trumpet. Four instruments were robustly identified
for this condition and achieved accuracies above 0.75: the
vibraphone, marimba, trumpet, and clarinet.

A repeated-measures analysis of variance (ANOVA) was
conducted with the factors signal condition (SþT@0 ms,
S@0 ms, SþT@128 ms) and pitch level (the statistical
dependency of instrument-wise accuracies does not allow for
an ANOVA on an instrument-wise level). The analysis indi-
cated that there were significant differences between signal
conditions, Fð2; 34Þ ¼ 155:9; p < 0:001; g2

p ¼ 0:90, and of
pitch, Fð11; 187Þ ¼ 4:52; p < 0:001; g2

p ¼ 0:21, but no signif-
icant interaction between the two, Fð22; 374Þ ¼ 1:52; p
¼ 0:064; g2

p ¼ 0:08. Post hoc tests demonstrated that scores
from the three signal conditions were significantly different
from each other: paired t(17)¼ 4.3, p¼ 0.0013 for SþT@0 ms
vs S@0 ms, t(17)¼ 19.7, p< 0.001 for SþT@0 ms vs S
þ T@128 ms, and t(17)¼ 10.7, p< 0.001 for S@0 ms vs
SþT@128 ms (Bonferroni-corrected for multiple compari-
sons, n¼ 3). A comparison to the training indicated that
training scores were significantly higher compared to all
experimental signal conditions, paired t(17)> 5.4, p< 0.001.
Visual inspection of the data did not reveal any systematic
relation of identification accuracy and pitch, and scores in
none of the three signal conditions significantly correlated
with pitch height, p> 0.187 (Bonferroni-corrected, n¼ 3).
This suggests that idiosyncratic stimulus features distributed
across different pitch levels most likely caused the observed
differences of identification scores across pitch levels.

D. Discussion

This experiment compared harmonic musical instrument
identification for 64 ms-long sound segments with and with-
out transient components taken from the onset or the middle
portion of the original sound. The data indicated that remov-
ing the transient at the sound onset impaired identification
scores by around 6 percentage points, whereas moving the
gate from the onset to the middle portion of the sound
impaired identification accuracy by 25 percentage points.
Surprisingly, this effect did not appear to strictly depend on
whether impulsive or sustained instruments were considered.
In the signal condition that presented 64 ms segments from
the middle portion of the tone (SþT@128 ms), the vibra-
phone and marimba were accurately identified (both impul-
sive) with accuracy scores above 75%, and the same held for
the trumpet and clarinet (both sustained).

FIG. 4. (Color online) Mean identification scores from experiment 1.
Individual results are plotted as gray lines and the dotted line indicates
chance level. Error bars: 95% confidence interval (CI).
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As it can be observed in Fig. 2, the energy levels of the
transient components were almost negligible for the tested mid-
dle portions of sounds. Furthermore, there was a drastic drop in
performance from S@0 ms to SþT@128 ms (% S@128 ms)
paired with small differences from SþT@0 ms to S@0 ms.
Therefore, this pattern of results likely reflects the greater diag-
nosticity of the cues present in quasi-stationary sinusoidal com-
ponents at the sound onset, and the lack of the transient
component appears to be of smaller importance. Notably, even
for sustained sounds, the steady state portion probed by the
SþT@128 ms condition turned out to be less informative than
the onset portion.

A potential explanation of the small effect observed for
the removal of transients could be that the combined station-
ary and transient components (SþT) were not clearly dis-
criminable from the stationary parts (S) alone. This question
was addressed in a second experiment, which would further
help to more comprehensively characterize the perceptual
status of transients in musical instrument sounds.

IV. EXPERIMENT 2: TRANSIENT DISCRIMINATION

A. Rationale

The second experiment acted as a control experiment in
order to test whether listeners would be sensitive to the pres-
ence of transients. Specifically, the aim was to test listeners’

discrimination abilities of S from SþT, but also to measure
discrimination of SþT from the original sound. This would
assess the perceptual relevance of the separation algorithm’s
residual component. To direct listeners attention to transient
information, additional foil conditions were included in the
experiment, presenting amplified transients together with the
stationary part.

B. Methods

1. Participants

Ten listeners (4 female, 5 male, 1 other) with self-
reported normal hearing and a mean age of M¼ 27.8 yr
(SD¼ 4.2, range: 23–37) participated. Participants had
played their primary musical instrument for an average of
M¼ 14.8 yr (SD¼ 6.8, range: 4–30) and were dedicating
M¼ 13.8 h per week to musical activities (SD¼ 12.5, range:
2–35). Participant recruiting and compensation was identical
to experiment 1.

2. Stimuli and apparatus

To keep the overall duration of the experiment within
limits, only four of the ten instruments from experiment 1
were tested, two of which were impulsive (vibraphone and
guitar) and two sustained (cello and trumpet). The corre-
sponding recordings were presented at the full duration of

FIG. 5. (Color online) Average confusion matrices from experiment 1 including the training, normalized by the number of presentations of every instrument.
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250 ms. There were five signal conditions, each testing the
discrimination of SþT against (i) the original signal, (ii) S,
(iii) 5 T, (iv) Sþ 10 T, and (v) Sþ 15 T, where Sþ xT indi-
cates that the level of T was raised by x dB. The apparatus
was identical to the main experiment.

3. Procedure

A 3-interval/2-alternative forced-choice task (“odd one
out”) was used. On every trial, there were three intervals
with inter-stimulus intervals of 250 ms and participants were
required to detect the odd interval. It was randomly deter-
mined whether SþT or the comparison stimulus from signal
conditions (i)–(v) served as the odd stimulus. After provid-
ing their response by selecting the interval on a computer
screen, participants received feedback about the correct
response.

In order to maximize participant’s sensitivity to poten-
tially idiosyncratic timbral features, the presentation of
instruments was blocked with a random order of the presen-
tation of the signal conditions. The order of blocks was ran-
domized. Every block contained 180 trials (3 intervals & 12
pitch levels & 5 signal conditions). The completion of any
one block took around 25 min and there were obligatory
pauses of at least 5 min between blocks.

C. Results

Performance was above chance level for all five differ-
ent signal conditions, as confirmed by tailed t-tests against
0.33, t(9)> 5.5, p< 0.001. Participants robustly discrimi-
nated SþT from S, as reflected by 69% of correct identifica-
tions in this condition. Participants had greater difficulties to
discriminate SþT from the original signal, yielding an aver-
age of only 42% correct responses. This result indicates that
the omission of the residual from the original signal, leaving
SþT, is barely detectable, which validates the general
approach to use SþT as a starting point for studying timbre
perception. Participants were further sensitive to an amplifi-
cation of transients, as indicated by the strong effect across
foil conditions. Average percentage of correct responses was
54%, 86%, and 96% for discriminating SþT from Sþ 5 T,
Sþ 10 T, and Sþ 15 T, respectively.

A repeated-measures ANOVA was conducted to analyse
differences for individual instruments. The analysis con-
firmed strong effects of signal condition, Fð4; 36Þ ¼ 171:8;
p< 0:001;g2

p¼ 0:95, instrument, Fð3;27Þ¼ 21:4;p< 0:001;
g2

p¼ 0:70, and an interaction of signal condition and instru-
ment, Fð12;108Þ¼ 14:1;p< 0:001;g2

p¼ 0:61.
The mean scores of all five signal conditions were

highly different from each other, t(9)> 4.3, p< 0.002, as
visible in Fig. 6. Performance for the two impulsive instru-
ments guitar (76%) and vibraphone (74%) was generally bet-
ter compared to the sustained instruments trumpet (62%) and
cello (65%). Pairwise t-tests confirmed no significant differ-
ences between instruments of the same excitation type,
t(9)< 1.5, p> 0.16, but all differences across excitation
types were highly significant, t(9)> 5.0, p< 0.001. This
means the task was generally easier for the two impulsive
instruments, guitar and vibraphone.

The signal conditions elicited differential effects on
impulsive instruments compared to continuously excited
instruments such that the interaction was due to the high
scores for impulsive instruments in the S condition.
Specifically, scores for S did not differ significantly from the
original signal for the trumpet and the cello, t(9)< 3.0,
p> 0.057 (Bonferroni-corrected for multiple comparisons,
n¼ 4). But there were strong differences between the origi-
nal signal and S signals for the guitar and the vibraphone,
t(9)> 7.2, p< 0.001.

D. Discussion

This second experiment tested listeners’ sensitivity to
discriminate signals with manipulated transient components.
Independent of instrument, the original sounds were only
poorly discriminated from the signals that were resynthe-
sized without residual (SþT); discrimination performance
was barely above chance for this signal condition. This result
implies that the residual does not appear to be very important
in the current separation, which suggests that using the sta-
tionary and transients components, SþT, seems to be a
good starting point for the current pursuits. More specifi-
cally, the above chance performance in both the SþT vs S
and the SþT vs Sþ 5 T (and Sþ 10 T, Sþ 15 T) conditions
indicates that listeners were sensitive to the amplification as
well as to omission of transients. Note that this effect was
pronounced for impulsive instruments, but, although not as
strong (as indicated by the significant interaction of signal
condition and instrument), it remained present for sustained
instruments. In comparison to the higher performance for the
signal condition that omitted the transient (SþT vs S), this
indicates that listeners were much more sensitive to the pres-
ence of the transient than to the presence of the residual
noise.

FIG. 6. (Color online) Discrimination accuracy from experiment 2. SþT
was discriminated from the signal type given on the x axis, where Sþ xT
indicates that the level of T was raised by x dB. Bar color corresponds to
instruments as listed in the legend (guitar, vibraphone, trumpet, cello).
Triangles correspond to performance of individual participants, the dotted
line indicates chance performance. Error bars: 95% CI.
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Only four instruments could be tested in this experiment
and hence the generality of the findings is limited. It is possi-
ble that instruments with low energy transients such as the
clarinet and flute would have yielded lower scores, in partic-
ular for the S vs SþT signal condition. Nonetheless, the
obtained results show that it is generally not the lack of dis-
criminability that is the underlying reason for the small
effect between the SþT@0 ms and S@0 ms signal condition
observed throughout instruments in experiment 1.

V. CONCLUSION

This study revisited the perceptual relevance of onsets
in identification and discrimination tasks. Previous studies
suggested that the onset plays a privileged role for identifica-
tion, but the underlying acoustic factors had not been thor-
oughly tested. Here, a relatively small set of harmonic
orchestral instrument sounds was used to test the importance
of transient signal components. Using an algorithm to dissect
transient from stationary components (Siedenburg and
Doclo, 2017), acoustical analysis indicated that rapidly vary-
ing transients and quasi-stationary components are generally
overlapping in time and that transient components are of rel-
atively low energy. Importantly, these analyses indicate that
the transient, defined via its short-livedness and stochastic
nature, should not be confused with the onset portion of
sounds as a whole—there is no point in time where transients
could be neatly separated from sinusoidal components.
Instead, the separation of acoustic components must take
place in the time-frequency domain.

Two experiments tested the perceptual relevance of
transients and quasi-stationary sinusoidal components. In
experiment 1, it was shown that the omission of transient
components at the onset portion of tones had a relatively
small detrimental effect on instrument identification, even
though experiment 2 suggested that a lack of discriminability
of signals presented with and without transient components
was not the underlying reason for this. Therefore, these
results indicate that quasi-stationary components yield the
most informative cues for instrument identification.
Furthermore, shifting the position of the gate from the onset
to the middle portion of the tone had a large detrimental
effect on identification performance. The latter result con-
firms that even without the presence of transient compo-
nents, onsets seem to be much more informative compared
to sounds’ middle portions, irrespective of the specific
instrument or instrument class (impulsive vs sustained).
Taken together, these findings confirm the prominent status
of onsets in musical instrument identification suggested by
the literature, but specify that rapidly varying transients
(which often but not exclusively occur at sound onsets) have
a relatively limited diagnostic value for the identification of
harmonic musical instruments. In conclusion, fairly slowly
varying signal components during onsets, likely the charac-
teristic buildup of sinusoidal components in particular, pro-
vide the most valuable bundle of acoustic features for
perceptual instrument identification.

A critical reader may object that the great care that
musicians, sound designers, and music producers invest in

the shaping of transient aspects of sound refutes this argu-
ment. This objection may be countered by noting that iden-
tification tasks require listeners to rely on informative
acoustic cues for sound source identity, but not on every
sound feature that may be integrated into assessments of
sound quality (e.g., Pressnitzer et al., 2013; Siedenburg
and McAdams, 2017). Coherent with this notion, experi-
ments 1 and 2 collectively suggested that not every class of
discriminable sound feature is essential for sound source
identification. In effect, sound production may deal in
great length with the sculpting of timbral nuances such as
high-frequency transients, even if these are only of minor
importance for the inference of sound sources. Generally,
this view acknowledges the multiplicity of cues available
for sound source identification (Giordano et al., 2010;
Handel, 1995), all of which may be used opportunistically
depending on the perceptual task and context at hand.
Furthermore, one should not forget that this study only
considered harmonic musical instruments presented in iso-
lation. The situation may be different for non-harmonic
percussion instruments and other sound-producing objects,
not to speak of sound source identification in polyphonic
mixtures.

A topic that should be addressed by future acoustical
analyses concerns the question whether the utility of the
onset (with or without transients) for instrument identifica-
tion rests on perceptual or acoustical grounds. In other
words, are listeners making use of informative features for
identification that are only available in the onset, or do there
exist equally informative features throughout the sound but
listeners prefer to focus on the onset?

From a more general perspective, the current approach
is in line with an upsurge of interest in signal analysis/re-
synthesis approaches to the study of auditory perception
(McDermott and Simoncelli, 2011; Overath et al., 2015;
Ponsot et al., 2018; Thoret et al., 2017). In order to unravel
the intricate workings of auditory perception these types of
studies develop specific signal processing tools, which
allows working with naturalistic but precisely controlled
stimuli. Although this approach is principally related to the
early explorations of cutting and splicing tapes (Schaeffer,
2017), today’s digital tools offer an unprecedented degree of
precision and versatility.
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sound examples.
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