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Regularization for Partial Multichannel Equalization
for Speech Dereverberation
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Abstract—Acoustic multichannel equalization techniques such
as the multiple-input/output inverse theorem (MINT), which aim
to equalize the room impulse responses (RIRs) between the source
and the microphone array, are known to be highly sensitive to RIR
estimation errors. To increase robustness, it has been proposed
to incorporate regularization in order to decrease the energy of
the equalization filters. In addition, more robust partial mul-
tichannel equalization techniques such as relaxed multichannel
least-squares (RMCLS) and channel shortening (CS) have recently
been proposed. In this paper, we propose a partial multichannel
equalization technique based on MINT (P-MINT) which aims to
shorten the RIR. Furthermore, we investigate the effectiveness of
incorporating regularization to further increase the robustness of
P-MINT and the aforementioned partial multichannel equaliza-
tion techniques, i.e., RMCLS and CS. In addition, we introduce
an automatic non-intrusive procedure for determining the reg-
ularization parameter based on the L-curve. Simulation results
using measured RIRs show that incorporating regularization
in P-MINT yields a significant performance improvement in the
presence of RIR estimation errors, whereas a smaller performance
improvement is observed when incorporating regularization in
RMCLS and CS. Furthermore, it is shown that the intrusively
regularized P-MINT technique outperforms all other investigated
intrusively regularized multichannel equalization techniques in
terms of perceptual speech quality (PESQ). Finally, it is shown
that the automatic non-intrusive regularization parameter in
regularized P-MINT leads to a very similar performance as the
intrusively determined optimal regularization parameter, making
regularized P-MINT a robust, perceptually advantageous, and
practically applicable multichannel equalization technique for
speech dereverberation.

Index Terms—Acoustic multichannel equalization, automatic
regularization, speech dereverberation.
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I. INTRODUCTION

S PEECH signals recorded in an enclosed space by micro-
phones placed at a distance from the source are often cor-

rupted by reverberation, which arises from the superposition of
delayed and attenuated copies of the anechoic speech signal. Re-
verberation causes signal degradation, typically leading to de-
creased speech intelligibility [1], [2] and performance deteriora-
tion in speech recognition systems [3]–[5]. Hence, many speech
communication applications such as teleconferencing applica-
tions, voice-controlled systems, or hearing aids, require effec-
tive dereverberation algorithms [4]–[6].
In the last decades, several dereverberation approaches have

been developed, which can be broadly classified into speech
enhancement and acoustic channel equalization approaches [7].
While both single and multichannel dereverberation techniques
have been investigated, multichannel techniques are generally
preferred since they enable the use of both spectro-temporal
and spatial processing of the received microphone signals.
Well-known multichannel speech enhancement techniques for
dereverberation are either based on spectral subtraction [8],
[9] or on linear prediction [10]–[12]. Furthermore, acoustic
multichannel equalization techniques [13]–[19] aim to reshape
the estimated room impulse responses (RIRs) between the
source and the microphone array. Such techniques comprise an
attractive approach to speech dereverberation since in theory
perfect channel equalization can be achieved [13], [20].
A widely known multichannel equalization technique that

aims at complete equalization is the multiple-input/output in-
verse theorem (MINT) [13], which however suffers from sev-
eral drawbacks in practice. Since the estimated RIRs typically
differ from the true RIRs due to fluctuations (e.g., temperature
or position variations [21]) or estimation errors (e.g., due to
the sensitivity of blind system identification (BSI) methods to
near-common zeros [22] or interfering noise [23]), MINT fails
to equalize the true RIRs, possibly leading to severe distortions
in the output signal. In an attempt to increase the robustness
of MINT, it has been proposed to incorporate regularization in
order to decrease the energy of the equalization filters [15].
In addition, more robust partial multichannel equaliza-

tion techniques such as relaxed multichannel least-squares
(RMCLS) [17] and channel shortening (CS) [14] have recently
been proposed. Since early reflections tend to improve speech
intelligibility [24], [25] and late reverberation (typically defined
as the part of the RIR after 50–80 ms) is the major cause of
speech intelligibility degradation, the objective of such tech-
niques is to shorten the RIR by suppressing only the reverberant
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tail. It has been experimentally validated that partial equaliza-
tion techniques lead to a significant increase in robustness in
the presence of RIR estimation errors as compared to complete
equalization [17]. However, by not imposing any constraints on
the remaining early reflections of the shortened RIR, RMCLS
and CS may lead to undesired perceptual effects.
In this paper, we first introduce a partial multichannel equal-

ization technique based on MINT (P-MINT), which aims to
shorten the RIR and to directly control the perceptual speech
quality [19]. Furthermore, since incorporating regularization is
also expected to further increase the robustness of partial mul-
tichannel equalization techniques, the effectiveness of incorpo-
rating regularization in all aforementioned techniques is inves-
tigated. To this end, a regularization term proportional to the
energy of the reshaping filters is added to the cost functions for
P-MINT, RMCLS, and CS. Whereas a closed-form solution ex-
ists for minimizing the regularized cost functions for P-MINT
and RMCLS, an iterative approach is required for minimizing
the regularized cost function for CS.
In general, the optimal regularization parameter yielding the

highest perceptual speech quality needs to be determined intru-
sively (i.e., using a dereverberated reference signal and knowl-
edge of the true RIRs), limiting the practical applicability of the
regularized techniques. In this paper, we also propose and ex-
tensively investigate an automatic non-intrusive selection pro-
cedure for the regularization parameter based on the L-curve
[26].
Using simulations with a realistic acoustic system in the pres-

ence of estimation errors, it is shown that a significant perfor-
mance increase is obtained for P-MINT when regularization is
incorporated, whereas a smaller improvement is observed for
RMCLS and CS. In addition, it is demonstrated that the in-
trusively regularized P-MINT technique outperforms the intru-
sively regularized RMCLS and CS techniques, typically leading
to the highest robustness and perceptual speech quality. Fur-
thermore, it is shown that the non-intrusively determined reg-
ularization parameter yields a nearly optimal perceptual speech
quality in regularized P-MINT, making it a robust, perceptually
advantageous, and practically applicablemultichannel equaliza-
tion technique for speech dereverberation.
The paper is organized as follows. In Section II the acoustic

multichannel equalization problem is introduced as well as sev-
eral state-of-the-art multichannel equalization techniques for
designing reshaping filters. A mathematical relation between
the P-MINT solution and the multiple possible CS solutions is
provided, showing that the P-MINT solution can be expressed
as a linear combination of the CS solutions. Furthermore,
the incorporation of a regularization term in all multichannel
equalization techniques is discussed in Section III, whereas in
Section IV an automatic non-intrusive procedure for computing
the regularization parameter is proposed. Using simulations,
the reverberant tail suppression and the perceptual speech
quality of all considered equalization techniques is extensively
compared in Section V.

II. ACOUSTIC MULTICHANNEL EQUALIZATION

In this section, complete and partial acoustic multichannel
equalization techniques are discussed. First, the general

Fig. 1. Multichannel equalization system.

problem is stated and some notational conventions are given.
Then the cost functions of several multichannel equalization
techniques are discussed.

A. Problem Formulation and Notation

Consider an acoustic system with a single speech source and
microphones as depicted in Fig. 1. The -th microphone

signal, , at time index is given by

(1)

where denotes convolution, is the clean speech signal,
denotes the RIR between the source and the -th

microphone, and is the additive noise signal. Since
acoustic multichannel equalization techniques generally design
reshaping filters disregarding the presence of noise, in the fol-
lowing it is assumed that , hence .
The RIR can be described in vector notation as

, with being
the RIR length and denoting the transpose oper-
ation. Given reshaping filters of length , i.e.,

, the output
signal of the multichannel equalization system is given by
the sum of the filtered microphone signals, i.e.,

(2)

where is the equalized impulse response (EIR) between the
source and the output of the system. The EIR can be described
in vector notation as ,
with being the EIR length. Using the

–dimensional stacked filter vector , i.e.,

(3)

and the –dimensional multichannel convolution ma-
trix , i.e.,

(4)
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with

. . .
...

...
. . .

...
. . .
. . .

...
. . .

. . .
...

(5)
the output signal can be expressed as

...
(6)

(7)

The reshaping filter can then be constructed based on different
design objectives for the EIR

(8)

Since the true RIRs are typically not available in practice,
acoustic multichannel equalization techniques design the re-
shaping filter using the estimated multichannel convolution
matrix constructed from the estimated RIRs

(9)

with representing the estimation error. The sensitivity of
several multichannel equalization techniques to these estima-
tion errors will be investigated in Section V.

B. Complete Multichannel Equalization

The objective of complete multichannel equalization tech-
niques such as MINT is to invert the acoustic system up to a
delay, such that the output of the system is a shifted version of
the clean speech signal.
Multiple-input/output inverse theorem [13]: MINT aims to

recover the delayed anechoic speech signal by designing a filter
such that

(10)

where is the desired EIR defined as a delayed impulse, i.e.,

(11)

with being the delay in number of samples. The inverse filter
is then computed by minimizing the least-squares cost function

(12)

As shown in [13], assuming that
• the estimated RIRs do not share any common zeros in the

-plane, and
• ,

where denotes the ceiling function, the filter that inverts the
multichannel acoustic system can be computed as

(13)

with denoting the Moore-Penrose pseudo-inverse. Since
the estimated convolution matrix is assumed to be a full row-
rank matrix [27], its pseudo-inverse can be computed as

.
When the RIRs are perfectly estimated, MINT achieves

perfect equalization. However, when the estimated RIRs differ
from the true RIRs, the resulting EIR not only
differs from the desired response , but usually causes large
distortions in the output signal [15], [21].

C. Partial Multichannel Equalization

Whereas MINT is very sensitive to estimation errors, partial
multichannel equalization techniques which aim at reshaping
the EIR instead of complete equalization, are significantly more
robust. The recently proposed partial multichannel equaliza-
tion techniques such as RMCLS and CS aim at suppressing the
late reverberation only, while imposing no constraints on the
early reflections, which may lead to undesired perceptual ef-
fects. Therefore we also introduce a partial multichannel equal-
ization technique based onMINT, which aims at simultaneously
suppressing the reverberant tail as well as directly controlling
the perceptual speech quality of the output signal.
Relaxed multichannel least-squares [17]: RMCLS achieves

partial equalization by introducing a weighting vector in the
least-squares cost function in (12), i.e., the RMCLS cost func-
tion is defined as

(14)

with , and the weighting vector equal to

(15)

where denotes the length of the direct path and early reflec-
tions in number of samples. The minimization of (14) aims at
setting the reverberant tail of the EIR to , while the first taps
corresponding to the early reflections are not constrained. Sim-
ilarly to the MINT solution in (13), the reshaping filter mini-
mizing the RMCLS cost function in (14) can be computed as

(16)

Channel shortening [14]: CS has been extensively investi-
gated in the context of digital communication applications [28]
and has recently been applied to acoustic system equalization in
[14], [17]. CS is achieved by maximizing the energy in the first
taps of the EIR (i.e., direct path and early reflections), while
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minimizing the energy in the remaining taps (i.e., reverberant
tail). This optimization problem is expressed as the maximiza-
tion of a generalized Rayleigh quotient, i.e.,

(17)

where and represent the desired and undesired window
respectively, i.e.,

(18)

(19)

and

(20)

(21)

Maximizing (17) is equivalent to solving the generalized eigen-
value problem , where the optimal reshaping filter

is the generalized eigenvector corresponding to the largest
generalized eigenvalue , i.e.,

(22)

Designing the reshaping filter using such an energy-based
optimization technique however imposes no other, e.g., per-
ceptually relevant, constraints on the remaining filter taps of
the EIR, which may lead to undesired perceptual effects (cf.
Section V-B). Furthermore, multiple solutions to (22) exist (cf.
Section II-D), and each of these solutions will lead to a percep-
tually different EIR. In [17] it has been proposed to select the
generalized eigenvector leading to the minimum -norm esti-
mated EIR. In this paper, the intrusively selected generalized
eigenvector leading to the highest perceptual speech quality
has been used (cf. Section V-A).
Partial multichannel equalization based on MINT [19]: In

order to directly control the perceptual quality of the output
signal, we recently proposed the P-MINT technique, where the
direct path and early reflections of the EIR are controlled by
using the first part of one of the estimated RIRs as the desired
EIR in (10), i.e.,

(23)

where

(24)

with . Without loss of generality, also other
desired EIRs could be used instead of (24), as long as they are
perceptually close to the true RIRs. The least-squares cost func-
tion to be minimized in P-MINT is hence defined as

(25)

Assuming that the same conditions as for MINT are satisfied,
the reshaping filter minimizing (25) can be computed as

(26)

D. Relation Between P-MINT and CS

Following similar arguments as in [17], a mathematical rela-
tion between the P-MINT solution and the multiple possible CS
solutions can be derived.
The maximization of the CS cost function in (17) can be re-

formulated as computing a filter belonging to the null space of
but not belonging to the null space of , i.e., satisfying

the system of equations

(27)

with . Since the convolution matrix is as-
sumed to be a full row-rank matrix with , also

. Exploiting the relationship between the
rank and the dimension of the null space of a matrix [29], the
dimension of the null space of is equal to

(28)

where denotes the dimension of the considered space. In
addition, since , the
dimension of the null space of is equal to

(29)

Hence, the number of linearly independent vectors satisfying
(27) and therefore maximizing the generalized Rayleigh quo-
tient in (17) is .
In order to derive a mathematical relation between the

P-MINT solution and the multiple possible CS solutions,
consider that the desired EIR in P-MINT can be expressed as

(30)

with defined in (18). For the filter in (26), the de-
nominator of the Rayleigh quotient in (17) is equal to

(31)

(32)

whereas the nominator in (17) is equal to

(33)

(34)

Therefore since the P-MINT filter satisfies (27), it is also in the
solution space of the CS optimization problem. As a result, the
P-MINT reshaping filter can be expressed as a linear combina-
tion of the generalized eigenvectors maximizing the gener-
alized Rayleigh quotient in (17).
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III. REGULARIZATION IN ACOUSTIC MULTICHANNEL
EQUALIZATION

As previously mentioned, the estimated RIRs gener-
ally differ from the true RIRs (cf. (9)). Since the reshaping filters

are designed using the estimated RIRs, the output signal of
the multichannel equalization system is given by

(35)

(36)

(37)

(38)

where the term in (37) represents the clean speech signal con-
volved with the desired EIR and the remaining terms in (38)
may (and typically do) give rise to large signal distortions due
to RIR estimation errors and the additive noise. However, if the
energy of the filters is small, then the value of these dis-
tortion terms is also small. To increase the robustness of MINT,
it has therefore been proposed to add a regularization term

(39)

to the cost function in (12), with the aim of decreasing the en-
ergy of the filter . The regularization parameter controls
the weight given to the minimization of the energy of the in-
verse filter. In this paper, we will investigate the effectiveness
of incorporating the regularization term in all partial multi-
channel equalization techniques discussed in Section II. More-
over, in Section IV the computation of the regularization pa-
rameter is discussed, where both an optimal intrusive com-
putation procedure as well as an automatic non-intrusive pro-
cedure is proposed. As previously mentioned, acoustic multi-
channel equalization techniques generally design reshaping fil-
ters disregarding the presence of noise, hence in the following
it is again assumed that .
Regularized MINT [15]: In the regularized MINT technique,

the least-squares cost function in (12) is extended to

(40)

such that the regularized MINT filter minimizing this cost func-
tion is equal to

(41)

with being the -dimensional identity matrix.
In [15] it has been shown that incorporating regularization in
MINT is useful in reducing the distortions in the output signal
due to fluctuations of the RIRs.
Regularized RMCLS: Since RMCLS is a least-squares tech-

nique, incorporating the regularization term can be done
similarly as for MINT. The regularized RMCLS cost function
to be minimized is defined as

(42)

and the regularized RMCLS filter minimizing this cost function
can be calculated as

(43)

Regularized P-MINT: Similarly to the regularized
least-squares technique for MINT and RMCLS, the regu-
larized P-MINT cost function is defined as

(44)

Minimizing (44) yields the regularized P-MINT filter

(45)

Regularized CS: In order to incorporate the regularization
term in CS, the maximization problem in (17) is first refor-
mulated in terms of a generalized Rayleigh quotient minimiza-
tion problem, such that the regularized CS cost function to be
minimized can be defined as

(46)

However, since no analytical solution to minimize (46) exists,
an iterative optimization technique for minimizing this non-
linear cost function will be used in the following. In order to
improve the numerical robustness and the convergence speed
of the optimization technique, the gradient

(47)

and the Hessian

(48)

can be provided.
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Since the non-linear cost function in (46) typically contains
local minima, it should be noted that this technique is sensi-
tive to the initial vector provided to the numerical optimization
algorithm. In an attempt to find the global minimum, we have
considered different initial vectors, i.e., one of the generalized
eigenvector solving (22), the P-MINT solution in
(26), and the vector . The optimal solution is
then selected as the one leading to the highest perceptual speech
quality (cf. Section V-A).

IV. NON-INTRUSIVE SELECTION OF THE

REGULARIZATION PARAMETER

Increasing the regularization parameter in all regularized
equalization techniques presented in Section III decreases the
norm of the reshaping filter , increasing the robustness to
RIR estimation errors. However, increasing this parameter also
reduces the equalization performance with respect to the true
RIRs, resulting in a trade-off between equalization performance
for perfectly estimated RIRs and robustness in the presence of
RIR estimation errors.
Obviously, different values of the regularization parameter

lead to different performance. The optimal value that yields
the highest perceptual speech quality depends on the acoustic
system to be equalized, the RIR estimation errors, as well as
the equalization technique being used.While in simulations
can be intrusively determined exploiting the known true RIRs
(cf. Section V-B), an automatic non-intrusive procedure is re-
quired in practice.
For conciseness, the automatic non-intrusive procedure for

selecting the regularization parameter in acoustic multichannel
equalization techniques is discussed only for the regularized
P-MINT technique. However, the procedure proposed here can
be extended to any regularized least-squares technique, such as
regularized MINT and regularized RMCLS.1

Incorporating regularization in P-MINT introduces a
trade-off between minimizing the residual energy
and minimizing the filter energy (cf. (44)). A good
regularization parameter should hence incorporate knowledge
about both the residual energy and the filter energy, such that
both energies are kept small. In order to automatically com-
pute a regularization parameter for regularized least-squares
problems, it has been proposed in [26] to use a parametric
plot of the solution norm versus the residual norm for several
values of . This plot always has an L-shape with the corner
(i.e., the point of maximum curvature) located exactly where
the regularized least-squares solution changes in nature from
being dominated by over-regularization to being dominated by
under-regularization.
We therefore propose selecting the regularization parameter
in the regularized P-MINT technique as the one corre-

sponding to the corner of the parametric plot of the filter norm
versus the residual norm . As is

experimentally validated in Section V, such a regularization pa-
rameter also leads to a nearly optimal perceptual speech quality.

1The presented approach cannot be used for the regularized CS technique.
Automatic selection of the regularization parameter in CS remains a topic for
future investigation.

Fig. 2. Typical L-curve obtained using regularized P-MINT for an erroneously
estimated acoustic system.

The L-curve can be generated by computing the reshaping
filter in (45) for several values of the regularization
parameter and then calculating the required norms. However,
in order to reduce the computational complexity, it is benefi-
cial to generate the L-curve using the singular value decompo-
sition (SVD) of the estimated convolution matrix . Consider
the SVD of , i.e.,

(49)

where and are orthogonal matrices and is a diagonal
matrix containing the singular values of in descending
order, i.e., . Using (45) and
(49), the regularized P-MINT filter can be expressed as

(50)

where and denote the -th column of and respec-
tively. Hence, for a given , the filter norm and the residual norm
can be expressed in terms of the singular values/vectors as

(51)

(52)

Therefore, once the SVD is computed, the complete L-curve can
be readily generated using (51) and (52).
Fig. 2 depicts a typical L-curve obtained using regularized

P-MINT for equalizing an estimated acoustic system (cf.
Section V-A). As illustrated in this figure, increasing the value
of decreases the filter norm but at the same time increases
the residual norm. Although from such a curve it seems easy to
determine the regularization parameter that corresponds to the
maximum curvature, numerical problems due to small singular
values may occur and hence, a numerically stable algorithm
is required. In this work, the triangle method [30] is used for
locating the point of maximum curvature of the L-curve.
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V. SIMULATIONS

In this section, simulation results for a scenario with a single
speech source and 2 microphones are presented. In Section V-A,
the acoustic systems and the used performance measures are
introduced. In Section V-B, the performance of all equaliza-
tion techniques and their regularized counterparts with the in-
trusively determined regularization parameter is compared
in the presence of channel estimation errors. In Section V-C,
the performance of regularized P-MINT when using the auto-
matic non-intrusive procedure for determining the regulariza-
tion parameter instead of using is extensively inves-
tigated. Finally, in Section V-D, the performance of P-MINT
and automatically regularized P-MINT in the presence of both
channel estimation errors and additive noise will be investi-
gated. Sound samples from each simulation can be found at
www.sigproc.uni-oldenburg.de/audio/dereverb/pmint.html.

A. Acoustic System and Performance Measures

We have considered an acoustic scenario with a single speech
source and omni-directional microphones placed at a
distance of 2.3 m from the source in a room with reverberation
time ms (in Section V-C, also rooms with rever-
beration times ms and ms have been
considered). The RIRs between the source and the microphones
have been measured using the swept-sine technique [31] and the
RIR length has been set to at a sampling frequency

. In order to simulate estimation errors, the mea-
sured RIRs have been perturbed by adding scaled white noise
as proposed in [32], i.e.,

(53)

with being an uncorrelated Gaussian noise sequence with
zero mean and an appropriate variance, such that a desired nor-
malized channel mismatch , defined as

(54)

is generated. In practice, BSI methods [18], [23] should be used
to directly estimate the acoustic system. However, to the best of
our knowledge the performance of state-of-the-art BSI methods
highly depends on the considered acoustic system and no model
has been established to systematically describe the estimation
errors that such methods yield. Therefore, (53) and (54) are used
to generate the considered estimation errors in the following
simulations.
The simulation parameters for all considered multi-

channel equalization techniques are set to
and . Furthermore, 5 different desired window
lengths for the partial equalization techniques are investi-
gated, i.e., 10ms 20ms 30ms 40ms 50ms , with

being the desired window length in ms.
The desired EIR in P-MINT and regularized P-MINT is chosen
as the direct path and early reflections of the estimated first
RIR, i.e., .
The performance of all considered equalization techniques

is evaluated both in terms of reverberant tail suppression and

perceptual speech quality. The reverberant tail suppression is
evaluated using the energy decay curve (EDC) [7] of the EIR
defined as

(55)
where and the reshaping filter is designed using the
estimated RIRs .
The perceptual speech quality of the output signal is

evaluated using the objective speech quality measure PESQ
[33], which generates a similarity score between the output
signal and a reference signal in the range of 1 to 4.5. It has been
shown in [34] that measures relying on auditory models such as
PESQ exhibit the highest correlation with subjective listening
tests when evaluating the quality of dereverberated speech. The
reference signal employed here is , i.e., the clean
speech signal convolved with the first part of the true first RIR
(which is different for each value of the desired window length
). It should be noted that with increasing , the reference

signal becomes more similar to the unprocessed microphone
signal.
As already mentioned in Section II-C, for the CS technique

multiple possible solutions exist. Out of these solutions, we have
intrusively selected the generalized eigenvector leading to the
highest PESQ score.
Furthermore, in order to evaluate the effectiveness of incor-

porating regularization in all multichannel equalization tech-
niques, a set of regularization parameters have been considered,
i.e., , and the optimal param-
eter is selected as the one leading to the highest percep-
tual speech quality, i.e., PESQ score. It should be noted that the
computation of the PESQ score for selecting the optimal regu-
larization parameter is an intrusive procedure that is not appli-
cable in practice, since knowledge of the true RIRs is required in
order to compute the reference signal and the true
EIR . However, with the aim of illustrating the full po-
tential of incorporating regularization in acoustic multichannel
equalization techniques, the results presented in Section V-B
are generated using such an optimal regularization parameter,
whereas in Section V-C the performance when using the auto-
matic non-intrusive procedure for the selection of the regular-
ization parameter will be investigated.

B. Optimal Regularization in the Presence of Channel
Estimation Errors

For the sake of clarity and in order to avoid overcrowded
plots, these simulations are structured into two parts, with a dif-
ferent normalized channel mismatch in each part. In the first
simulation, a moderate mismatch dB is consid-
ered, whereas in the second simulation a larger mismatch

dB is considered.
Simulation 1 ( dB): Fig. 3(a) depicts the EDCs

of the EIRs obtained using MINT, RMCLS, CS, and P-MINT
for ms. It can be seen that both MINT and P-MINT
fail to equalize the acoustic system, leading to an EDC that is
higher than the EDC of the true RIR . On the other hand,
RMCLS and CS are more robust, with their reverberant tails
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Fig. 3. EDC of the true RIR and EDC of the EIR obtained usingMINT, RMCLS, CS, and P-MINT (a) without regularization and (b) with optimal regularization
( dB, ms).

Fig. 4. PESQ score of the first microphone signal and PESQ score of the system’s output obtained for several using MINT, RMCLS, CS, and
P-MINT (a) without regularization and (b) with optimal regularization ( dB).

being below dB. In order to evaluate the effectiveness
of incorporating regularization in all equalization techniques,
Fig. 3(b) depicts the EDCs obtained using regularized MINT,
regularized RMCLS, regularized CS, and regularized P-MINT
with the optimal intrusively determined regularization param-
eter . As illustrated in this figure, the regularized MINT
technique still fails to equalize the acoustic system. On the
contrary, all regularized partial multichannel equalization
techniques are significantly more robust, providing a similar
performance in terms of reverberant tail suppression. Com-
paring Fig. 3(a) and (b), it can be noticed that a significant
improvement is obtained when incorporating regularization in
P-MINT, while even a slight performance deterioration can
be observed for RMCLS. This performance deterioration can
be explained by the fact that is selected such that the
PESQ score is maximized, imposing no other constraints on
the reverberant tail suppression. Furthermore, the performance
of CS does not change when regularization is incorporated,
since the exhaustive comparison of the PESQ scores that each
regularization parameter yields favors the intrusively selected
generalized eigenvector obtained from the CS solution, hence,

.
Since different EIRs leading to different perceptual speech

quality may have very similar EDCs (which is the case for

all regularized partial multichannel equalization techniques in
this simulation), we have also evaluated the perceptual speech
quality using PESQ for different desired window lengths

ranging from 10 ms to 50 ms. The PESQ score of the
first microphone signal is also computed in order to
determine the effectiveness of applying such dereverberation
techniques to the system. Fig. 4(a) depicts the PESQ scores
obtained for all considered equalization techniques without
regularization, whereas Fig. 4(b) depicts the PESQ scores
when regularization is incorporated. From Fig. 4(b) it can be
seen that the regularized P-MINT technique outperforms all
other investigated regularized techniques leading to the highest
PESQ score for all considered . Comparing the results in
Fig. 4(a) and (b), it is clear that incorporating regularization
yields no performance improvement for CS, whereas the per-
formance of MINT, RMCLS, and P-MINT is increased. For a
precise numerical comparison, the exact change in the PESQ
score for all considered techniques and desired window lengths
when incorporating regularization is presented in Table I, with
the maximum improvement for each desired window length
indicated in bold. Additionally, the average improvement over
all considered values is also presented in the last column.
As previously observed, regularization is particularly useful
for P-MINT, leading to an average PESQ score improvement
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Fig. 5. EDC of the true RIR and EDC of the EIR obtained usingMINT, RMCLS, CS, and P-MINT (a) without regularization and (b) with optimal regularization
( dB, ms).

Fig. 6. PESQ score of the first microphone signal and PESQ score of the system’s output obtained for several using MINT, RMCLS, CS, and
P-MINT (a) without regularization and (b) with optimal regularization ( dB).

TABLE I
PESQ SCORE IMPROVEMENT WHEN INCORPORATING REGULARIZATION IN
MINT, RMCLS, CS, AND P-MINT FOR SEVERAL ( dB)

of 1.60. Furthermore, also the regularized MINT and the
regularized RMCLS techniques lead to a higher performance
as compared to MINT and RMCLS respectively, whereas no
improvement is observed in CS.
Simulation 2 ( dB): In this simulation, similar

analysis as in Simulation 1 will be conducted for the normalized
channel mismatch dB. The EDCs obtained for
ms using MINT, RMCLS, CS, and P-MINT without regu-

larization are depicted in Fig. 5(a) whereas the EDCs obtained
when regularization is incorporated are depicted in Fig. 5(b).
From Fig. 5(a) it can be seen that similarly as in Simulation
1, MINT and P-MINT yield higher EDCs than the EDC of the
true RIR , whereas RMCLS and CS are more robust but
still fail to entirely suppress the reverberant tail. Furthermore,
Fig. 5(b) shows that regularized MINT still fails to equalize the

acoustic system as in Simulation 1. However, also the robust-
ness of the regularized partial multichannel equalization tech-
niques decreases with increasing estimation errors, with all tech-
niques achieving a low level of reverberant tail suppression. In
order to evaluate the perceptual speech quality, Fig. 6(a) and (b)
depict the PESQ scores obtained using the different techniques
without and with regularization. As shown in Fig. 6(b), the regu-
larized P-MINT technique again leads to the highest perceptual
speech quality as compared to all other investigated techniques
for all considered . Therefore even when the reverberant tail
suppression is not satisfactory and might lead to audible levels
of reverberation, the regularized P-MINT technique still yields
the highest perceptual speech quality. Furthermore, comparing
Fig. 6(a) and (b) shows that the incorporation of regularization
yields a performance increase forMINT, RMCLS, and P-MINT.
It can also be noticed that similarly to Simulation 1, the perfor-
mance of CS does not significantly improve when incorporating
regularization. The relative change in the PESQ scores when
regularization is incorporated as presented in Table II shows that
regularization is again particularly useful for P-MINT, leading
to an average improvement in the PESQ score of 0.83.
It should be noted that the regularized CS technique does

not outperform the CS technique only if the CS solution is in-
trusively selected as the generalized eigenvector leading to the
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TABLE II
PESQ SCORE IMPROVEMENT WHEN INCORPORATING REGULARIZATION IN
MINT, RMCLS, CS, AND P-MINT FOR SEVERAL ( dB)

highest PESQ score (which is inapplicable in practice). When
the eigenvector leading to the minimum -norm estimated EIR
is used (as suggested in [17]), regularized CS yields a higher
performance than CS. However, due to space constraints, these
results are not presented here.
Summarizing the simulation results, we conclude that reg-

ularized P-MINT is a robust and perceptually advantageous
equalization technique, outperforming all other considered
equalization techniques in terms of perceptual speech quality.
The large performance improvement obtained for P-MINT
when regularization is incorporated can be explained by
the significantly higher reverberant tail suppression that is
achieved. The remaining advantage that leads to regularized
P-MINT outperforming state-of-the-art techniques lies in the
direct control of the early reflections.

C. Automatic Regularization in the Presence of Channel
Estimation Errors

In this section we will investigate the performance degra-
dation for the regularized P-MINT technique when using
the non-intrusive and practically applicable procedure for
determining the regularization parameter (discussed in
Section IV) instead of . In the following, the filter norm

and the residual norm are
computed using (51) and (52) for the regularization parame-
ters . The parametric L-curve is
then constructed and the regularization parameter cor-
responding to the point of maximum curvature is determined
using the triangle method [30]. The PESQ scores obtained
using the regularized P-MINT technique with the optimal
and automatic regularization parameters for several desired
window lengths and dB are depicted in Fig. 7. As
illustrated in this figure, the performance when using is
generally similar to the performance obtained when using .
The average performance degradation over all considered
is only 0.03, implying that the automatic selection procedure
for the regularization parameter provides a nearly optimal
performance. Furthermore, the normalized mean square error
between the optimal and automatic regularization parameter
over all considered is 0.03, where the normalized error is
defined as .
Since the optimal regularization parameter heavily depends

on the channel mismatch and the considered acoustic system,
we have also evaluated the performance when using for
different , i.e., dB dB dB , and
for different acoustic systems ( ms, ms,

ms). The desired window length in this simulation
is set to ms. Fig. 8 depicts the PESQ scores ob-
tained using the optimal and the automatic selection procedure

Fig. 7. PESQ score of the first microphone signal and PESQ score of the
system’s output obtained for several using regularized P-MINT with

and regularized P-MINT with ( dB).

Fig. 8. PESQ score of the first microphone signal and PESQ score of
the system’s output obtained for different acoustic systems and several

using regularized P-MINT with and regularized P-MINT with
( ms).

for the different normalized channel mismatch values and
acoustic systems. It can be seen that for all considered acoustic
systems and most channel mismatch values, very similar
performance is achieved by both regularization parameters,
whereas for some scenarios a small performance degradation
can be noticed when using . The average performance
degradation over all channel mismatch values when using

is 0.11 ( ms), 0.18 ( ms), and 0.12
( ms). Furthermore, the normalized mean square
error between the optimal and automatic regularization param-
eter over all channel mismatch values is 0.64 ( ms),
0.05 ( ms), and 0.05 ( ms).
Therefore, the presented results show that the automatic regu-

larization parameter in P-MINT leads to a nearly optimal perfor-
mance, making regularized P-MINT not only a robust and per-
ceptually advantageous equalization technique, but practically
applicable as well.



KODRASI et al.: REGULARIZATION FOR PARTIAL MULTICHANNEL EQUALIZATION FOR SPEECH DEREVERBERATION 1889

TABLE III
SNR IMPROVEMENT OBTAINED FOR SEVERAL USING P-MINT

AND REGULARIZED P-MINT WITH

D. Robustness in the Presence of Channel Estimation Errors
and Additive Noise

In this section we will investigate the performance of
P-MINT and regularized P-MINT when using the non-intrusive
regularization parameter in the presence of both channel
estimation errors and additive noise , with con-
sisting of microphone self-noise and diffuse background noise
recorded for the same acoustic scenario as in Section V-B.
More in particular, we will investigate the possible amplifica-
tion of this additive noise when using reshaping filters that are
designed without taking the presence of noise into account.
The noisy and reverberant signals are generated by

convolving the clean speech signal with the true measured
RIRs and adding the recorded noise . The input
broadband SNR averaged over all channels is dB,
with

(56)

Furthermore, the considered normalized channel mismatch be-
tween the true and estimated RIRs is dB. Hence, the
same reshaping filters computed in the presence of only channel
estimation errors using P-MINT and regularized P-MINT with

(cf. Sections V-B and V-C respectively) are applied to
the received microphone signals . The performance at
the output of the equalization system is evaluated in terms of
the SNR improvement as well as in terms of the perceptual
speech quality using PESQ. Table III presents the SNR improve-
ment for different values of for both considered techniques.
The presented negative SNR improvement values show that
P-MINT significantly amplifies the additive noise. However,
when regularization is incorporated, the robustness of P-MINT
to additive noise significantly increases, which can be explained
by the fact that the energy of the reshaping filters is decreased.
When the energy of the reshaping filters is lower, the amplifi-
cation of the undesired noise term in the output signal is also
smaller (cf. (38)). Furthermore, Table IV depicts the obtained
PESQ scores, where it can be seen that P-MINT leads to a lower
perceptual speech quality than the received microphone signal

. However, the automatically regularized P-MINT tech-
nique yields a higher perceptual speech quality, with a signifi-
cant improvement over .
These simulation results show that regularization is effective

in P-MINT not only to increase robustness to channel estima-
tion errors, but also to avoid amplification of the additive noise
present at the microphones.

TABLE IV
PESQ SCORE OF THE FIRST MICROPHONE SIGNAL AND

PESQ SCORE OF THE SYSTEM’S OUTPUT OBTAINED
FOR SEVERAL USING P-MINT AND REGULARIZED

P-MINT WITH

VI. CONCLUSION

In this paper we introduced the partial multichannel equal-
ization technique P-MINT, which aims to suppress the rever-
berant tail of the RIR as well as to directly control the perceptual
speech quality. Furthermore, we presented a robust extension to
P-MINT and other recently proposed multichannel equalization
techniques, i.e., RMCLS and CS, by incorporating a regulariza-
tion term in the reshaping filter design. In addition, we proposed
an automatic non-intrusive selection procedure for the regular-
ization parameter which leads to a nearly optimal perceptual
speech quality.
We have extensively investigated the effectiveness of regular-

ization both in terms of reverberant tail suppression and percep-
tual speech quality for all considered equalization techniques.
Simulation results show that the regularized P-MINT technique
with the intrusively determined regularization parameter leads
to the highest robustness and perceptual speech quality. Further-
more, simulation results demonstrate that regularization is par-
ticularly important for P-MINT, whereas for RMCLS and CS
a smaller performance improvement is achieved. Finally, it is
shown that the automatic non-intrusive procedure for the selec-
tion of the regularization parameter yields a nearly optimal per-
ceptual speech quality in regularized P-MINT.
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