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ABSTRACT 

 

This paper describes our contribution to the 2
nd

 CHiME 

challenge and focuses on the small vocabulary task, i.e. track 

one. We present a robust system combination that involves 

source separation, auditory feature extraction and a modified 

automatic speech recognition back-end. The source 

separation code is based on a non-negative matrix 

factorization approach and the presented auditory feature 

extraction method uses 2D Gabor filter functions to extract 

spectral, temporal and spectro-temporal information of the 

speech signals. In addition we describe the modifications to 

our classification back-end and discuss the achieved results. 

On the final CHiME test set the proposed system achieves a 

maximum keyword recognition rate improvement of 

50.25 % for the -6 dB SNR condition, for instance. 

 

Index Terms— CHiME challenge, non-negative matrix 

factorization, Gabor feature extraction, source separation, 

automatic speech recognition 

1. INTRODUCTION 

Automatic speech recognition (ASR) has made the leap to 

be used in many commercial systems, such as smartphones, 

personal computers and more rarely in game consoles or 

TVs. Some of these systems, especially those using distant 

microphones, have to cope with different room acoustics and 

an unknown number of real-world, i.e. possibly highly non-

stationary, noise sources. It is well known that especially 

these requirements pose a major challenge to ASR and 

signal enhancement algorithms. Development of these 

algorithms so far has not reached the goal of matching or 

even outperforming human speech recognition (HSR) [1][2]. 

The expectation that ASR should equal human performance 

in reverberant or non-stationary noise conditions still 

prevents an even larger spread of ASR technologies. 

The CHiME Speech Separation and Recognition Challenge 

is designed to represent a platform for developing, testing 

and combining a variety of algorithms that are able to cope 

with highly non-stationary real-world interferences. In the 

2
nd

 CHiME challenge the task is to recognize voice 

commands in a noisy home environment. The audio signals 

were recorded using two distant in-ear microphones of a 

manikin. The target speaker’s position is known with a small 

degree of uncertainty as head movements of the speaker are 

simulated. This property is the essential difference to the 1
st
 

CHiME challenge (with fixed location). 

This contribution focuses on the small vocabulary task (track 

one) of the 2
nd

 CHiME challenge that is based on the GRID 

corpus [3]. We present a system combination of speech 

enhancement, robust feature extraction and robust ASR 

back-end training. The speech enhancement is based on a 

source separation algorithm using a multi-level non-negative 

matrix factorization (NMF) [4] that incorporates a 

variational Bayesian inference for learning the model 

parameters including those of NMF and the sources.  The 

feature extraction method we propose for CHiME extracts 

auditorily motivated features by applying two-dimensional 

(2D) Gabor filters to a Mel-warped and log-compressed 

spectro-temporal representation [5][6]. The ASR back-end is 

based on a triphone HMM architecture utilizing maximum 

likelihood linear regression (MLLR) and maximum a 

posteriori (MAP) techniques for the speaker adaption step 

[7]. 

The paper is structured as follows: The front-end processing 

parts are explained in Section 2 and 3. Modifications of the 

ASR back-end are explained and evaluated in Section 4. 

Final experimental results combining the proposed front-end 

and back-end modules are presented in Section 5, and 

Section 6 concludes the paper. 

2. SPEECH ENHANCEMENT 

For the reduction of interfering noise, we apply a source 

separation step. With this step, we aim at separating the 

speech signal from the background sources. 

2.1. Algorithm 

For the separation of the target speech source, a general, 

fully Bayesian source separation algorithm based on the 



variational inference method is used [4]. The proposed 

model operates in the short time Fourier transform (STFT) 

domain. For J source signals in I channels, the mixing 

equation is written as 

fnfnffn sAx   (1) 

where xfn represents the I × 1 vector containing the mixture 

STFT coefficients, sfn represents the J × 1 vector consisting 

of the sources, Af represents the I × J complex valued mixing 

matrix and ԑfn represents the noise. In this formulation, f is 

the frequency index, n the time frame index, i the channel 

index and j the source index. 

We assume that each source signal sj,fn follows a zero-mean 

complex-valued Gaussian distribution with variance vj,fn 

given as 

 fnjfnj vNs ,, ,0  (2) 

The source variances vj,fn, which encode the spectral power, 

are decomposed via an excitation-filter model using a multi-

level NMF model [8]. This framework makes it possible to 

incorporate a wide range of constraints about the sources. 

For more details about how to constrain spectral and 

temporal structures, see [8]. 

In a fully Bayesian treatment, we need to define the prior 

distributions of the model parameters. As we do not have 

reliable prior knowledge about any of the model parameters, 

we define the multilevel NMF parameters of the source 

variances as well as the mixing system to follow the non-

informative priors. 

Using this scheme, we aim at obtaining the posterior 

distributions of the model parameters, particularly those of 

the sources. As an exact Bayesian inference is intractable, 

we used a variational Bayesian (VB) approximation. In this 

approximation, we employ the generalized inverse Gaussian 

distribution for the multilevel NMF parameters of the source 

variances that allows for obtaining closed form update 

equations for the variational parameters [4][9]. 

2.2. Initialization and Separation 

We follow a very similar scheme as Ozerov et al. (2011) 

[10] for the initialization. In order to extract the spectral 

characteristics of each speaker properly, we pre-train one 

NMF model per speaker on the reverberated training 

samples. Furthermore, we also pre-train one mixing matrix 

for the development and test set using four randomly 

selected utterances from each speaker in the reverberated 

training set (i.e. overall 136 utterances). 

We assume that two background sources and one target 

speech source is active. A two-step separation is performed. 

In the first step, the background sources are separated. Using 

the annotation files, 10 seconds of data before and after the 

target speech source are extracted from the background 

samples. The mixing matrices and the NMF components are 

initialized to random values and a maximum of 500 VB 

iterations are performed. In the second step, the trained 

mixing matrices and NMF components of the background 

sources from the first step are kept. The mixing matrix of the 

target speech source is initialized with the pre-trained 

mixing matrix. Similarly, the pre-trained speaker model is 

used for initializing the NMF components of the target 

speech source. In this step a maximum of 1000 VB iterations 

are performed. The mean source estimates are saved to be 

used in the following steps. 

3. AUDITORY FEATURE EXTRACTION 

In [5], a feature extraction scheme that encodes spectro-

temporal modulation patterns in high-dimensional feature 

vectors was proposed. It was shown that this type of 

features, called GBFB (Gabor filter bank) features, can 

improve the robustness of ASR systems. A MATLAB 

reference implementation of the GFBF is available online 

[11]. 

GBFB features are extracted by applying a set of 2D Gabor 

filters to a spectro-temporal representation of a signal. A log 

Mel-spectrogram is employed for the spectro-temporal 

representation because it incorporates several properties of 

the auditory system (i.e., non-linear frequency scaling and 

compression of amplitude values) and is widely used in 

ASR. In contrast to the GBFB reference implementation 

[11] that uses a log Mel-spectrogram with 23 Mel-bands 

between 64 Hz and 4 kHz, 10 ms window shift, and 25 ms 

window length, we extend the frequency range to 8 kHz and 

increase the number of Mel-bands to 31. This results in the 

lower 23 Mel-bands to cover the frequency range from 

64 Hz to ≈4 kHz. 
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 (3) 

Equation (3) defines the 2D Gabor filter function that is 

applied to a spectro-temporal representation by calculating 

the 2D convolution. The filter consists of the product of a 

2D sinusoidal s(k,n) function and a 2D envelope function 

h(k,n), where k and n denote the discrete frequency and time 

index, and νk and νn correspond to the number of semi-cycles 

under the envelope in spectral and temporal dimension. The 

spectral and temporal modulation frequencies ωk and ωn 

allow the 2D Gabor function to be tuned to particular 

directions of spectro-temporal modulation, including 

diagonal patterns. The usage of this kind of filter is 

motivated by their similarity to spectro-temporal patterns of 

neurons in the auditory cortex of mammals [12]. 



The shapes of the different 2D GBFB filters are shown in 

Figure 1. While purely spectral filters (ωn = 0) are sensitive 

to spectral patterns like vowels, purely temporal filters (ωk = 

0) are sensitive to broad-band onsets such as consonants. 

The spectro-temporal modulations are sensitive to frequency 

changes over time, like formant transitions. Duplicate filters 

that occur due to symmetry of the GBFB are removed from 

the filter set. 

In order to reduce correlations and the number of features at 

the same time, the GBFB filtered log Mel-spectrogram is 

critically sub-sampled in spectral dimension [6]. 

To use 2D Gabor filters for feature extraction a set of filters 

with different parameters have to be identified to capture the 

different dynamics caused by consonants, vowels, and 

format transitions. If zero-phase-filters are used as done in 

this work, four parameters need to be determined for each 

Gabor filter (ωk, ωn, νk, νn). Hence, with a set of 30 Gabor 

filters at least 120 Parameters would have to be estimated. 

In [6] this problem is solved by building a filter bank of 2D 

Gabor filters where each filter covers a range of spectro-

temporal modulation frequencies. In this way many 

parameters are shared and depend on other parameters, 

reducing the total number of parameters to eight. These 

parameters were then optimized on the Aurora 2 task, a digit 

in noise recognition task [13], and remain unchanged in this 

work. The resulting center modulation frequencies and 41 

filter shapes are depicted in Table 1 and Figure 1. 

A feature vector with 455 dimensions is obtained by filtering 

a log Mel-spectrogram with 31 channels using each of the 41 

2D Gabor filters and application of the critical sub-sampling. 

Despite the high dimensionality, GBFB features mesh very 

well with standard GMM-HMM back-ends and do not need 

to be mapped to a lower dimensional space. This is a result 

of limiting correlation between feature dimensions by the 

critical sub-sampling and restricting the overlap of the 

Gabor filters in the temporal modulation frequency domain. 

In this work, mean and variance normalization (MVN) are 

applied to the GBFB feature vector on an utterance basis as 

it was shown to improve the robustness towards additive 

noise [5]. The resulting feature set is referred to as GBFB-

MVN in the following. 

4. ASR BACK-END 

A properly trained ASR back-end is at least as important as 

a robust front-end processing to achieve noise robust ASR 

rates. We employ a speech recognizer based on HTK [7] 

that uses context dependent triphone HMMs with 3 states 

per model and 7 Gaussian mixture components per state. 

Besides the phone models we also trained a silence and a 

short pause model. After the training of speaker-independent 

models the MLLR and MAP based speaker adaptation 

techniques [7] are employed to obtain speaker-dependent 

HMM models for all 34 speakers. The MLLR adaptation 

involves two passes. On the first pass a global adaption is 

performed that is used as an input for the second pass using 

a regression class tree with up to 32 leaf nodes. After the 

MLLR adaptation one iteration of MAP adaptation is 

applied to the means and mixture weights of the GMM-

HMM models. 

Multi-condition training is a well-known and effective 

technique to improve the noise robustness of a recognizer. A 

reverberated (REV), a noisy isolated (ISO) and a clean 

training set is provided with the challenge data. However, 

ASR systems can benefit from even more and different noise 

examples during the training procedure. This is the reason 

why we created a new multi-condition training set (MCT) by 

mixing the reverberated training data with the noise 

backgrounds that are provided in the CHiME challenge data. 

We generate six SNR conditions ranging from -6 to 9 dB 

that have been made without level adjustment but by 

searching for a random suitable noise section. In addition the 

noise-free reverberated utterances are maintained in the new 

multi-condition set resulting in seven times the original 

 

Figure 1: Real components of Gabor filters used for the 

filter bank, arranged by temporal modulation frequencies 

(MFs) ωn and spectral MFs ωk. Within each tile the 

horizontal and vertical axis represent time and frequency, 

respectively. Duplicate filters that occur due to symmetries 

in the GBFB are greyed out and not used. 

Table 1: Gabor filer bank center modulation frequencies. 

Spectral MFs ωk  
ch

cyc  

0.000, 0.0293, 0.0599, 0.1223, 0.2500 

Temporal MFs ωn [Hz] 

0.00, 6.19, 9.86, 15.70, 25.00 

 



amount of training data. The influence exerted by the 

amount of noisy training data and by different back-end 

modifications is illustrated in Table 2 with respect to the 

keyword recognition rates (KRRs). For the presented 

experiments we used the baseline MFCC features proposed 

by the CHiME challenge that use 26 Mel channels, 12 

cepstral and one energy coefficient, delta and acceleration 

coefficients and cepstral mean normalization (CMN). 

First, it can be seen that triphone HMMs promise a benefit 

over the whole-word HMM architecture. This benefit seems 

to decline with increasing the extrinsic variance in the 

training data, which can be explained by the fact that 

phoneme combinations are smaller units of speech than 

words and thus are more frequent events providing 

inherently a larger extrinsic and intrinsic variance. 

Moreover, the benefit due to adding more extrinsic 

variability to the training data by adding different noise 

conditions does not result in an equally increasing 

improvement and drops conspicuously fast as can be seen in 

Table 2 by comparing the different training conditions. This 

particularly applies if a more advanced speaker adaptation 

method is used such as MLLR and MAP adaptation for 

example. These adaptation methods adapt only the means of 

the GMM-HMM models to the speaker specific 

characteristics, whereas the variances and transition 

probabilities remain unaffected. This is crucial, since only a 

limited number of training files for each speaker is available, 

and thus the intrinsic and extrinsic variances become very 

limited for a small subset of the whole training set. 

In the further reading we only publish the ASR 

improvements of the best back-end settings we evaluated in 

this section, i.e. the triphone HMM recognizer with the 

MLLR plus MAP speaker adaption. However, the gain in 

recognition performance by adding a better front-end 

processing to the back-end should remain comprehensible, 

even if the results of every single processing block 

combination are not shown here. 

5. EXPERIMENTS 

Experiments and results shown in this paper are all carried 

out according to the guidelines of the CHiME challenge 

[14]. Therefore we did not exploit any information about the 

signal-to-noise ratio (SNR), the fact that the same utterances 

are used at each SNR and each available training and test 

set, and the fact that the same noise backgrounds are used in 

the development and the test set. The final keyword 

recognition rates are obtained using the scoring scripts 

provided by the CHiME challenge website [14]. 

5.1. Robust Feature Extraction 

The GBFB-MVN features are evaluated and compared with 

MFCC features on the CHiME speech recognition task. For 

the MFCC optimization we increase the number of Mel 

channels to 30 and use a band limitation for the Mel filter 

bank with a lower cut-off frequency of 100 Hz and an upper 

cut-off frequency of 5500 Hz. This domain is chosen, since 

it approximates the frequency range where speech is most 

prominent. The new MFCC features consist of 13 cepstral 

coefficient including the 0
th

 coefficient plus the delta and 

double-deltas. In addition MVN is performed on the MFCC 

features for each utterance. The CHiME baseline MFCCs 

(MFCCs), the proposed MFCC changes (MFCC-MVN) and 

the GBFB-MVN features are compared in terms of noise 

robustness in Table 3. 

It can be seen that the proposed changes of the MFCC setup 

already cause a significant improvement over the baseline 

MFCCs. The average improvement amounts 5.5 % for the 

REV, 2.84 % for the ISO and approximately 2 % for the 

MCT set, whereby a maximum gain of up to 10 % is 

achieved for the lowest SNR conditions, i.e. -6 and -3 dB. 

If we compare the GBFB-MVN with MFCC features it 

becomes obvious that the GFBF-MVN considerably 

Table 2: ASR back-end evaluation. Results are given in keyword recognition rates. STD denotes the standard CHiME 

speaker adaptation, REV denotes the noise-free reverberated training set, ISO denotes the noisy isolated set and MCT 

denotes the extended multi-condition training set. 

HMM 

Architecture 

Speaker 

Adaptation 

Training 

Condition 

Development Set [%] Test Set [%] 

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB 

word STD REV 32.08 36.33 50.33 64.00 75.08 83.50 32.17 38.33 52.08 62.67 76.08 83.83 

word STD ISO 49.75 57.92 67.83 73.67 80.92 82.67 49.08 58.83 67.33 75.08 79.17 82.83 

word STD MCT 62.50 67.67 77.00 84.08 89.42 90.33 64.33 70.17 78.92 85.42 89.58 91.33 

word MLLR+MAP REV 46.50 48.75 60.92 73.92 82.33 89.83 44.17 49.17 62.92 72.58 82.50 89.42 

word MLLR+MAP ISO 62.92 68.58 77.08 83.67 86.67 89.83 61.42 69.67 77.33 82.58 88.33 89.92 

word MLLR+MAP MCT 65.25 71.17 78.58 86.75 91.42 92.83 66.33 72.25 82.08 86.58 91.33 92.50 

triphone STD REV 38.42 41.33 53.92 67.58 74.83 82.83 38.00 38.83 52.75 63.75 75.67 85.92 

triphone STD ISO 49.92 57.58 67.00 74.08 78.92 82.33 50.50 57.75 68.17 74.83 78.08 82.83 

triphone STD MCT 62.42 69.33 77.67 85.25 90.92 91.92 64.33 70.33 78.75 87.25 90.00 92.75 

triphone MLLR+MAP REV 52.00 56.58 68.00 77.83 83.92 90.75 48.83 55.67 68.75 78.83 85.58 91.50 

triphone MLLR+MAP ISO 67.25 70.67 79.83 84.67 89.17 91.42 65.17 73.00 80.50 85.92 88.17 90.00 

triphone MLLR+MAP MCT 68.17 73.25 80.50 87.75 92.17 93.25 67.42 73.25 81.17 88.00 91.17 93.42 

 



outperform even the enhanced MFCC setup. For the REV 

training condition an average gain in keyword recognition 

rates of 3.21 % can be observed compared to the MFCC-

MVN setup. It is worth noting that the gain is distributed 

relatively evenly over all SNR conditions and does not 

decrease at higher SNRs as it is the case for the MFCC-

MVN features compared to the baseline MFCCs.  

For the noisy training sets the robustness of the GBFB-MVN 

features becomes even more significant. An average increase 

in KRRs of 3.74 % and 4.43 % compared to MFCC-MVN 

features and 6.58 % and 6.38 % compared to the baseline 

MFCCs can be assessed on the ISO and MCT set, 

respectively. 

Besides the presented ASR features we investigated also 

other popular feature extraction methods on the CHiME 

task, such as the power normalized cepstral coefficients 

(PNCCs) [15], RASTA-MFCCs [16] and amplitude 

modulation filter sets [17][18]. Without being able to 

present all results here in detail due to space constraints, no 

other method that was tested could outperform the GBFB-

MVN results on the CHiME track one task. We believe that 

a major difference between the tested feature extraction 

methods is the fact that the GBFB-MVN features have a 

frequency band selective output, whereby the other methods 

rely on the Cepstrum and thus do not have this 

characteristic. This GBFB property may help if just single 

frequency bands are corrupted while others remain largely 

undisturbed. 

5.2. Source Separation 

The speech enhancement is based on the source separation 

approach presented in Section 2. Table 3 shows the ASR 

results that are obtained by using the proposed source 

separation method. It can be seen that the NMF based source 

separation substantially contributes to improve the ASR 

robustness in noisy environments with an unknown number 

of interfering sources. It turns out that the presented source 

separation can work together with different feature 

extraction methods and that these modules can take 

advantage of the each other. By regarding the results of the 

Table 3: ASR front-end evaluation. Results are given in keyword recognition rates. The total average relates to the 

development and test set. The ASR back-end here consists of triphone HMMs with MLLR+MAP for the speaker adaptation.  

ASR Features 
Source 

Separation 

Training 

Condition 

Development Set [%] Test Set [%] Total 

average -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB 

MFCCs no REV 52.00 56.58 68.00 77.83 83.92 90.75 48.83 55.67 68.75 78.83 85.58 91.50 71.52 

MFCC-MVN no REV 57.17 66.58 74.58 83.33 88.75 92.50 58.92 64.00 74.75 83.58 88.00 92.25 77.03 

GBFB-MVN no REV 61.25 68.92 78.00 85.58 91.33 94.58 62.42 68.83 78.25 86.58 92.33 94.83 80.24 

MFCCs no ISO 67.25 70.67 79.83 84.67 89.17 91.42 65.17 73.00 80.50 85.92 88.17 90.00 80.48 

MFCC-MVN no ISO 70.75 77.33 82.58 85.75 89.75 91.92 71.25 76.92 84.17 87.25 90.25 91.92 83.32 

GBFB-MVN no ISO 75.17 81.50 85.75 91.08 92.92 94.17 75.42 80.58 88.17 91.92 93.08 95.00 87.06 

MFCCs no MCT 68.17 73.25 80.50 87.75 92.17 93.25 67.42 73.25 81.17 88.00 91.17 93.42 82.46 

MFCC-MVN no MCT 71.17 78.00 82.67 88.25 92.17 93.25 71.75 78.00 83.83 89.08 91.83 93.00 84.42 

GBFB-MVN no MCT 77.92 83.00 88.25 92.42 95.33 96.92 76.08 83.67 88.58 92.58 95.42 96.00 88.85 

MFCCs yes REV 66.25 71.67 78.25 85.33 89.08 89.17 64.58 71.50 79.17 84.33 87.00 90.75 79.76 

MFCC-MVN yes REV 69.50 76.00 82.00 86.92 89.58 91.67 69.00 74.83 82.25 86.42 90.08 91.92 82.51 

GBFB-MVN yes REV 70.83 75.33 84.50 88.92 92.42 94.83 70.50 76.67 85.67 88.92 92.17 94.42 84.60 

MFCCs yes ISO 77.75 80.75 85.67 89.08 90.75 91.50 75.17 79.75 85.83 88.00 90.50 92.00 85.56 

MFCC-MVN yes ISO 76.33 81.58 86.75 89.17 91.17 91.42 77.08 80.25 87.00 89.75 91.08 91.67 86.10 

GBFB-MVN yes ISO 78.42 83.50 87.83 91.92 92.92 93.17 79.17 84.50 89.08 93.17 93.92 94.25 88.49 

MFCCs yes MCT 77.33 81.33 85.75 90.33 91.67 93.08 74.42 79.42 87.17 89.25 91.08 92.92 86.15 

MFCC-MVN yes MCT 76.50 84.50 88.08 91.58 93.33 93.67 78.42 83.00 87.92 90.33 92.83 93.67 87.82 

GBFB-MVN yes MCT 80.50 85.75 89.50 94.25 94.25 96.58 82.42 86.00 90.58 93.75 94.83 95.92 90.36 

 

 
Figure 2: Final ASR results compared to human speech 

recognition performance and to the CHiME baseline results. 

The results relate to the test set. BE denotes the ASR back-

end modifications and SSEP denotes the source separation. 



REV training condition it can be noted that the source 

separation slightly decreases the ASR results for the 9 dB 

SNR condition, whereby the results of the lower SNR 

conditions are increased. This is due to the fact that speech 

enhancement algorithms in practice can cause distortions to 

the desired signal. To reduce the influence of this property, 

we also apply the speech enhancement to the noisy training 

data in order to adapt the acoustic models to the 

characteristics of the noise reduction. 

For the baseline MFCCs the source separation affects an 

average gain in KRRs of 8.24 % for the REV, 5.08 % for the 

ISO and 3.69 % for the MCT training condition. For the 

GBFB-MVN features the average gain is slightly less with 

4.36 % (REV), 1.43 % (ISO) and 1.51 % (MCT).  

Figure 2 illustrates the ASR results of our different system 

modules for the REV and ISO training sets and compares the 

KRRs to HSR performance and to the CHiME ASR 

baseline. 

6. CONCLUSION 

The proposed ASR system could substantially improve the 

keyword recognition rates on the small vocabulary task of 

the 2
nd

 CHiME challenge. We obtained an average 

recognition score of 90.14 % on the development set and 

90.58 % on the final test set, which is 33.06 % above the 

ASR baseline results. Each of the major system changes, 

which include source separation, robust feature extraction 

and back-end modifications, could themselves and in 

combination contribute in great extent to the mentioned 

improvements. This indicates that each of the methods may 

have different strengths and properties that can be combined. 
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