
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TRANSIENT NOISE REDUCTION USING NONNEGATIVE MATRIX FACTORIZATION
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ABSTRACT

Reducing highly non-stationary transient noise, such as keyboard
typing noise, remains a challenging problem for many single-
channel speech enhancement algorithms. This paper proposes two
approaches based on nonnegative matrix factorization (NMF) and
probabilistic latent component analysis for transient noise reduc-
tion using a pre-trained transient noise dictionary and a universal
speaker-independent speech dictionary. In addition, we develop
an NMF-based speech enhancement scheme to simultaneously re-
duce transient and non-transient background noise, in which a
low-dimensional dictionary is learnt from the noisy observations to
model the background noise. We exploit the temporal dependencies
of speech and background noise to design and apply informative
priors via a probabilistic framework, while ignoring the temporal
dynamics of the transient noise. Experimental results show that
the proposed algorithms can improve the perceptual evaluation of
speech quality (PESQ) up to 1.2 MOS for the keyboard typing noise.

Index Terms— nonnegative matrix factorization, probabilistic
latent component analysis, impulsive noise, transient noise

1. INTRODUCTION

Single-channel speech enhancement is a widely investigated prob-
lem, which however has not been completely solved. Many speech
enhancement approaches have been developed in the past that
work quite well for stationary noise, e.g., spectral enhancement
approaches [1, 2]. These methods typically require an estimate of
the noise power spectral density (PSD), which is difficult to obtain
if the noise is highly non-stationary [3].

Reducing transient noise, such as the sound of keyboard typ-
ing or machinegun noise, is a noise reduction problem where the
noise characteristics vary rapidly, and therefore, accurately estimat-
ing the noise PSD is very difficult. Accordingly, traditional spec-
tral enhancement schemes can not be employed to effectively reduce
transient noise and alternative approaches have been developed for
this purpose. For example, a transient noise pulse removal system
has been proposed in [4], where the presence of the noise is first de-
tected and then a matched filter is used to remove the noise. Another
phase-based tapping noise detection and suppression approach has
been proposed in [5].

Alternatively, supervised noise reduction methods can provide a
promising framework to reduce transient interference. In these meth-
ods, the characteristics of different noise types are first learnt using
training samples and are then used to denoise an observed noisy sig-
nal. Following this idea, a supervised method has been proposed
in [6], where the noise spectral vectors from some training data are
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Fig. 1: Block diagram of transient and background noise reduction
using Bayesian NMF. The noisy magnitude spectral vector yt is ap-
proximated as Bvt, where B and vt denote the NMF dictionary and
NMF coefficients vector, respectively.

used to construct an affinity matrix between the noise and the noisy
observation. A low-rank approximation of this matrix is then used to
obtain an estimate of the noise spectral component. In this paper, we
develop supervised transient noise reduction methods using nonneg-
ative matrix factorization (NMF) [7], where the speech, the transient
noise, and the remaining background noise signals are modeled by
low-rank representations.

Recently, NMF-based approaches using probabilistic latent
component analysis (PLCA) [8] and a Bayesian formulation of NMF
(BNMF) [9] have been developed to exploit temporal dependencies
of the signals. In [9], the posterior distributions of the dictionaries
are obtained using speech and noise training data. The clean speech
DFT coefficients are then obtained by combining a minimum mean
square error (MMSE) estimate of the speech DFT magnitudes with
the noisy phase. An important aspect of this approach is that tem-
poral dependencies are used to construct informative priors for the
NMF coefficients (the coefficients corresponding to the NMF dic-
tionary elements). Experimental results in [9] showed that for noise
types that are more stationary than the speech signal, e.g., babble
or traffic noise, a flat prior for the speech NMF coefficients gives a
better performance. Hence, informative priors were only used for
the noise NMF coefficients [9].

In this paper, we propose supervised PLCA and BNMF based
denoising approaches to reduce highly non-stationary transient
noise. In addition, we develop a new method to simultaneously
reduce transient and non-transient background noises using NMF.
Fig. 1 shows a block diagram of the proposed BNMF-based speech
enhancement approach, where the transient noise and (speaker-
independent) speech NMF models are learnt offline, while the
background noise NMF model is learnt online from the noisy ob-
servations. Both proposed methods exploit the temporal dynamics
of the speech and noise signals, where we use the realistic assump-
tion that transient noise is more non-stationary than speech, which
in turn is assumed to be more non-stationary than the background
noise. Accordingly, we use flat priors for the transient noise NMF
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coefficients, while for the background noise and the speech (in
contrast to [9]) we exploit temporal correlations to set informative
priors. This process is in principle similar to the bandpass filtering in
RASTA [10] and the approach used in [11]. Our experiments with
keyboard and machinegun transient noises at different signal-to-
noise ratios show that both proposed methods lead to a good speech
enhancement performance, where the BNMF scheme outperforms
the PLCA approach.

2. SIGNAL MODEL

We consider a single-channel noise reduction problem with addi-
tive highly non-stationary transient and relatively more stationary
background noise. All signals are transformed to the time-frequency
domain by applying the discrete Fourier transform (DFT) to short
(overlapping) signal frames. Let ykt denote the noisy DFT magni-
tude at frequency bin k and time frame t. Similarly, let skt, nkt, and
xkt denote the clean speech, background noise, and transient noise
DFT magnitudes, respectively. Similarly to [8, 9], we assume that
the DFT magnitudes of speech and noise add up to obtain the noisy
DFT magnitudes. This can be formulated in a vector form as:

yt = st + nt + xt, (1)

where yt = [y1t, y2t . . . yKt]
⊤, ⊤ denotes transpose, and K is the

number of frequency bins. st, nt, and xt are defined similarly.
We use NMF to approximate each of these signals by a low-

rank representation. For example, S ≈ B(s)V(s), where S is the
K × T speech magnitude spectrogram where T denotes the number
of speech training frames, B(s) is the K × I(s) speech dictionary,
and V(s) is the I(s) ×T speech NMF coefficient matrix. The model
order I(s) is chosen such that I(s) < min (K,T ) and thus the fac-
torization yields a low-rank approximation of the input matrix. The
noisy DFT magnitudes can now be approximated as

yt ≈
î
B(s) B(n) B(x)

ó î
v
(s),⊤
t v

(n),⊤
t v

(x),⊤
t

ó⊤
= Bvt, (2)

where B(n) and B(x) represent the background noise and the tran-
sient noise dictionaries, and vt denotes the NMF coefficient vector
corresponding to the t-th frame. All vectors vt for t = 1, . . . T are
stacked in a matrix denoted by V.

In this paper, we are interested to obtain an estimate of the clean
speech DFT magnitude st given yt, and the speech and transient
noise dictionaries B(s), and B(x). We first learn these dictionaries
using speech and transient noise training data, whereas the NMF
coefficient vector vt and the background noise dictionary B(n) are
updated online. After computing an estimate of the clean speech
magnitude st, the enhanced speech signal is obtained using the noisy
phase, inverse DFT, and overlap-and-add framework.

3. NMF BASED SPEECH ENHANCEMENT

The proposed speech enhancement algorithms using PLCA and
BNMF are explained in this section. In subsections 3.1 and 3.2, we
assume that the dictionary B is given, while in subsection 3.3, we
explain how B is obtained and updated over time.

3.1. Enhancement Strategy using PLCA

We use the dynamic PLCA approach proposed in [8], which is based
on the following state-space representation:

E (vt) = Av̂t−1, (3)
yt ∼ multinomial (Bvt) , (4)

where A is the autoregressive coefficient matrix that is learnt simi-
larly to [8], E(·) denotes the expected value, v̂t−1 is the estimated
NMF coefficient vector at time t − 1, and ∼ indicates that yt is
sampled from the multinomial distribution with the given parameter.

Following [8], we use a filtering approach to estimate vt that is
written as:

v̂t =
(Av̂t−1)

β ⊙ ṽt∑
i (Av̂t−1)

β ⊙ ṽt

, (5)

where (·)β and ⊙ denote element-wise power and product operators,
respectively, ṽt is the obtained NMF coefficient vector by apply-
ing standard PLCA [12] on yt, and β specifies the signal-dependent
prior strength. We use a single parameter β(s) < 1 for all speech
NMF coefficients while we ignore the temporal dynamics of the tran-
sient noise signal and set β(x) = 0 for all transient noise NMF coef-
ficients.

After estimating vt using (5), the speech DFT magnitudes are
estimated using a gain function that is obtained by dividing the
speech NMF approximation B(s)v̂

(s)
t by the input NMF approxi-

mation Bv̂t.

3.2. Enhancement Strategy using BNMF

Similarly to [9], we assume that ykt is sampled from a Poisson dis-
tribution whose mean is given by the kt-th element of BV. This
is equivalent to ykt =

∑
i zkit in which zkit are a set of Poisson-

distributed hidden variables with mean values given by bkivit. We
further assume that b and v are random variables with gamma prior
distributions, which is a common choice for nonnegative data.

The first step of the enhancement algorithm is to apply BNMF
on yt to obtain the posterior distribution of the NMF coefficient vec-
tor vt, i.e., f(vt | yt,B). Since obtaining the exact posterior dis-
tribution is intractable, a variational Bayes (VB) approach has been
proposed in [9] that approximates f(vit | yt,B) by a gamma distri-
bution. The utilized VB approach is an iterative scheme that maxi-
mizes a lower bound on the marginal log-likelihood of the observa-
tions.

In the second step of the enhancement phase, the mean square er-
ror E((skt− ŝkt)

2) is minimized to obtain an estimate of the speech
DFT magnitude ŝkt. The MMSE estimate is given by the mean of
the posterior distribution of skt and can be derived similarly to [9]
to obtain (6).

In order to use the temporal dependencies of the speech and the
noise signals, we assume that the mean of the NMF coefficients vit
can be modeled using an autoregressive model, i.e.,

E (vit) =

t−1∑
m=1

(1− α)αm−1v̂i(t−m),

f (vit) = gamma (ϕi, E (vit) /ϕi) , (7)

ŝkt = E (skt | yt) =

∑
i e

E
(
log b

(s)

ki
+log v

(s)
it

|yt

)
∑

i e
E
(
log b

(s)

ki
+log v

(s)
it

|yt

)
+
∑

i e
E
(
log b

(n)

ki
+log v

(n)
it

|yt

)
+
∑

i e
E
(
log b

(x)

ki
+log v

(x)
it

|yt

) ykt. (6)
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where α < 1 specifies the AR parameters, v̂i(t−m) is the mean of
the posterior distribution f(vi(t−m) | yt−m,B), and gamma(a, b)
is a gamma distribution with a and b denoting the shape and scale
parameters, respectively. Note that the first line in (7) is equivalent
to E(vit) = αE(vi(t−1)) + (1 − α)v̂i(t−1). In addition, ϕi is a
signal-specific parameter which is related to the stationarity of the
signal. We use a single shape parameter ϕ(s) for all speech NMF co-
efficients. Similarly, two different shape parameters ϕ(n) and ϕ(x)

are used for the NMF coefficients corresponding to the background
and transient noises. An initial value for these parameters can be
obtained by examining the posterior distributions of the NMF coef-
ficients of the training data but further tuning might be required to
obtain the best performance [9].

As mentioned earlier, when no transient noise is present, set-
ting a flat prior for the speech NMF coefficients, which corresponds
to setting the shape parameter ϕ(s) to a very small positive number,
yields the best performance [9]. In this case, the corresponding NMF
coefficients will take maximum likelihood (ML) estimates. How-
ever, when transient noise that is more non-stationary than speech
is present, exploiting the temporal correlations in the speech signal
is also beneficial (cf. Section 4). For this purpose, we use a larger
value for ϕ(s). In our experiments, we set ϕ(x) to a very small pos-
itive number (corresponding to a flat prior), while ϕ(s) was set to
0.25.

3.3. Dictionary Learning

In the previous subsections we assumed that the dictionaries B(s),
B(x), and B(n) are given. In the following we discuss how these
dictionaries are learnt and updated.

First, the speech dictionary B(s) is learnt using a large speech
corpus with different speakers to make it universal and speaker-
independent. Let us denote the magnitude spectrogram of the train-
ing data by S. We use PLCA or BNMF to obtain S ≈ B(s)V

(s)
. In

the case of BNMF, we use a variational Bayes approach to obtain the
posterior distribution of B(s). The dictionary B(s) (or the posterior
distribution of B(s)) is then held fixed during the enhancement.

The transient noise dictionary B(x) is learnt using samples from
each individual transient noise type and is therefore noise-dependent.
The learning mechanism is similar to that of B(s). During the en-
hancement phase, we assume that we know the noise type and we se-
lect the proper dictionary to enhance the noisy signal. Using a noise-
independent dictionary for the transient noise, or updating B(x) on-
line remains an open question for further research.

Unlike B(s) and B(x), the background noise dictionary B(n) is
learnt online using the noisy observations, cf. Fig. 1. This dictionary
is updated such that it captures the structure of the remaining back-
ground noise that is assumed to be more stationary than the speech
signal. Our online dictionary learning scheme is based on a sliding
window concept [9]. Hence, recent noisy frames are first stored in
a buffer. Then, a number of these frames with lowest energies are
chosen and collected in a matrix denoted by N. Moreover, to en-
sure that the background noise dictionary is updated smoothly over
time, the current estimate of B(n) is used to construct an informa-
tive prior to be used in the new estimation problem. In the BNMF
approach, the prior distribution for the noise dictionary is updated
similarly to the first line of (7). Then, BNMF is applied to N and us-
ing the variational Bayes method the posterior distribution of B(n) is
computed while the other dictionaries are held fixed. A similar pro-
cedure can be adapted for the PLCA method. More details about the
online learning approach can be found in [9]. Moreover, a Matlab
implementation of this algorithm is available in [13].

4. EXPERIMENTAL RESULTS

We evaluated the proposed NMF-based transient noise reduction al-
gorithms for keyboard typing and machinegun noises taken from the
Sound Ideas and NOISEX databases [14, 15], respectively. The sig-
nals were divided into two disjoint training and testing sets. The
dictionary size was set experimentally to obtain the best results. For
the BNMF models, we learned 10 and 5 elements per dictionary for
keyboard and machinegun noise types, respectively, while for the
PLCA models we learned 30 elements for both noise types. For
both BNMF and PLCA speech models, 60 dictionary elements were
learnt for both BNMF and PLCA speech models using the training
sentences from the TIMIT database [16]. The test speech signal was
obtained by concatenating 20 sentences uttered by different speakers
from the core test set of the TIMIT database. All signals were down-
sampled to 16 kHz, and the signal synthesis was performed using
the overlap-add procedure using a frame length of 512 samples with
half-overlapped Hann windows.

First, the enhancement performance is assessed by comparing
the spectrograms of the noisy and the enhanced speech signals.
Fig. 2 shows the spectrograms and waveforms of the noisy, clean,
and enhanced speech signals uttered by a female speaker. In this
example, no stationary background noise is present and keyboard
typing noise is added to the clean speech signal at 5 dB signal-
to-noise ratio, which is denoted by SNRtr = 5 dB. The enhanced
signals using the BNMF and the PLCA approaches are shown in
Fig. 2b and Fig. 2c, respectively. The figure shows that both meth-
ods have significantly reduced the interfering noise while the speech
signal remains highly undistorted. Considering the BSS-Eval met-
rics [17], in this particular example the source to interference ratio
(SIR) and source to artifact ratio (SAR) are around 20 dB and 10
dB, respectively. Moreover, computing the perceptual evaluation of
speech quality (PESQ) [1] shows a significant quality improvement
(around 1 MOS in this experiment). Comparing the two enhance-
ment approaches, we can see that the BNMF method results in
a higher interference suppression and less speech distortion (e.g.,
compare the plots around 1.3 second).

Second, to have a more thorough comparison of the PLCA and
BNMF methods, we considered noisy signals at different SNRtr

for both keyboard and machinegun noises (without stationary back-
ground noise). Fig. 3 shows the SIR and PESQ improvement for
different transient noise levels. This figure compares the BNMF and
PLCA approaches with and without temporal continuity. As can be
seen, the standard PLCA and BNMF approaches yield good perfor-
mance (especially BNMF with a PESQ improvement of around 0.5
MOS). By additionally using the speech temporal dependencies (as
explained earlier, the priors corresponding to the transient noise are
set to be flat) a large improvement is observed for both approaches.
In addition, these experimental results show that BNMF leads to a
better performance than PLCA.

Finally, we consider a noise reduction problem where both tran-
sient and background noises are present. As the BNMF scheme out-
performed the PLCA approach in the previous experiment, we only
evaluate the performance of the BNMF method in this experiment.
Here, the noisy observation was a mixture of speech, keyboard typ-
ing noise (level determined by SNRtr), and white Gaussian noise
(level determined by SNRbg). We used online BNMF to learn 5 dic-
tionary elements for the background noise while the other online
learning parameters were set similarly to [9]. Table 1 shows the SIR
and PESQ improvement for different combinations of SNRbg and
SNRtr. The table additionally shows the PESQ measure evaluated
for the input noisy signals. The results show a significant amount of
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(a) Noisy signal
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(b) Enhanced signal using BNMF
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(c) Enhanced signal using PLCA
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(d) Clean speech signal

Fig. 2: Spectrograms and signal waveforms for a speech signal ut-
tered by a female speaker. The noisy signal is obtained by adding
the keyboard typing noise at 5 dB signal-to-noise ratio. The figure
shows that the noise level is significantly reduced using both PLCA
and BNMF schemes while the BNMF method results in a higher in-
terference suppression and less speech distortion, e.g., compare the
plots around 1.3 second.
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Fig. 3: SIR and PESQ improvement using the BNMF and PLCA
methods for machinegun noise (left) and keyboard typing noise
(right) for different noise levels.

Table 1: Performance measures in the presence of both keyboard
typing noise and white Gaussian noise for the BNMF method where
the non-transient background noise dictionary is learnt online from
the noisy observation.

(a) Enhancement result as a function of SNRbg with SNRtr=10 dB.

SNRbg (dB) 0 5 10 15 20 30
SIR (dB) 14.9 21.8 24.5 25.5 26 26

PESQ imp. (MOS) 0.84 0.80 0.76 0.80 0.81 0.78
Input PESQ (MOS) 1.4 1.7 1.8 1.9 1.9 1.9

(b) Enhancement result as a function of SNRtr with SNRbg=10 dB.

SNRtr (dB) 0 5 10 15 20 30
SIR (dB) 18 22 24.5 26 26.6 27

PESQ imp. (MOS) 0.97 0.93 0.76 0.61 0.55 0.51
Input PESQ (MOS) 1.2 1.5 1.8 2 2.2 2.2

noise reduction and speech quality improvement at different noise
levels. As can be seen, when the level of one of the interfering noises
becomes much smaller than the other one (e.g., SNRtr ∈ [15, 20, 30]
in Table 1b), the measures converge to some stationary values which
is mainly determined by the dominant noise signal.

5. CONCLUSION

This paper investigated the application of Bayesian NMF (BNMF)
and PLCA methods for transient noise reduction. Using the temporal
dependencies of the speech and the background noise, we designed
informative priors that significantly improved the noise reduction
performance. In our experiments, the BNMF-based approach out-
performed the PLCA-based approach both in terms of PESQ and
SIR. Additionally, we used online NMF to learn the dictionary of the
background noise and used it to enhance a noisy signal contaminated
with both transient noise and white Gaussian noise. Our experiments
show that the proposed methods can be reliably used to enhance the
noisy signal and achieve promising performance.
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