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ABSTRACT

The quality of recorded speech signals can be substantially affected
by room reverberation. In this paper we focus on a blind method for
speech dereverberation based on the multi-channel linear prediction
model in the short-time Fourier domain, where the parameters of the
model are estimated using a maximum-likelihood procedure. Con-
trary to the conventional approach, we propose to model the desired
speech signal using a general sparse prior that can be represented
as a maximization over scaled complex Gaussians. Experimental
evaluation, employing a parametric complex generalized Gaussian
prior for the desired speech signal, shows that instrumentally pre-
dicted speech quality can be improved compared to the conventional
approach.

Index Terms— Dereverberation, speech enhancement, model-
based signal processing, sparse priors

1. INTRODUCTION

Speech signals captured in an enclosed space with microphones
placed at a distance are typically corrupted by reverberation, caused
by reflections against the walls and objects within the enclosure.
Although moderate reverberation can have beneficial effects, in
severe cases it can lead to a significant decrease of speech intelli-
gibility and automatic speech recognition performance [1]. Several
speech communication applications, such as hands-free telephony,
teleconferencing and voice-controlled systems, require effective
solutions for reverberation suppression. Various dereverberation
techniques have been proposed in the literature. One class of meth-
ods is based on blind identification of the room impulse responses
(RIRs) between the source and the microphone array, followed by
multichannel equalization [2]. This strategy could, in theory, re-
sult in a perfect dereverberation. While several robust equalization
techniques were proposed [3], their performance is still affected
by RIR estimation errors, and accurate blind channel identification
remains an issue. More robust speech dereverberation techniques
are based on spectral enhancement, but with a trade-off between
speech distortion and reverberation suppression [4]. Recently, sev-
eral blind speech dereverberation techniques were proposed that do
not require any knowledge about the acoustical properties of the
enclosure [1, 5, 6].

This research was supported by the Marie Curie Initial Training Net-
work DREAMS (Grant agreement no. ITN-GA-2012-316969), and in part
by the Research Foundation Flanders (FWO-Vlaanderen) and the Cluster of
Excellence 1077 ”Hearing4All”, funded by the German Research Foundation
(DFG).

A blind dereverberation method based on multi-channel linear
prediction (MCLP) was proposed in [5], with an efficient imple-
mentation in the short-time Fourier domain (STFT). The method is
based on an autoregressive model of the reverberation process, as-
suming that the reverberant components can be predicted from the
previous samples. An additional delay is introduced in the MCLP
model to preserve the short-time correlation of the desired signal
and suppress only late reverberation [5]. In this conventional ap-
proach, the complex-valued STFT coefficients of the desired speech
signal are modeled using a time-varying Gaussian (TVG) model that
assumes that the coefficients can be modeled locally (i.e., at each
time-frequency bin) with a complex Gaussian distribution with un-
known variance. The unknown parameters of the MCLP model and
the variances of the TVG model are then estimated by an iterative
maximum-likelihood scheme.

In this paper we propose to use a general circular sparse prior
for the STFT coefficients of the desired speech signal. The prior
is represented as a maximization over scaled Gaussians [7] that can
be interpreted as a TVG model with a hyperprior on the unknown
variance. The proposed algorithm is derived in the general case, for
a wide range of possible sparse priors. However, in the experiments
we use a parametric family of complex generalized Gaussian priors
[8]. The results show that the proposed approach outperforms the
conventional approach.

The paper is organized as follows. In Section 2 we introduce
the notation and formulate the problem of speech dereverberation
using the MCLP model. Section 3 contains a brief overview of the
conventional approach, while the proposed approach is presented in
Section 4 with experimental results in Section 5.

2. PROBLEM FORMULATION

We consider a scenario where a single speech source in an enclosure
is captured by M microphones. Let s(n, k) denote the clean speech
signal in the STFT domain with time frame index n ∈ {1, . . . , N},
and frequency bin index k ∈ {1, . . . ,K}. The reverberant speech
signal observed at the m-th microphone, m ∈ {1, . . . ,M}, can be
modeled in the STFT domain as

xm(n, k) =

Lh−1∑
l=0

h∗m(l, k)s(n− l, k) + em(n, k), (1)

where hm(l, k) models the acoustic transfer function of length Lh
between the speech source and the m-th microphone, and (.)∗ de-
notes the complex conjugate operator. The additive term em(l, k)
jointly represents modeling errors and the additive noise signal. As
in [5], by assuming em(n, k) ≡ 0 the convolutive model in (1) can
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be expressed in the multi-channel linear prediction form as

x1(n, k) = d(n, k) +

M∑
m=1

D+Lg−1∑
l=D

g∗m(l, k)xm(n− l, k), (2)

with d(n, k) =
∑D−1
l=0 h∗1(l, k)s(n− l, k) being the desired speech

signal (at the reference microphone m = 1) consisting of the ane-
choic speech signal and early reflections determined by the predic-
tion delay D, and gm(l, k) denoting the regression coefficients [5].
The MCLP model in (2) can be written in a more compact form as

x1(n, k) = d(n, k) + ḡ(k)H x̄(n−D, k), (3)

where ḡ(k) ∈ CMLg is a multi-channel regression vector, and
x̄(n, k) consists of previous samples in each of theM channels, i.e.,

x̄(n, k) =
[
x̄1(n, k)T , . . . , x̄M (n, k)T

]T
, (4)

with x̄m(n, k) = [xm(n, k), . . . , xm(n− Lg + 1, k)]T .
The problem of speech dereverberation can now be formulated

as a blind estimation of the desired speech signal d(n, k) from the
reverberant observations xm(n, k), ∀m,n, k. Using (3), the desired
signal can be estimated as

d̂(n, k) = x1(n, k)− ˆ̄g(k)H x̄(n−D, k), (5)

with (̂.) denoting an estimated value. Therefore, dereverberation can
be performed by estimating the regression vectors ˆ̄g(k), and apply-
ing (5). Note that in the following we will work in each frequency
bin independently, so the index k will often be omitted for notational
convenience.

3. CONVENTIONAL APPROACH

Several speech dereverberation methods were proposed using the
time-varying Gaussian model for the desired signal [5, 6]. More
specifically, the desired signal in each time-frequency bin is modeled
as a zero-mean random variable by a circular complex Gaussian dis-
tribution with unknown and time-varying variance. The probability
density function for the desired signal d(n, k) can then be written as

NC
(
d(n, k); 0, λ(n, k)

)
=

1

πλ(n, k)
e
− |d(n,k)|2

λ(n,k) , (6)

where λ(n, k) is considered to be an unknown parameter that needs
to be estimated. Since the TVG model does not include any de-
pendency across frequencies, the index k can be omitted and the
likelihood function for a single frequency bin can be written as [5]

L (ḡ,λ) =

N∏
n=1

NC
(
d(n); 0, λ(n)

)
, (7)

with λ = [λ(1), . . . , λ(N)]T . The regression vector ḡ is estimated
by maximizing the likelihood with respect to the unknown parame-
ters (variances and the regression vector), i.e., by solving the follow-
ing optimization problem

min
λ>0,ḡ

N∑
n=1

|d(n)|2

λ(n)
+ log πλ(n). (8)

Since the joint minimization of (8) with respect to ḡ and λ can not be
performed analytically, it was proposed in [5] to use an alternating
optimization procedure.

Estimation of ḡ: In the first step, the cost function in (8) is
minimized with respect to ḡ. Assuming that the variances λ are
fixed, a least squares problem is obtained, i.e.,

min
ḡ

N∑
n=1

|x1(n)− ḡH x̄(n−D)|2

λ(n)
, (9)

with the optimal regression vector ḡ given as

ḡ = A−1b, (10)

where

A =

N∑
n=1

x̄(n−D)x̄H(n−D)

λ(n)
, b =

N∑
n=1

x̄(n−D)x∗1(n)

λ(n)

(11)
Estimation of λ: In the second step, the cost function in (8)

is minimized with respect to λ. Assuming now that the regression
vector ḡ is fixed the optimal variances can be calculated as

λ(n) = |d(n)|2. (12)

This alternating procedure is repeated until a convergence cri-
terion is satisfied or a maximum number of iterations is exceeded.
Additionally, to prevent division by zero a small positive constant ε
is included as a lower bound for the estimated variance. The pre-
sented approach is often referred to as the weighted prediction error
(WPE) method [5].

4. PROPOSED APPROACH

It is widely accepted that the STFT coefficients of speech signals can
be well modeled using sparse priors, both locally [9–11] as well as
globally [12]. Although the real and imaginary parts of the complex-
valued coefficients are often assumed to be independent to simplify
computations, it was observed that the distribution of the complex-
valued speech coefficients is actually approximately circular [13,14].
In the proposed approach we therefore use the MCLP model (3) to
model the reverberation process, with a sparse circular prior for the
desired speech signal. The proposed prior can be interpreted as a
TVG model with an additional hyperprior for the variance. Similar
modification could be used with different local models (e.g., locally
Laplacian model in [15]).

4.1. Representation of sparse priors

Intuitively, a prior is considered to be sparse when it is super-
Gaussian, i.e., it exhibits a higher peak at the origin and heavier tails
than the corresponding Gaussian prior. Here we consider a circular
sparse prior for a complex-valued random variable Z that can be
represented as

p(z) = e−f(|z|). (13)
In general, p(z) can represent a proper sparse prior (i.e., a probability
density), or an improper (non-integrable) sparse prior. Formally, it
can be shown that when f ′(t)/t is decreasing on (0,∞), the prior
will be super-Gaussian, i.e., sparse [7]. In this case, p(z) can be
conveniently represented as a maximization over scaled Gaussians
with different variances, i.e.,

p(z) = max
λ>0
NC(z; 0, λ)ψ(λ), (14)
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Fig. 1. Logarithm of the CGG prior (15) for different values of the
shape parameter δ and variance fixed to 1.

where ψ is a scaling function that can be interpreted as a hyperprior
on the variance λ [7]. This representation is often referred to as the
convex type due to its roots in convex analysis, as opposed to the
integral type of representations, such as Gaussian scale mixtures [7].
The scaling function ψ in (14) is related to f in (13), but the scaling
function is often not required explicitly in practical algorithms [7].

An example of a parametric circular super-Gaussian prior is the
complex generalized Gaussian (CGG) given as [8]

p(z) =
δ

πγΓ(1/δ)
e
−
(

|z|2
γ

)δ
, (15)

with the scale parameter γ > 0, the shape parameter δ ∈ (0, 1), and
Γ denoting the Gamma function. The circular Gaussian distribution
is obtained by setting δ = 1, while smaller values of the shape pa-
rameter result in more sparse priors, i.e., a stronger peak at zero and
heavier tails. This can also be seen from the plot of log p(z) in Fig-
ure 1. Since the CGG prior can be written in the form (13) with f
given as

f(t) =

(
t2

γ

)δ
− log

δ

πγΓ(1/δ)
, (16)

it can be represented using a convex representation in the form (14).

4.2. Speech dereverberation using general sparse priors

We now propose to model the coefficients of the desired speech sig-
nal using a circular sparse prior p

(
d(n)

)
= e−f(|d(n)|) with a con-

vex representation given as

p
(
d(n)

)
= max
λ(n)>0

NC
(
d(n); 0, λ(n)

)
ψ
(
λ(n)

)
. (17)

This can be interpreted as a generalization of the TVG model, with
an additional hyperprior for the variance λ(n). Similarly as in the
conventional approach, the regression vector ḡ can be estimated by
maximizing the likelihood, i.e., by solving the following optimiza-
tion problem

min
λ>0,ḡ

N∑
n=1

|d(n)|2

λ(n)
+ log πλ(n)− logψ

(
λ(n)

)
, (18)

with d(n) depending on ḡ through (5). The likelihood can again be
maximized using an alternating optimization procedure.

Estimation of ḡ: Assuming that the variances λ are fixed, the
same least-squares problem is obtained as in the conventional ap-
proach, with the solution given by (10).

Estimation of λ: Assuming that the regression vector ḡ is fixed,
each λ(n) can be obtained by solving the following problem

min
λ(n)>0

|d(n)|2

λ(n)
+ log πλ(n)− logψ

(
λ(n)

)
. (19)

By exploiting the relation between the scaling function ψ and f (for
details we refer to a similar derivation in [7]) the optimal value of
λ(n) can be expressed as

λ(n) =
2|d(n)|
f ′(|d(n)|) , (20)

for a general sparse prior in (13). Note that although the optimization
problem in (19) includes ψ, the optimal λ(n) for this subproblem
depends only on f , so the scaling function ψ does not need to be
given explicitly.

In the case of a CGG prior for the desired signal, the optimal
value of λ(n) can be written using (16) and (20) as

λ(n) =
γδ

δ
|d(n)|2(1−δ). (21)

This expression depends on the shape and the scaling parameters of
the CGG prior in (15). However, since the estimation of ḡ using
(10) and (11) is invariant to a scaling of λ, the update in (21) can be
simplified to

λ(n)← |d(n)|2(1−δ), (22)

that depends only on the shape parameter δ ∈ (0, 1) of the CGG
prior. An outline of the proposed approach with a CGG prior is given
in Table 1. Note that the variance update (12) in the conventional
approach corresponds to setting δ = 0 in the obtained update (22).

By comparing the optimization problem (8) with the proposed
approach (18) it can be seen that the conventional approach is ob-
tained by setting ψ(λ) = const in the proposed approach. In this
case the prior for the desired signal, as interpreted in the proposed
framework with (14), is expressed as

p
(
d(n)

)
∝ max
λ(n)>0

NC
(
d(n); 0, λ(n)

)
=

1

πe|d(n)|2 . (23)

Note that this is an improper prior on the desired signal since it is not
integrable. Also, it strongly favors values of the desired signal that
are close to the origin, i.e., it is a strong sparse prior for the desired
signal. This interpretation also highlights the role of sparsity in the
conventional approach although it was derived using a TVG model.

parameters: Lg and D in (2), δ in (22)
input: xm(n, k), ∀n,m, k
initialization: λ̂(n, k)← |x1(n, k)|2(1−δ)

for all k do
repeat

A(k),b(k)← calculate using (11)
ˆ̄g(k)← A(k)−1b(k)

d̂(n, k)← x1(n, k)− ˆ̄g(k)H x̄(n−D, k)

λ̂(n, k)← max{|d̂(n, k)|2(1−δ), ε(k)}
until condition satisfied

end for

Table 1. Outline of the proposed approach with a CGG prior. The
conventional approach [5] is obtained by setting δ = 0.
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5. EXPERIMENTS

To evaluate the performance of the proposed approach with CGG
priors, we performed an experiment using sound samples of 10 dif-
ferent speakers (5 male and 5 female), where the average length
of the sound samples was 9.5 s and the sampling frequency was
fs = 16 kHz. The reverberant observations were generated by
convolving each utterance with a set of measured room impulse re-
sponses. We used a setup with M = 2 microphones in a room with
RT60 ≈ 750 ms. In the experiment the STFT was calculated us-
ing a 64 ms Hamming window with 75% overlap. The parameters
for the algorithm outlined in Table 1 were set as follows: the order
of the regression vectors Lg = 23, the prediction delay D = 3,
and ε(k) = 10−8. The dereverberation performance was evaluated
in terms of cepstral distance (CD), perceptual evaluation of speech
quality (PESQ), frequency-weighted segmental signal-to-noise ra-
tio (FWSSNR), and speech-to-reverberation modulation energy ra-
tio (SRMR) [16]. The measures were evaluated with the anechoic
speech as reference and averaged over all utterances.

In Figure 2 the conventional approach (labeled as WPE-CONV)
is compared with the proposed approach based on a CGG prior for
the desired signal (labeled as CGG). It can be seen that by select-
ing an appropriate value of the shape parameter δ the proposed ap-
proach outperforms the conventional WPE for all considered perfor-
mance measures. Note that the conventional WPE method is often
employed using only a single iteration [5], and the presented results
indicate that in this case the proposed approach could be used for
obtaining a better performance.

6. CONCLUSIONS

In this paper we have presented a blind method for speech derever-
beration based on MCLP, where the desired signal is modeled using
a general sparse prior. The presented speech model is a generaliza-
tion of the time-varying Gaussian model, and provides a possibility
for modeling global properties of the desired signal. Experimen-
tal results demonstrate that the proposed framework can be used to
improve instrumentally predicted speech enhancement performance,
by introducing a small modification to the conventional approach.

Fig. 2. Performance evaluation for the conventional (WPE-CONV)
and the proposed approach (CGG). Iteration index zero denotes the
value of a measure for the observed signal at the first microphone.
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