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ABSTRACT

Modern hearing aids often contain multiple microphones to
enable the use of spatial filtering techniques for signal en-
hancement. To steer the spatial filtering algorithm it is nec-
essary to localize sources of interest, which can be intelli-
gently achieved using computational auditory scene analysis
(CASA). In this article, we describe a CASA system using a
binaural auditory processing model that has been extended to
six channels to allow reliable localization in both azimuth and
elevation, thus also distinguishing between front and back.
The features used to estimate the direction are one level dif-
ference and five inter-microphone time differences of arrival
(TDOA). Initial experiments are presented that show the lo-
calization errors that can be expected with this set of features
on a typical multichannel hearing aid in anechoic conditions
with diffuse noise.

Index Terms— Computational Auditory Scene Analysis,
Localization, Multichannel Hearing Aids

1. INTRODUCTION

The human auditory system is remarkable in its ability to
recognize and understand sounds in very complex acoustic
scenes, with reverberation and multiple interfering sources
present. This ability is termed the cocktail party effect which
is studied in the field of Auditory Scene Analysis (ASA) [1].
The ability of separating a sound from a mixture is greatly en-
hanced if the listener is presented with a binaural signal, that
is, if the listener can localize the source of interest (the “tar-
get” source) as well as the interfering sources, the enhance-
ment in comparison to monaural presentation usually quanti-
fied as the spatial release from masking [2].

Coupled with research into the underlying processes that
enable this ability in humans is research into mimicking this
ability by signal processing algorithms (Computational Au-
ditory Scene Analysis, or CASA). In this article, we focus
on the sound localization aspect, based on work which uses
a probabilistic model with a binaural auditory front-end [3].
The model presented in [3] is able to determine the azimuth
of multiple sources based on interaural level differences (ILD)
and interaural time differences (ITD) computed from a human

auditory model (consisting of a gammatone filterbank and a
simple neuronal transduction model). It was shown that the
model is quite robust to reverberation and diffuse noise.

One interesting application of CASA for sound localiza-
tion would be the use in assistive hearing devices (or hearing
aids, HA). In particular, modern HAs typically use multiple
microphones to enable spatial filtering (e.g. beamforming) to
increase the Signal-to-Noise Ratio (SNR) [4]. This filtering
is usually designed to only enhance sound coming from the
front of the HA user. CASA-based localization could benefit
HA users since the spatial filtering could be optimized based
on the direction of the target and the interfering sources.

The problem we are considering is the localization of mul-
tiple sound sources using a microphone array formed by a
bilateral hearing aid with multiple microphones on each hear-
ing aid. There are numerous well-established algorithms for
sound localization with microphone arrays [4, 5]. However,
based on the results in [3], the particular geometry, variability,
and presence of obstructions (the head and pinnae) suggest
that a probabilistic auditory model based approach would be
beneficial.

In this paper, we present investigations on extending the
binaural model of [3] into a six-channel localization algo-
rithm. We use the 6-channel HA described in [6], and expand
the location space to an upper-hemispherical grid with 10◦

resolution in azimuth and elevation. In particular, we exam-
ine how the presence of noise affects the localization perfor-
mance.

2. MODEL DESCRIPTION

The CASA localization model presented here is based on hu-
man audition such that it can be combined with further human
auditory based processing. The localization model can be di-
vided into four distinct stages. First, the acquisition of the
audio signals with the multichannel HA, then the auditory-
model-based processing converting the audio signal into fea-
tures for localization. Next, the feature analysis uses a proba-
bilistic classifier, and finally the probabilities are evaluated to
make a localization decision.

We assume that the audio signal is captured by a bilateral
HA with three microphones per side, denoting them LF for
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Fig. 1. Schematic of features for localization. ITD and ILD
are computed from signals of the left and right front micro-
phones. The TDOA features are computed for each side.

the frontmost microphone on the left side, LM for the middle
microphone and LB for the rearmost microphone. We assume
a symmetrical arrangement of microphones is located on the
opposite ear (RF, RM, and RB).

In the peripheral auditory model processing, the six chan-
nels of audio from the bilateral HA are first separately passed
through a F = 32 band fourth-order gammatone filterbank
(GTFB). The GTFB uses phase-compensated filters to align
temporal cues across bands. The center frequencies of the fil-
ters are equally distributed on an effective rectangular band-
width (ERB) scale [7]. Neural transduction is simulated using
half-wave rectification and square-root compression. We de-
note the resulting signals hcht,f , where t is a time frame index,
f is the gammatone filter index and ch indicates the channel
(LF, LM, . . . , RB).

After the peripheral processing, the features
−→
X t,f for lo-

calizing sources are computed. Building upon the features
used in [3], the additional microphone channels can provide
features that allow for determining source elevation and re-
solve front-back confusion. As shown in Fig. 1, we use a
set of 6 features (ILDt,f , ITDt,f ,TDOALFM

t,f ,TDOARFM
t,f ,

TDOALFB
t,f , and TDOARFB

t,f ) per t, f bin. ILDt,f represents
the inter-aural level difference and is expressed as the energy
difference between hLFt,f and hRF

t,f in dB. The remaining fea-
tures are computed using the normalized cross-correlation be-
tween two channels. Like the ILDt,f , the ITDt,f is computed
from hLFt,f and hRF

t,f . The TDOA features are computed only
from signals within each side of the HA: TDOALFM

t,f from
hLFt,f and hLMt,f , TDOALFB

t,f from hLFt,f and hLBt,f , and similar-
for the right side. In order to compute the TDOA features
with the required inter-sample accuracy, exponential interpo-
lation [8] has been used to determine the maximum of the
cross-correlation function.

2.1. Gaussian mixture model classifier

We consider the problem of localizing a sound in a probabilis-
tic fashion. We assign to each direction a point on a sphere

Fig. 2. One side of the binaural hearing aid with six micro-
phones used for this study. There are three microphones on
each side, the locations of which are indicated by the green
arrows in the cutout.

centred on the head of the HA user. For each combination
of azimuth φ and elevation θ direction of a sound source, de-
noted by λ(φ,θ) we train a Gaussian Mixture Model that pre-
dicts the probability to observe the feature vector

−→
X t,f . This

probability is denoted as p(
−→
X t,f |λ(φ,θ)k).

The probabilities are modelled using a Gaussian mixture
model (GMM) with V components, where each direction
λ(φ,θ)k is a class. All combinations of azimuth and elevation
results in a total of k = 1, . . . ,K classes. A separate GMM
is trained for each frequency band and each class.

2.2. Localization decision

From the above described GMM, a decision for the location
of a sound source can be made for each t, f bin by likelihood
maximisation, as

λ̂(t, f)(φ,θ) = argmax
1≤k≤K

p(
−→
X t,f |λ(φ,θ)k). (1)

In some cases, it is sufficient to make a localization deci-
sion per frame only, in which case it is possible to improve
estimation by combining estimates over frequency using

λ̂T (t)(φ,θ) = argmax
1≤k≤K

F∑
f=1

log
(
p(
−→
X t,f |λ(φ,θ)k) + ε

)
, (2)

where ε is a small constant to limit the effect of very unlikely
feature combinations on the estimated probability.

3. EVALUATION

In the present study, the goal is to assess the proposed local-
ization scheme, to examine if the proposed set of features can
be used for localizing sounds in the azimuth and elevation di-
rection.

For our experiments, we use a new database of anechoic
head-related impulse responses (HRIR) [9] recorded using the
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same hearing aid as in [6]. The left side of this device is
shown in Fig. 2, showing the microphones with a distance of
15.6 mm from LF microphone to the LB microphone. The
LM microphone is approximately in the center between the
front and back microphones, the three microphones forming
a shallow triangle. In contrast to the database of [6], the new
recordings cover elevations from -64◦ to 90◦. For this ini-
tial study, a subset of points is used to reduce computation
time, covering only the upper hemisphere at 10◦ resolution
in azimuth and elevation, for a total of 283 points. The grid
is sparser at elevations of 70◦ (20◦ azimuth resolution) and
above (30◦ azimuth resolution at 80◦ elevation, single point
at 90◦ elevation) to avoid having a high density of points at
the pole.

Speech samples are taken from the TIMIT database [10],
with a sampling frequency of 16 kHz. After the peripheral
auditory processing, features are computed using frames of
20 ms with 50% overlap, for a frame shift of 10 ms.

We use GMMs with V = 15 components in all bands,
with diagonal covariance matrices. The GMMs are trained by
spatializing 10 randomly chosen sentences from the TIMIT
database at all 283 points, then extracting the features only for
frames where the energy for all microphone channels exceeds
a given threshold, to avoid training on noise. Variance nor-
malisation is used to equalize the dimensions during training.
Training used the Expectation-Maximisation algorithm [11],
with k-means clustering [12] to initialize the parameters.

Testing is performed by randomly selecting a male and
a female speech sample from the TIMIT database excluding
the samples used for training the model. The testing samples
are spatialized at each point λφ,θ, then multichannel random
gaussian diffuse speech-shaped noise (SSN) at 0, 5, 10, 15, 20
and 25 dB SNR is added. Using the same energy thresholding
as used during training on the clean speech (in effect, an ideal
voice activity detector, VAD), the features from active t, f
bins are classified using the GMM.

4. RESULTS

The main result is shown in Fig. 3, showing the percentage
of t, f bins correctly localized in anechoic conditions with
various level of interfering SSN. The triangles (green dashed
line) show the percentage of frames where localization was
correct in both azimuth and elevation. By considering the
azimuth and elevation components separately, we can see that
especially at higher SNR azimuth estimation is significantly
more robust than elevation estimation.

The effect of using additional features over the ones in [3]
is shown in Fig. 4. Using ILD and ITD only, the perfor-
mance over the entire semisphere is poor (16.1% at 25 dB),
but adding one pair of TDOA features improves classifica-
tion performance. The dashed line shows using TDOALFB

t,f

and TDOARFB
t,f (40.0% at 25 dB), but similar performance

is seen with TDOALFM
t,f and TDOARFM

t,f (39.2% at 25 dB).
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Fig. 3. Localization performance at different levels of diffuse
SSN. The triangles show percentage of frames exactly local-
ized. The squares and crosses show the performance if only
azimuth or elevation are considered.
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Fig. 4. Grid localization performance for subsets of features.

Using all TDOAs raises performance only marginally (40.9%
at 25 dB).

In Fig. 5 the localization errors are shown in the azimuth
and elevation direction as well as for the central angle es-
timated per t, f bin. It can be seen that localization errors
are considerably smaller for elevation than for azimuth. This
is due to the different ranges of errors; for elevation errors
can be maximally 90◦, while for azimuth they can be 180◦.
The central angle shows errors of maximally 50 degrees at an
SNR of 0 dB. These relatively large errors are due to the fact
that no specific provisions have been included in the localiza-
tion algorithm to accommodate for the mismatch between the
training which was done for sources without noise, and the
evaluation which was done for sources presented in diffuse
background noise. In fact errors decrease to about 15 degrees
for high SNRs where the mismatch is much smaller.

The rate of correct localization on the grid points shown
in Fig. 3 appears very low, but we observe that the localiza-
tion accuracy is also strongly dependent on which frequency
band is considered. As can be seen in Fig. 6, performance is
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Fig. 5. Average localization error in degrees. Triangles show
the error in the central angle (or great circle) sense, squares
and crosses show the average error in the azimuth and eleva-
tion components respectively.
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Fig. 6. Localization performance (for combined azimuth and
elevation estimation) as a function of frequency.

very poor in low frequency bands. This can be explained by
the fact that speech signals are less likely to have sufficient
energy for reliable feature extraction in those bands, and thus
the GMMs for those bands are less well trained.

Results of the combined azimuth and elevation estimation
improve slightly if the log-likelihood results are combined
over frequency as described by Eq. (2). For example, at 25
dB, correct classification raises from 40.9% to 52.2%, and at
20 dB from 33.7% to 44.7%. At SNR 15 dB and below, the
percentage of correct classification is about 1.4 times higher
with frequency integration.

For visualizing the method for a practical application,
Fig. 7 shows the t, f maps for a segment of speech which
was rendered at azimuth 40◦ and elevation 20◦. The signal
was mixed with diffuse noise at 10 dB SNR. Panel A shows
the energy in each t, f bin, with blank areas omitted using
the VAD. Panel B shows the azimuth estimation error, while
panel C shows the error in the elevation estimate.

Two issues can be illustrated by panels B and C. First,
how localization performance is dependent on the signal en-
ergy: where panel A shows high energy, the localization error
shown in B and C tends to be low. Second, it can be seen that
in many cases the localization error is only offset by a single
step in the azimuth and elevation grid, predominantly in the
elevation estimate. This skews the results shown in Fig. 3 and
6 which do not include a measure of estimation error.

5. DISCUSSION

In this study we are presenting an initial assessment of a
method to localize sound sources using a six-channel bi-
lateral HA. Localization is performed using a probabilistic
framework, specifically a set of GMMs that classify six-
dimensional feature vectors. The GMMs (one for each
frequency band of a auditory model analysis) compute the
probabilities that the observed features originate from any of
283 points on a grid of a hemisphere.

It was shown previously that the ILD and ITD features
work well for determining the azimuth of a sound source pro-
vided the source is located in the front and near the equa-
tor [3]. The aim of this study is to extend the method of [3]
to resolve the front-back confusion, and if possible, perform
localization on the vertical axis as well. While the results
presented here are limited in scope (significant sources of er-
rors, such as reverberation and localizable interfering sources
are not considered), we show that using two microphones per
side near the ear and the described features can discriminate
directions to at least 10◦ resolution in elevation and thus of
course also solve the front-back confusion problem.

As expected, we find that it is important to have sufficient
training data. In our experiments, we find that especially at
the lower frequencies, speech energy was too sparse to prop-
erly train the GMMs from our training set. Combining es-
timates across frequency to get per-time frame localization
only provides a small benefit, but this may also be explained
by the poor quality of training at low frequencies.

Further research is required however to allow this scheme
to be practical with current HA technology. One issue is the
large number of classes to be classified caused by the two-
dimensional azimuth-elevation grid. Reducing the number
of grid points would reduce complexity during classification
(important due to power constraints in HAs) as well as dur-
ing training. Without reducing the localization accuracy, this
could be achieved by eg. using a hierarchical approach, where
the location of the source is first limited to the left or right
hemisphere, followed by a more fine grained classifier.
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Fig. 7. Example localization error for a segment of speech,
showing only those time/frequency (t, f ) regions that the
(ideal) VAD detected. Panel A shows the energy in the t, f
bins (in dB), panel B shows the azimuth estimation error,
panel C the elevation estimation error. This speech sample
was rendered at an azimuth of 40◦ and elevation of 20◦, and
mixed with 10 dB SSN.
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