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ABSTRACT
Instrumental quality prediction of speech processed by enhancement
algorithms has become crucial with the proliferation of far-field
speech applications. To date, while several instrumental measures
have been proposed and standardized, their performance under a
wide range of acoustic conditions and enhancement algorithms is
still unknown. This paper aims to fill this gap. Specifically, the per-
formance of eleven instrumental measures are compared; four are
non-intrusive measures, i.e. not requiring a clean reference signal,
and seven intrusive. Simulated and recorded speech under four dif-
ferent acoustic conditions involving varying levels of reverberation
and noise are explored, as well as processed by three single- and
multi-channel enhancement algorithms. Experimental results show
that a recently developed non-intrusive measure called SRMRnorm

outperforms all other considered measures in terms of overall qual-
ity prediction. The well-known PESQ measure, in turn, showed to
better predict the perceived amount of reverberation, followed by
SRMRnorm. These results are promising, as the latter measure does
not require access to a clean reference signal, thus has the potential
to be used for enhancement algorithm optimization in real-time.

Index Terms— Speech quality, perceptual evaluation, instru-
mental measures, microphone array, speech enhancement

1. INTRODUCTION

In hands-free speech applications, such as voice-controlled systems
or hearing devices, speech is captured via a far-field microphone
or microphone array. Under such condition, the speech signal is
typically degraded by both ambient noise and room reverberation.
Depending on the room properties (e.g., large reverberation time)
and environmental conditions (e.g., noisy office setting), this can
severely degrade the performance of automated speech technolo-
gies, as well as the perceived quality and intelligibility for human
listeners. To overcome this limitation, single- and multi-microphone
based speech enhancement algorithms have been proposed.

The most common single-microphone approach relies on a tech-
nique termed spectral enhancement (SE), which is based on estima-
tors of the spectral amplitude of the clean signal [1] using an esti-
mate of the power spectral density (PSD) of the interference to be
suppressed [2], be it noise (e.g., [3, 4]) and/or reverberation (e.g.,
[5, 6]). In turn, when multiple microphones are available, spatial
information can be exploited to improve speech enhancement per-
formance [7]. The classical microphone array based enhancement
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algorithm is beamforming, which uses an estimate of the direction
of arrival (DOA) of the target speech source to suppress interfer-
ences from different directions [8]. Alternative strategies in addition
take into account the spectro-temporal information of the speech and
noise sources. Representative examples include the multichannel
Wiener filter [9], which corresponds to the combination of a min-
imum variance distortionless response (MVDR) beamformer with a
Wiener gain, as well as other combinations of beamforming with
spectral enhancement (e.g., [10, 11]).

While existing enhancement algorithms are capable of signif-
icantly reducing noise and reverberation from the captured speech
signal(s), suboptimal algorithm parameter tuning may lead to the in-
troduction of unwanted artefacts, which in turn, can degrade speech
intelligibility, quality, and acceptability [12]. As examples, spectral
enhancement algorithms are known to introduce so-called musical
noise artefacts [13] and badly tuned beamformers can mistakenly
suppress the target signal, as opposed to the interferer. To date, there
is no reliable means of automatically (i.e., instrumentally) measur-
ing the quality or intelligibility of an enhanced speech signal, such
that enhancement algorithm parameters could be tuned in real-time
to maximize the performance.

Instrumental measurement of the quality of enhanced speech
signals is an area of growing interest, particularly given the re-
cent advances with far-field speech technologies, such as automatic
speech recognition. Instrumental measures can be classified as ei-
ther intrusive or non-intrusive, depending on the need for a (clean)
reference signal [14]. While existing instrumental measures have
been validated in the past, their focus has been rather limited. For
example, in [15], only reverberant speech and speech processed
by a simple delay-and-sum beamformer was explored. In [11], in
turn, only reverberant speech and signals corrupted by reverberation
and noise were tested. In [16], speech processed by several noise
reduction algorithms was used and, more recently in [17], single-
channel dereverberation algorithms were tested, but assumed perfect
knowledge of room parameters, such as the true room impulse re-
sponse (RIR). As such, a more complete performance comparison
is still needed where different enhancement algorithms are used
under varying acoustic conditions. Moreover, evaluating the per-
formance of existing instrumental measures as correlates of rating
scales different from the well-known mean opinion score (MOS) is
also lacking. As suggested by the International Telecommunication
Union (ITU-T), this is critical for enhancement algorithms [18].

In this paper, the performance of eleven instrumental measures
is evaluated as correlates of the perceived speech quality and per-
ceived level of reverberation in signals processed by three speech en-
hancement strategies, namely MVDR beamforming, single-channel
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spectral enhancement, and a combination of the two approaches, as
proposed in [11], under four different acoustic conditions.

2. INSTRUMENTAL MEASURES

In this section, a brief description of the considered non-intrusive
and intrusive instrumental measures is given.

2.1. Non-intrusive measures

2.1.1. ANIQUE+

ANIQUE+ is a measure standardized by the American National
Standards Institute for telephone-band speech. The measure ex-
presses speech distortion as the sum of three specific distortion
types, namely individual frame distortion (based on articulation
analysis), mute distortion (detects abrupt starts and stops), and non-
speech distortion, which are then mapped to a final quality rating
using an artificial neural network (ANN). The ANN was trained
on large amounts of multi-lingual telephone narrowband speech
data under a wide range of telecommunication network conditions,
including standard and nonstandard speech codecs, transcoding,
channel errors, packet loss and its concealment, environmental noise
at the sending side, time-varying delay, and acoustic coupling at the
sending side. The reader is referred to [19] for complete details.

2.1.2. ITU-T Rec. P.563

The ITU-T Recommendation P.563 is also a non-intrusive standard
measure for telephone-band speech. As ANIQUE+, it combines
three basic principles for evaluating distortions. First it models the
human voice production system as a series of vocal tract tubes and
abnormal values are considered to be distortions. Second, it con-
structs a pseudo-clean signal from its noisy counterpart in order to
apply an intrusive measure in order to obtain an intermediate qual-
ity index. Third, specific distortions encountered in voice chan-
nels, such as temporal clipping, robotization, and noise are detected
and quantified. The different distortion types are then ranked and a
distortion-dependent weighted linear mapping is applied to estimate
the final MOS rating. Complete details can be encountered in [20].

2.1.3. Speech-to-Reverberation Modulation Ratio, SRMR

The so-called SRMR measure relies on the principle that the mod-
ulation energy of clean speech is generally concentrated in lower
modulation frequencies (below 20 Hz) while room acoustic artefacts
typically arise in higher modulation frequencies beyond 20 Hz. As
such, the metric computes the ratio of low to high modulation en-
ergy after an auditory model is applied based on a 23-channel gam-
matone cochlear filterbank and an 8-channel modulation filterbank
to emulate the human hearing system. The model has been shown
to accurately characterize room acoustics, as well as the quality and
reverberation level of reverberant speech and speech processed by a
simple delay-and-sum beamformer [15, 21].

2.1.4. SRMRnorm

Recently, an extended version of the SRMR measure was proposed
in order to reduce the variability caused by the effects of pitch and
speech content [21]. In order to reduce pitch effects, the frequency
range of the modulation filters was reduced from 4-128 Hz in the

original SRMR implementation to 4-40 Hz. Second, in order to re-
duce the sensitivity to spoken content, a per-frame energy thresh-
olding scheme was implemented where only frames below 30 dB of
the maximum were used. SRMRnorm was shown to reduce intra-
and inter-speaker variability and to better estimate the intelligibility
level of speech under reverberation, noise, and reverberation-plus-
noise conditions [21]. In this paper, a first exploration into the use of
this measure for enhanced speech is taken.

2.2. Intrusive instrumental measures

2.2.1. Perceptual Evaluation of Speech Quality, PESQ

ITU-T Recommendation P.862, also known as Perceptual Evaluation
of Speech Quality, is the most widely-used intrusive instrumental
measure available for telephone-band speech [22]. As an intrusive
measure, PESQ first relies on a time alignment algorithm in order
to directly compare the reference and processed signals. The signals
are then transformed to an internal representation that is analogous
to the psychophysical representation of audio signals in the human
auditory system by means of perceptual frequencies and compres-
sive loudness scaling. The difference in internal representations of
the degraded and reference speech signals is then calculated, rep-
resenting the audible difference between the two signals. Lastly, a
cognitive model evaluates audible errors by computing two types of
noise disturbances for individual time-frequency bins, namely asym-
metrical and symmetrical disturbances. The predicted mean opinion
score (MOS) is calculated as a weighted linear combination of these
disturbances. More details can be found in [22, 23].

2.2.2. Perceptual Objective Listening Quality Assessment, POLQA

Recently, PESQ was superseded by the ITU-T Recommendation
P.863 [24], also known as Perceptual Objective Listening Qual-
ity Assessment (POLQA). The core of POLQA is very similar to
PESQ [25], but with some critical changes needed for evolving
speech technologies. For example, improved time alignment was
implemented in order to compensate for distortions seen in recent
packet loss concealment strategies. In addition to the symmetric
and asymmetric disturbances used within PESQ, POLQA includes
an additional noise analysis module and a reverberation analysis
module. These parameters are then combined within a cognitive
mapping module to estimate MOS. Unlike PESQ, POLQA has also
been designed to cover a wide range of speech technologies, ranging
from narrowband to super-wideband (50-14,000 Hz) [24]. Given
these additional modules, it is expected that POLQA performs better
than PESQ for enhanced speech.

2.2.3. Normalized Covariance Metric, NCM

The NCM is based on the covariance between auditory-inspired en-
velopes of the clean and processed speech signals [26]. This is
achieved by means of a gammatone filterbank to emulate cochlear
processing, followed by a Hilbert transform. The NCM is shown
to be a good estimator of quality and intelligibility of reverberant
speech for impaired listeners with and without hearing devices [27].

2.2.4. Short-Time Objective Intelligibility, STOI

As with the NCM, the STOI measure is based on the covariance
between the temporal envelopes of the clean and processed speech
and assumes that both signals are time-aligned. The main difference
is the fact that the STOI metric computes this covariance over short



time frames and then aggregates the per-frame disturbances into a
final quality rating. Unlike NCM, the speech signals are decomposed
by a one-third octave filterbank, followed by level normalization and
clipping. More details can be found in [28].

2.2.5. Coherent Speech to Intelligibility Index, CSII

The CSII was originally proposed for hearing aid devices [29]. As-
suming the clean and processed signals are time-aligned, they are
divided into three different amplitude regions: high-level segments
falling above the overall root-mean-square level, mid-level segments
between 0 and 10 dB, and low-level segments between 10 and 30
dB. It was shown that the concentration of vowels (and peak clip-
ping) will be found in the high-level segments, vowel-consonant
transitions in the mid-level segments, and the low-level segments
will contain consonants, pauses, additive noise and center clipping
[26]. These disturbances are mapped to a final intelligibility rating.

2.2.6. Log Likelihood Ratio, LLR

The log likelihood ratio is a traditional intrusive measure that relies
on the linear prediction model of human speech production. This
measure is based on the distance between the linear prediction coef-
ficients (LPC) attained from the clean and processed speech signals.
Details on this measures can be found in [30].

2.2.7. Itakura-Saito distance, IS

As an LPC-based measure, the Itakura-Saito (IS) distance measures
the difference between the spectral envelope of the clean and pro-
cessed signal [31, 30]. The distance is computed frame by frame,
with low values indicating similarity between original and processed
signal. A detailed explanation of the IS measure is provided in [31].

3. EXPERIMENTAL SETUP

In this section, we describe the dataset used to compare the different
instrumental measures, as well as the figures-of-merit used.

3.1. Database description

The data used in our experiments was the evaluation set of the 2014
IEEE REVERB challenge [12], which consists of a large corpus of
speech corrupted by varying levels of reverberation and noise. All
recordings were made with a sampling frequency of 16 kHz with
a circular microphone array with 20 cm diameter and 8 equidistant
microphones. The corpus is divided into two sets: one simulated
and another comprised of real recorded data. The simulated set is
composed of clean speech signals taken from the WSJ-CAM0 cor-
pus [32], which were convolved with RIRs recorded in three dif-
ferent rooms and to which measured noise at a fixed signal-to-ratio
(SNR) of 20 dB was added. The real recorded set, in turn, is com-
posed of utterances from the MC-WSJ-AV corpus [33] and contains
speech recorded in a room in the presence of noise.

In our experiments, the medium room in the simulated set and
the large room in the recorded set were used. For each room, two
distances (denoted by “near” and “far”) between the target speaker
and the center of the microphone array were used. Table 1 describes
the reverberation time and distances of these four “conditions”.

Three speech enhancement algorithms were applied to the de-
graded speech signals, namely the MVDR beamformer (termed

Table 1: Description of the four acoustic conditions tested. Column
labelled T60 corresponds to the reverberation time of the room.

Set Room T60 [ms] Distance [cm] Label

Simulated medium 500 50 S2, near
200 S2, far

Real large 700 100 R1, near
250 R1, far

MVDR henceforth), single-channel spectral suppression (SS) ap-
plied to the first channel of the array (termed SE3), and a com-
bination of the two algorithms where SS has been applied to the
output of the MVDR beamformer, as proposed in [11] (termed
MVDR+SE3). The MVDR beamforming coefficients are com-
puted using an online-estimated noise coherence matrix and the
DOA of the target speech source was estimated using the multiple
signal classification (MUSIC) algorithm [34]. The SE scheme, in
turn, relies on estimates of the noise and reverberant power spec-
tral densities computed using a modified version of the minimum
statistics (MS) estimator proposed in [35] and the statistical model
of the RIR proposed in [5]. Since all parameters required for of
single- and multi-channel algorithms are estimated online, errors are
expected, thus unwanted artefacts are likely to be introduced; this
was later verified via listening tests (more details below). As such, it
is expected that the results presented in this paper can be generalized
to real applications with alternate enhancement schemes.

In order to test the accuracy of the instrumental measures,
ground truth subjective ratings are needed. Here, a listening test
was conducted using the multiple stimuli test, as described in [36].
Twenty one self-reported normal-hearing listeners participated in
the listening test. Participants were presented with the degraded
speech signals, a hidden reference, an anchor, and the enhanced
signals using the three different enhancement algorithms described
above. The hidden reference was the anechoic speech signal in the
case of conditions “S2, near” and “S2, far” (see Table 1) and the
signal recorded by a headset microphone in the case of conditions
“R1, near” and “R1, far”. The anchor, in turn, consisted of the first
microphone signal of the array, low-pass filtered with a cut-off fre-
quency of 3.5 kHz. The listening test was conducted in a soundproof
booth and participants listened to diotic signals through headphones
(Seinheiser HD 380 pro) and rated their overall perceived quality, as
well as perceived amount of reverberation. To avoid biases, the order
of presentation of the algorithms and conditions were randomized
between subjects. Details on the listening test can be found in [11].

3.2. Figures-of-merit

Two figures-of-merit for instrumental measures are used, namely
Pearson correlation coefficient between true and estimated quality
(and perceived amount of reverberation) ratings, as well as the root-
mean-square error (RMSE). Given the differences in anchors and
hidden references for each condition, it is imperative that the per-
formance of the measures be made for each acoustic condition sepa-
rately. As such, correlation is compared for each of the four acoustic
conditions. For overall comparison, the average correlation across
all four conditions and the overall RMSE values are also reported.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Table 2 reports the performances attained with the eleven instru-
mental measures as correlates of overall quality for each of the four
acoustic conditions, as well as averaged over all four. Within the



Table 2: Performance comparison of instrumental measures as cor-
relates of perceived quality

Metrics S2,Near S2,Far R1, Near R1, Far AVG RMSE
Non-intrusive instrumental measures

SRMR 0.19 0.43 0.90 0.92 0.61 0.32
SRMRnorm 0.93 0.93 0.94 0.96 0.94 0.20
ANIQUE+ 0.87 0.41 0.57 0.05 0.47 0.26
P.563 0.12 0.51 0.67 0.61 0.47 0.31

Intrusive instrumental measures
POLQA 0.56 0.75 0.76 0.78 0.71 0.24
PESQ 0.72 0.80 0.77 0.78 0.76 0.21
NCM 0.76 0.81 0.91 0.91 0.84 0.26
CSII 0.64 0.75 0.78 0.78 0.73 0.27
STOI 0.54 0.70 0.68 0.72 0.66 0.35
IS 0.81 0.82 0.74 0.68 0.76 0.54
LLR 0.82 0.82 0.74 0.91 0.82 0.51

non-intrusive measures, SRMR achieved reliable performance at
higher reverberation levels (i.e., “R1, Near” and “R1, Far”), but poor
accuracy at lower reverberation levels. This is in line with the in-
sights presented in [15, 37] and the higher RMSE shows the effects
of speech content and pitch on the performance [21]. The extended
version, SRMRnorm, on the other hand, overcomes these limita-
tions and results in a stable accuracy across all four tested acoustic
conditions, as well as reduced RMSE by approximately 38%. The
other two standard algorithms provided the same average correla-
tion, with ANIQUE+ achieving lower RMSE values compared to
ITU-T Rec. P.563. Notwithstanding, ANIQUE+, showed accurate
correlation with MUSHRA scores in lower reverberation levels. In-
terestingly, the opposite was observed with P.563. It is hypothesized
that the ANIQUE+ articulation analysis module performed better at
lower reverberation levels, whereas the P.563 noise analysis module
performed better at higher reverberation levels and these distur-
bances received higher weights during cognitive mapping. Overall,
SRMRnorm achieved the highest correlation and lowest RMSE of
all tested non-intrusive measures.

Regarding the intrusive measures, it can be seen that NCM re-
sulted in the highest average correlation across the four acoustic con-
ditions, with improved accuracy at higher reverberation levels. LLR
and IS performed relatively stable across the tested conditions in
terms of correlation, but achieved the highest RMSE values; over-
all, the LLR metric outperformed IS. As for the ITU-T standard
metrics, POLQA and PESQ, interestingly their overall correlations
were lower than the three abovementioned “classical” metrics. Over-
all, PESQ outperformed POLQA across the majority of the acoustic
conditions and achieved somewhat lower RMSE values. This is an
interesting finding, as POLQA is described as being applicable to en-
hanced speech, but the presented findings suggest otherwise. Lastly,
the STOI and CSII measures showed similar behaviour across the
four acoustic conditions, with improved accuracy at higher rever-
beration levels. Overall, the NCM metric showed the highest av-
eraged correlation with the multi stimuli test with hidden reference
and anchor (MUSHRA) scores and PESQ showed the lowest RMSE.
Comparing the intrusive to non-intrusive metrics, it can be seen that
SRMRnorm outperformed all other intrusive and non-intrusive mea-
sures in terms of correlation and achieved RMSE values in line with
PESQ. This is an important finding, as SRMRnorm does not require
access to a clean reference signal.

Results in Table 3 show the performances of the eleven instru-
mental measures as correlates of the perceived amount of reverber-
ation. Similar to what was mentioned above, SRMR performance

Table 3: Performance comparison of instrumental measures as cor-
relates of perceived amount of reverberation

Metrics S2,Near S2,Far R1, Near R1, Far AVG RMSE
Non-intrusive instrumental measures

SRMR 0.00 0.53 0.75 0.76 0.72 0.37
SRMRnorm 0.86 0.84 0.88 0.96 0.88 0.22
ANIQUE+ 0.78 0.41 0.67 0.05 0.47 0.25
P.563 0.31 0.51 0.26 0.15 0.30 0.34

Intrusive instrumental measures
POLQA 0.77 0.81 0.89 0.92 0.84 0.26
PESQ 0.89 0.91 0.95 0.97 0.93 0.20
NCM 0.87 0.79 0.87 0.89 0.85 0.26
CSII 0.83 0.77 0.84 0.87 0.82 0.25
STOI 0.72 0.69 0.74 0.80 0.73 0.32
IS 0.70 0.45 0.36 0.31 0.45 0.54
LLR 0.70 0.45 0.35 0.27 0.44 0.50

improved as reverberation levels increased and no correlation was
seen in the ‘S2, near condition’. SRMRnorm, in turn, showed to be
more stable across all conditions, outperforming all other considered
non-intrusive measures in terms of both correlation and RMSE. As
before, ANIQUE+ and P.563 achieved poor overall correlation, with
ANIQUE+ achieving somewhat accurate correlation in the low re-
verberation level condition. Unlike the case of 2, however, P.563
performance did not improve with increasing reverberation levels,
suggesting that an alternate mapping may be needed for the rever-
beration level rating scale. Overall, SRMRnorm achieved the highest
correlation and lowest RMSE of all tested non-intrusive measures.

Regarding the ITU-T standard measures, POLQA and PESQ
provided stable correlations across the four acoustic conditions,
with PESQ outperforming POLQA by approximately 11% in terms
of correlation. NCM and CSII achieved performance in line with
POLQA, thus suggesting that further optimizations may be needed
with POLQA in order for the measure to be reliably used with
speech enhancement algorithms. As correlates of the amount of re-
verberation, both LPC-based metrics performed poorly and achieved
the lowest correlation and highest RMSE of all tested instrumental
measures. STOI performance was in line with the original non-
intrusive SRMR metric. Overall, as correlates of perceived amount
of reverberation, PESQ achieved the highest correlation and low-
est RSME, followed closely by SRMRnorm. Notwithstanding, as
mentioned previously, the latter has the advantage of not requiring a
clean reference signal.

5. CONCLUSION

In this paper, we compared the performance of eleven instrumental
measures at assessing the quality and perceived amount of reverbera-
tion of speech processed by single- and multi-channel enhancement
algorithms. Overall, it was observed that a recent extension to the
non-intrusive SRMR metric, namely SRMRnorm, outperformed all
other metrics, including standard intrusive measures such as PESQ
and POLQA. As correlates of perceived amount of reverberation,
PESQ was shown to be the best instrumental measures, followed
closely by SRMRnorm and POLQA. These results are promising,
as SRMRnorm does not require access to a clean reference signal,
thus is an ideal candidate for adaptive quality- or environment-aware
speech enhancement.
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