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ABSTRACT

Many multi-channel dereverberation and noise reduction techniques
such as the multi-channel Wiener filter (MWF) require an estimate
of the late reverberation and noise power spectral densities (PSDs).
State-of-the-art multi-channel methods for estimating the late rever-
beration PSD typically assume that the noise PSD matrix is known.
Instead of assuming that the noise PSD matrix is known, in this pa-
per we model the noise as a spatially homogeneous sound field with
an unknown time-varying PSD and a known time-invariant spatial
coherence matrix. Based on this model, two joint estimators of the
late reverberation and noise PSDs are proposed, i.e., a non-blocking-
based estimator which simultaneously estimates the target signal,
late reverberation, and noise PSDs, and a blocking-based estima-
tor which first estimates the late reverberation and noise PSDs at the
output of a blocking matrix aiming to block the target signal. Ex-
perimental results show that the proposed blocking-based estimator
yields the best performance when used in an MWF, even resulting in
a similar or better performance than a state-of-the-art blocking-based
estimator of the late reverberation PSD which assumes that the noise
PSD matrix is known.

Index Terms— PSD estimation, late reverberation, noise,
MWF, least-squares

1. INTRODUCTION

In many hands-free speech communication applications, the recorded
microphone signals do not only contain the desired speech signal,
but also attenuated and delayed copies of the desired speech signal
due to reverberation, as well as additive noise. While early reverber-
ation may be desirable [1], late reverberation and noise may degrade
the perceived quality and hinder the intelligibility of speech [2, 3].
Hence, effective dereverberation and noise reduction techniques are
required.

A commonly used dereverberation and noise reduction tech-
nique is the multi-channel Wiener filter (MWF), which aims at
minimizing the mean-square error between the output signal and
the target signal [4–6]. The implementation of the MWF requires
(among other parameters) an estimate of the late reverberation
and noise power spectral densities (PSDs). To estimate the late
reverberation PSD, several single-channel estimators based on a
temporal model of reverberation [7–9] as well as multi-channel
estimators based on a diffuse sound field model for the late rever-
beration [10–18] have been proposed. To the best of our knowledge,
state-of-the-art multi-channel late reverberation PSD estimators es-
timate the late reverberation PSD assuming that an estimate of the
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noise PSD matrix is available. The noise PSD matrix is typically es-
timated from the microphone signals during speech pauses detected
by means of a voice activity detector (VAD) [19, 20], generally
requiring the noise PSD to be rather time-invariant. However, in
many acoustic scenarios, e.g., in highly reverberant environments,
speech pauses may rarely occur, making the estimation of the noise
PSD matrix challenging. In addition, in many acoustic scenarios
the noise PSD can be time-varying, e.g., when the noise consists of
microphone self-noise in a system with the input gain automatically
adjusted during operation using an automatic gain control.

Instead of assuming that an estimate of the noise PSD matrix
is available, in this paper we model the noise as a spatially homo-
geneous sound field with a time-varying PSD and assume that only
knowledge of the time-invariant spatial coherence matrix is avail-
able. Two alternative joint estimators of the late reverberation and
noise PSDs are proposed, i.e., a non-blocking-based estimator which
simultaneously estimates the target signal, late reverberation, and
noise PSDs, and a blocking-based estimator which first estimates
only the late reverberation and noise PSDs at the output of a block-
ing matrix aiming to block the target signal. The proposed PSD es-
timators can be viewed as extensions of the PSD estimators in [10]
and [16], where only the target signal and late reverberation PSDs
are estimated assuming that an estimate of the noise PSD matrix is
available. Simulation results for several realistic acoustic scenarios
show that the proposed blocking-based PSD estimator yields the best
performance when used in an MWF, also yielding a similar or better
performance than the PSD estimator in [10] which assumes that the
noise PSD matrix is known.

2. SIGNAL MODEL AND ASSUMPTIONS

Consider a reverberant and noisy multi-channel acoustic system
with a single speech source and M microphones. In the short-time
Fourier transform (STFT) domain, the M -dimensional vector of the
received microphone signals y(k, l) = [Y1(k, l) . . . YM (k, l)]T at
frequency bin k and frame index l is given by

y(k, l) = xe(k, l) + xr(k, l)︸ ︷︷ ︸
x(k,l)

+v(k, l), (1)

with xe(k, l) the direct and early reverberation component, xr(k, l)
the late reverberation component, x(k, l) the reverberant com-
ponent, and v(k, l) the noise component. The vectors xe(k, l),
xr(k, l), x(k, l), and v(k, l) are defined similarly as y(k, l). The
direct and early reverberation component xe(k, l) can be expressed
as

xe(k, l) = S(k, l)d(k), (2)

with S(k, l) the target signal, i.e., the direct and early reverbera-
tion component received at the reference microphone, and d(k) =
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[D1(k) . . . DM (k)]T the M -dimensional vector of relative trans-
fer functions (RTFs) of the target signal between the reference mi-
crophone and all microphones. The target signal S(k, l) is often
defined as the direct component only, such that the RTF vector d(k)
only depends on the direction of arrival (DOA) of the speech source
and the microphone array geometry [10–14, 16]. For conciseness,
the frequency index k is omitted in the remainder of this paper.

Assuming that the components in (1) are mutually uncorrelated,
the PSD matrix of the microphone signals is equal to

Φy(l) = E{y(l)yH(l)} = Φxe(l) + Φxr(l)︸ ︷︷ ︸
Φx(l)

+Φv(l), (3)

where E denotes the expectation operator, Φxe(l) is the direct and
early reverberation PSD matrix, Φxr(l) is the late reverberation PSD
matrix, Φx(l) is the reverberant PSD matrix, and Φv(l) is the noise
PSD matrix. The PSD matrix Φxe(l) can be expressed as (cf. (2))

Φxe(l) = Φs(l)ddH , (4)

with Φs(l) the time-varying PSD of the target signal, i.e., Φs(l) =
E{|S(l)|2}. Modeling the late reverberation as a diffuse sound
field [10–18], the PSD matrix Φxr(l) can be expressed as

Φxr(l) = Φr(l)Γ, (5)

with Φr(l) the time-varying PSD of the late reverberation and Γ the
spatial coherence matrix of a diffuse sound field, which can be an-
alytically computed based on the microphone array geometry [21].
Modeling the additive noise as a spatially homogeneous sound field,
the noise PSD matrix Φv(l) can be expressed as

Φv(l) = Φv(l)Ψ, (6)

with Φv(l) the time-varying noise PSD and Ψ the spatial coher-
ence matrix of the noise, which is assumed to be time-invariant. In
the presence of spatially uncorrelated noise (e.g., microphone self-
noise), Ψ = I, with I the M × M -dimensional identity matrix.
Using (4), (5), and (6), the PSD matrix Φy(l) is equal to

Φy(l) = Φs(l)ddH + Φr(l)Γ + Φv(l)Ψ. (7)

Given the filter vector w(l) = [W1(l) . . . WM (l)]T , the output
signal Z(l) of the speech enhancement system is equal to the sum
of the filtered microphone signals, i.e., Z(l) = wH(l)y(l). Dere-
verberation and noise reduction techniques aim at designing the fil-
ter w(l) such that the output signal Z(l) is as close as possible to
the target signal S(l). A widely used dereverberation and noise re-
duction technique is the MWF, which aims at minimizing the mean-
square error betweenZ(l) and S(l) [4–6]. The MWF is typically im-
plemented as a minimum variance distortionless response (MVDR)
beamformer wMVDR (l) followed by a single-channel Wiener postfil-
ter G(l) [10, 12–18], i.e.,

wMWF (l) =
[Φ̂r(l)Γ + Φ̂v(l)Ψ]

−1
d

dH [Φ̂r(l)Γ + Φ̂v(l)Ψ]−1d︸ ︷︷ ︸
wMVDR (l)

ρ̂(l)

1 + ρ̂(l)︸ ︷︷ ︸
G(l)

, (8)

with Φ̂r(l) and Φ̂v(l) denoting the estimated late reverberation and
noise PSDs respectively and ρ̂(l) denoting the estimated target-to-
late reverberation and noise ratio (TRNR) at the output of the MVDR
beamformer. The TRNR can be estimated as

ρ̂(l) =
Φ̂s(l)

Φ̂rn(l)
, (9)

with Φ̂s(l) denoting the estimated target signal PSD and Φ̂rn(l) =

{dH [Φ̂r(l)Γ + Φ̂v(l)Ψ]−1d}−1 the estimated residual late rever-
beration and noise PSD at the output of the MVDR beamformer.
Alternatively, ρ̂(l) can be estimated using the decision directed ap-
proach as [16, 22]

ρ̂DD (l) = β
|Z(l − 1)|2

Φ̂rn(l − 1)
+ (1− β)

Φ̂s(l)

Φ̂rn(l)
, (10)

with β a smoothing parameter. As can be observed in (8), (9),
and (10), the implementation of the MWF requires estimates of the
time-varying target signal, late reverberation, and noise PSDs. The
objective of this paper is to derive estimates Φ̂s(l), Φ̂r(l), and Φ̂v(l),
assuming that the RTF vector d, the diffuse spatial coherence matrix
Γ, and the noise spatial coherence matrix Ψ are known. The RTF
vector can be constructed based on a DOA estimate, the diffuse spa-
tial coherence matrix can be constructed based on the microphone
array geometry, and the noise spatial coherence matrix can be con-
structed assuming a reasonable sound field model for the noise.

3. JOINT TARGET SIGNAL, LATE REVERBERATION,
AND NOISE PSD ESTIMATORS

To the best of our knowledge, state-of-the-art multi-channel PSD
estimators do not explicitly model the noise as a spatially homoge-
neous sound field and only derive target signal and late reverberation
PSDs estimates Φ̂s(l) and Φ̂r(l) assuming that an estimate of the
noise PSD matrix Φv(l) is available [10–18]. The noise PSD matrix
is typically estimated from the microphone signals during speech
pauses detected by means of a VAD [19,20], generally requiring the
noise PSD Φv(l) to be time-invariant. Instead of assuming that an
estimate of the noise PSD matrix Φv(l) is available, in this paper
we assume that only knowledge of the noise spatial coherence ma-
trix Ψ is available and propose a non-blocking-based and a blocking-
based estimator of the target signal PSD Φs(l), the late reverberation
PSD Φv(l), and the noise PSD Φv(l). The proposed PSD estimators
can be viewed as extensions of the PSD estimators in [10] and [16],
where only estimates of Φs(l) and Φr(l) are derived assuming that
the noise PSD matrix Φv(l) is known.

3.1. Non-blocking-based PSD estimator

In the following we propose to simultaneously estimate the target
signal, late reverberation, and noise PSDs using the signal model
in (7) and an estimate of the PSD matrix Φy(l). An estimate of
Φy(l) can be directly obtained from the microphone signals using
recursive averaging as

Φ̂y(l) = αy(l)yH(l) + (1− α)Φ̂y(l − 1), (11)

with α a smoothing factor. Matching (11) to (7) and since the matri-
ces ddH , Γ, and Ψ are known, a system ofM(M + 1)/2 equations
with three unknowns Φs(l), Φr(l), and Φv(l) arises1. For M ≥ 3,
the system of equations is overdetermined and an estimate of the un-
known PSDs Φs(l), Φr(l), and Φv(l) can be obtained by minimizing
the least-squares cost function2

Jn(l) = ‖Φ̂y(l)− Φs(l)ddH − Φr(l)Γ− Φv(l)Ψ‖2F , (12)

1Note that since the matrices Φ̂y(l), ddH , Γ, and Ψ are symmetric,
matching (11) to (7) yields M(M+1)/2 equations instead of M2 equations.

2Note that this non-blocking-based least-squares cost function has already
been used in [23] in the context of noise reduction only, in order to estimate
the PSDs of different spatially homogeneous noise fields.
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with ‖ · ‖F the matrix Frobenius norm. Setting the derivative of (12)
with respect to Φs(l), Φr(l), and Φv(l) to 0 results in a system of
equations which can be written as(dHd)2 dHΓd dHΨd

dHΓd tr{ΓHΓ} tr{ΓHΨ}
dHΨd tr{ΓHΨ} tr{ΨHΨ}


︸ ︷︷ ︸

An

Φ̂s,n(l)

Φ̂r,n(l)

Φ̂v,n(l)


︸ ︷︷ ︸

φ̂φφn(l)

=

 dHΦ̂y(l)d

tr{Φ̂H
y (l)Γ}

tr{Φ̂H
y (l)Ψ}


︸ ︷︷ ︸

pn(l)

,

(13)
where tr{·} denotes the trace operator and the quantities An, φ̂φφn(l),
and pn(l) have been introduced in order to simplify the notation.
The solution to (13) is given by

φ̂φφn(l) = A−1
n pn(l), (14)

with the proposed target signal PSD estimate Φ̂s,n(l) being the first
element of φ̂φφn(l), late reverberation PSD estimate Φ̂r,n(l) being the
second element of φ̂φφn(l), and noise PSD estimate Φ̂v,n(l) being the
third element of φ̂φφn(l).

3.2. Blocking-based PSD estimator

In the following we propose an alternative PSD estimator which first
estimates the late reverberation and noise PSDs using reference sig-
nals at the output of a blocking matrix aiming to block the target
signal. Based on the estimated late reverberation and noise PSDs,
the target signal PSD is then estimated in a second step.

In order to block the target signal, anM×(M−1)-dimensional
blocking matrix B is constructed such that

BHd = 0, (15)

and a set of M − 1 reference signals ũ(l) containing only late re-
verberation and noise is generated as ũ(l) = BHy(l). There exist
many blocking matrices which satisfy (15). In this paper, the block-
ing matrix is computed from the first M − 1 columns of the matrix
T defined as

T = I− ddH

‖d‖22
. (16)

Based on (7) and (15), the PSD matrix of the reference signals at the
blocking matrix output can be expressed as

Φũ(l) = E{ũ(l)ũH(l)} = Φr(l) BHΓB︸ ︷︷ ︸
Γ̃

+Φv(l) BHΨB︸ ︷︷ ︸
Ψ̃

. (17)

The matrices Γ̃ and Ψ̃ can be computed using the known spatial co-
herence matrices Γ and Ψ and an estimate Φ̂ũ(l) of the PSD matrix
Φũ(l) can be directly obtained from the reference signals similarly
to (11). Matching the estimated PSD matrix Φ̂ũ(l) to (17) gives rise
to a system of M(M − 1)/2 equations with two unknowns Φr(l)
and Φv(l)3. For M ≥ 3, the system of equations is overdetermined
and an estimate of Φr(l) and Φv(l) can be obtained by minimizing
the least-squares cost function

Jb(l) = ‖Φ̂ũ(l)− Φr(l)Γ̃− Φv(l)Ψ̃‖2F . (18)

Setting the derivative of (18) with respect to Φr(l) and Φv(l) to 0
yields a system of equations which can be written as[

tr{Γ̃HΓ̃} tr{Γ̃HΨ̃}
tr{Γ̃HΨ̃} tr{Ψ̃H

Ψ̃}

]
︸ ︷︷ ︸

Ab

[
Φ̂r,b(l)

Φ̂v,b(l)

]
︸ ︷︷ ︸

φ̂φφb(l)

=

[
tr{Φ̂H

ũ (l)Γ̃}
tr{Φ̂H

ũ (l)Ψ̃}

]
︸ ︷︷ ︸

pb(l)

, (19)

3Note that since the matrices Φ̂ũ(l), Γ̃, and Ψ̃ are symmetric, matching
Φ̂ũ(l) to (7) yields M(M −1)/2 equations instead of (M −1)2 equations.

where the quantities Ab, φ̂φφb(l), and pb(l) have been introduced in
order to simplify the notation. The solution to (19) is given by

φ̂φφb(l) = A−1
b pb(l), (20)

with the proposed blocking-based late reverberation PSD estimate
Φ̂r,b(l) being the first element of φ̂φφb(l) and the noise PSD estimate
Φ̂v,b(l) being the second element of φ̂φφb(l). Using the late reverber-
ation and noise PSD estimates Φ̂r,b(l) and Φ̂v,b(l), the blocking-
based target signal PSD can be estimated as

Φ̂s,b(l) =
1

dHd
tr{Φ̂y(l)− Φ̂r,b(l)Γ− Φ̂v,b(l)Ψ}. (21)

It should be noted that if the signal model in (7) perfectly holds,
the non-blocking-based estimator proposed in Section 3.1 and the
blocking-based estimator proposed in this section would result in
the same PSD estimates. In practice however, the signal model in (7)
does not perfectly hold since the early and late reverberation com-
ponents are not perfectly uncorrelated, the late reverberation is not
perfectly diffuse, and the noise cannot be typically perfectly modeled
by a spatially homogeneous sound field. Furthermore, estimating the
matrices Φy(l) and Φũ(l) by recursive averaging of a single real-
ization of the signals will not yield the expected value operator. As
a result, the proposed PSD estimators yield different PSD estimates
in practice. As will be shown in Section 4, using the blocking-based
PSD estimates in an MWF yields a better performance than using
the non-blocking-based PSD estimates.

4. EXPERIMENTAL RESULTS

In this section, we investigate the dereverberation and noise reduc-
tion performance of the MWF using the proposed PSD estimators
and two alternative versions to compute the TRNR. More precisely,
we investigate the performance of the MWF implemented using

• the proposed non-blocking-based estimator with the TRNR
estimated as in (9), which will be referred to as NBB,

• the proposed non-blocking-based estimator with the TRNR
estimated as in (10), which will be referred to as NBB-DD,

• the proposed blocking-based estimator with the TRNR esti-
mated as in (9), which will be referred to as BB, and

• the proposed blocking-based estimator with the TRNR esti-
mated as in (10), which will be referred to as BB-DD.

In addition, the performance of the BB and BB-DD methods will be
compared to the performance of the MWF implemented using the
target signal and late reverberation PSD estimates from [10], where
it is assumed that an estimate of the noise PSD matrix is available.

4.1. Setup and instrumental measures

We consider three multi-channel acoustic systems with a single
speech source and M = 4 microphones. The first acoustic system
consists of a linear microphone array with an inter-sensor distance
of 3 cm [24], the second acoustic system consists of a circular mi-
crophone array with a radius of 10 cm [25], and the third acoustic
system consists of a linear microphone array with an inter-sensor
distance of 6 cm [26]. Table 1 presents the reverberation time T60,
the DOA θ of the speech source, and the direct-to-reverberation ratio
(DRR) for each acoustic system. The speech components are gen-
erated by convolving a 38 s long clean speech signal with measured
room impulse responses at a sampling frequency fs = 16 kHz. The
noise components consist of stationary uncorrelated noise with a
broadband reverberant signal-to-noise ratio (RSNR) between 10 dB
and 40 dB. The reverberant speech-plus-noise signal is preceded
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Table 1: Characteristics of the considered acoustic systems.

Acoustic system T60 [s] θ DRR [dB]

1 0.61 90◦ −0.76
2 0.73 45◦ 1.43
3 1.25 −15◦ −0.04

by a 1 s long noise-only segment such that when using the PSD
estimator from [10], the noise PSD matrix can be estimated from
the noise-only segment. The signals are processed using a weighted
overlap-add STFT framework with a frame size of 1024 samples
and an overlap of 75%. The first microphone is arbitrarily selected
as the reference microphone. The target signal is defined as the
direct component only, such that the RTF vector can be computed
based on the DOA of the speech source.

The PSD matrices Φ̂y(l) and Φ̂ũ(l) are estimated as in (11) with
a smoothing factor α corresponding to a time constant of 40 ms.
The diffuse spatial coherence matrix Γ is computed based on the
microphone array geometry and the noise spatial coherence matrix
is set to Ψ = I. The smoothing parameter in (10) is set to β = 0.98
and the minimum gain of the single-channel Wiener postfilter is set
to −17 dB. For the estimator from [10], the noise PSD matrix Φv is
estimated as

Φ̂v =
1

Lv

Lv∑
l=1

v(l)vH(l), (22)

with Lv being the total number of noise-only segments.
The performance is evaluated in terms of the improvement

in frequency-weighted segmental SNR (∆fwSSNR) [27] and log-
likelihood ratio (∆LLR) [27] between the output signal and the
reference microphone signal. The fwSSNR and LLR measures are
intrusive measures comparing the signal being evaluated to a refer-
ence signal. The reference signal used in this paper is the anechoic
speech signal. It should be noted that a positive ∆fwSSNR and a
negative ∆LLR indicate a performance improvement.

4.2. Performance of the proposed estimators

In this section the performance of NBB, NBB-DD, BB, and BB-DD
is investigated for all considered RSNRs and acoustic systems. The
presented performance measures are averaged over all considered
acoustic systems.

Fig. 1 depicts the performance of all considered techniques in
terms of ∆fwSSNR and ∆LLR. It can be observed that, as ex-
pected, for all considered techniques the performance improvement
decreases as the RSNR increases. Furthermore, it can be observed
that in terms of both performance measures and for all considered
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Fig. 1: MWF performance using the proposed PSD estimators.

Table 2: Average performance of the MWF using the proposed
blocking-based estimator and the estimator from [10] which assumes
that the noise PSD matrix is known (RSNR = 10 dB).

BB BR BB-DD BR-DD

∆fwSSNR [dB] 6.47 5.31 7.07 6.53
∆LLR [dB] −0.41 −0.33 −0.36 −0.31

RSNRs, a larger performance improvement is obtained when using
NBB-DD instead of NBB, suggesting that smoothing the TRNR es-
timate using the decision directed approach is particularly important
when using non-blocking-based PSD estimates. In addition, it can
be observed that BB and BB-DD outperform NBB and NBB-DD for
all considered RSNRs. While BB-DD yields the highest ∆fwSSNR,
BB results in the highest ∆LLR. Informal listening tests suggest
that BB-DD yields a better perceptual quality than BB, with BB
introducing more musical noise and signal artifacts than BB-DD.

In summary, the presented results show that for the considered
acoustic scenarios, the proposed blocking-based PSD estimates yield
a better performance than the non-blocking-based PSD estimates.

4.3. Performance of the proposed blocking-based estimator and
the state-of-the-art estimator from [10]

In this section, the performance of BB and BB-DD is compared to
the performance of the estimator from [10], which uses a blocking
matrix and only estimates the target signal and late reverberation
PSDs, assuming that an estimate of the noise PSD matrix is avail-
able. The noise PSD matrix is estimated as in (22) and the MWF is
implemented using Φ̂v (instead of Φ̂v(l)Ψ in (8)) with the TRNR
estimated as in (9) or (10). Using [10] with the TRNR estimated as
in (9) will be referred to as BR, whereas using [10] with the TRNR
estimated as in (10) will be referred to as BR-DD. Due to space con-
straints, only the performance for RSNR = 10 dB is presented and
similarly as before, the performance is averaged over all considered
acoustic systems.

Table 2 depicts the performance of the considered techniques in
terms of ∆fwSSNR and ∆LLR. It can be observed that BB and BB-
DD result in a similar or better performance than BR and BR-DD,
respectively. It should be noted that the noise PSD matrix estimate
used for BR and BR-DD is rather accurate, since the noise is station-
ary and all noise-only segments are used to compute the PSD matrix.
The presented results show that the proposed blocking-based estima-
tor manages to remove the assumption that the noise PSD matrix is
known and additionally estimates the noise PSD without hindering
the dereverberation and noise reduction performance.

5. CONCLUSION

In this paper joint estimators for the late reverberation and noise
PSDs have been derived, removing the assumption made by state-
of-the-art late reverberation PSD estimators that the noise PSD ma-
trix is known. Modeling the noise as a spatially homogeneous sound
field with an unknown time-varying PSD and a known time-invariant
spatial coherence matrix, we have derived a non-blocking-based and
a blocking-based joint estimator of the late reverberation and noise
PSDs. Simulation results show that the proposed blocking-based
PSD estimator yields the best performance when used in an MWF,
also yielding a similar or better performance than a state-of-the-art
blocking-based late reverberation PSD estimator which assumes that
the noise PSD matrix is known.
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