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ABSTRACT

The multi-frame minimum variance distortionless response (MFMVDR)
filter for single-microphone speech enhancement exploits speech correlation
across consecutive time frames. This filter is designed to avoid speech
distortion while minimizing the total signal output power. The MFMVDR
filter is very sensitive to estimation errors in the speech correlation vector,
since correlated speech components may be mistakenly suppressed. In-
spired by robust beamforming approaches, in this paper we propose a robust
constrained MFMVDR filter for single-microphone speech enhancement
by estimating the speech correlation vector that maximizes the total signal
output power within a spherical uncertainty set. For the upper bound of
the spherical uncertainty set, we propose to use a trained mapping function
that depends on the a-priori SNR. Experimental results for different noise
types and SNRs show that the proposed robust approach achieves a more
accurate estimate of the speech correlation vector resulting in low speech
and noise distortion but a more conservative noise reduction.

Index Terms— Speech Enhancement, Robust MVDR, Noise Reduc-
tion, Multi-Frame, Speech Distortion

1. INTRODUCTION

Using speech communication devices (e.g., hearing aids) in noisy envi-
ronments may lead to a degraded quality and intelligibility of the desired
speech signal. In these acoustic situations, speech enhancement algorithms
are required to suppress the undesired interference while limiting speech
distortion. Typically, single-microphone speech enhancement algorithms
are designed in the short-time Fourier transform (STFT) domain. When
assuming that neighboring STFT coefficients are uncorrelated over time
and frequency, the noisy STFT coefficients are processed by applying a
(real-valued) gain to each time-frequency point [1]. When using the more
realistic assumption that neighboring STFT coefficients are correlated
over time, it has been proposed to process the noisy STFT coefficients by
applying a (complex-valued) finite-impulse response (FIR) filter [2, 3, 4, 5].

In [3, 4], a multi-frame signal model has been proposed, where a speech
correlation vector contains the speech correlation between the current
and previous time-frames. Conceptually, this multi-frame signal model is
similar to a multi-microphone signal model when interpreting time-frames
as microphone inputs and the speech correlation vector as the steering
vector. Similarly to the well-known minimum variance distortionless
response (MVDR) beamformer [6, 7] in this way the multi-frame MVDR
(MFMVDR) filter was derived in [3, 4], which minimizes the total signal
output power while not distorting correlated speech components.

In practice, obviously only the noisy speech signal is available such that
the speech correlation vector needs to be estimated from the noisy STFT
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coefficients. In [8] a purely data-driven maximum-likelihood (ML) estima-
tor for the speech correlation vector was proposed. It was shown that when
using this speech correlation vector, the MFMVDR filter introduces low
speech distortion and achieves a good noise reduction. In [9], we showed
that accurately estimating the speech correlation vector is crucial in that even
a small mismatch between the optimal and the estimated speech correlation
vector may lead to a degraded performance of the MFMVDR filter.

In the area of array processing several techniques have been proposed
to increase the robustness of beamformers against estimation errors of the
steering vector or with as little as possible information about the steering
vector [10, 11, 12, 13]. Inspired by the robust MVDR beamformer in
[10], which estimates the steering vector that maximizes the total signal
output power of the MVDR within a spherical uncertainty set, in this paper
we propose a robust constrained (RC) MFMVDR filter by estimating the
speech correlation vector in the MFMVDR filter by adding a quadratic
inequality constraint to the original problem formulation. The quadratic
inequality constraint imposes an upper bound on the norm of the mismatch
vector, i.e., the difference between the speech correlation vector and the
presumed speech correlation vector, e.g., calculated using the ML method
in [8]. Since oracle simulations using several speech and noise signals
at different signal-to-noise ratios (SNR)s showed that the norm of the
mismatch vector decreases with increasing SNR, we trained a linear
mapping function to set the upper bound depending on the a-priori SNR
for each time-frequency point. Evaluation results for different noise types
and SNRs show that the proposed RC speech correlation vector achieves
a lower mean-squared error than the ML estimate, resulting in considerably
less speech and noise distortions with slightly less noise reduction.

2. MULTI-FRAME SIGNAL MODEL

We consider a single-microphone setup, where a speech signal is degraded
by additive noise. In the STFT domain, the complex-valued noisy speech
coefficient Y (k,m) at frequency-bin k and time-framem is given by the
complex-valued speechX(k,m) and noiseN(k,m) coefficients, i.e.,

Y (k,m)=X(k,m)+N(k,m). (1)

For conciseness, in the remainder of the paper the frequency-bin k will
be omitted if not required.

In multi-frame single-microphone speech enhancement approaches [2]
the speech coefficientX(m) is estimated by applying a complex-valued
FIR filter h(m) to the noisy speech vector y(m), i.e.,

X̂(m)=hH(m)y(m), (2)

where H denotes the Hermitian operator. The noisy speech vector y(m)
contains L consecutive noisy speech coefficients and the filter h(m)
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contains L time-varying filter coefficients, i.e.,

y(m)=
[
Y (m),Y (m−1),...,Y (m−L+1)

]T
, (3)

h(m)=
[
H0(m),H1(m),...,HL−1(m)

]T
. (4)

The noisy speech vector y(m) is given by

y(m)=x(m)+n(m), (5)

where the speech vector x(m) and the noise vector n(m) are defined
similarly as in (3). Assuming that the speech and noise signals are uncorre-
lated, the L×L-dimensional noisy speech correlation matrix Φyy(m)=
E
[
y(m)yH(m)

]
, with E[·] the expectation operator, is given by

Φyy(m)=Φxx(m)+Φnn(m), (6)

with Φxx(m) the speech correlation matrix and Φnn(m) the noise
correlation matrix.

To exploit the speech correlation across time-frames, it has been
proposed in [3, 4] to decompose the speech vector x(m) into a temporally
correlated speech component s(m) and a temporally uncorrelated speech
component x′(m) with respect to the speech coefficientX(m), i.e.,

x(m)=s(m)+x′(m), (7)

with
s(m)=γx(m)X(m). (8)

The highly time-varying speech correlation vector γx(m) is defined as

γx(m)=
E[x(m)X∗(m)]

E[|X(m)|2] =
Φxx(m)e

eTΦxx(m)e
, (9)

where ∗ denotes the complex-conjugate operator and e=
[
1, 0, ..., 0

]T
is the L-dimensional selection vector. Based on the normalization term
eTΦxx(m)e, which corresponds to the speech power spectral density
(PSD) φX(m), the first element of the speech correlation vector is equal
to 1, i.e.,

eTγx(m)=1. (10)
Substituting (7) and (8) into (5) and considering the uncorrelated speech

component x′(m) as an interference, the multi-frame signal model is given
by

y(m)=γx(m)X(m)+u(m) (11)

with u(m)=x′(m)+n(m) the undesired signal vector.
Similarly to (9), the noisy speech correlation vector γy(m) and the

noise correlation vector γn(m) can be defined as

γy(m)=
Φyy(m) e

φY (m)
, γn(m)=

Φnn(m) e

φN(m)
, (12)

with φY (m) and φN(m) denoting the noisy speech PSD and the noise
PSD, respectively. Using (6), it can be easily shown that

φY (m)γy(m)=φX(m)γx(m)+φN(m)γn(m), (13)

such that

γx(m)=
ξ(m)+1

ξ(m)
γy(m)−

1

ξ(m)
γn(m), (14)

where ξ(m)= φX(m)
φN(m)

denotes the a-priori SNR.

3. MFMVDR FILTER

In this section, we review the single-microphone MFMVDR filter proposed
in [3, 4] and the estimation of the noisy speech correlation matrix and the
speech correlation vector proposed in [8].

3.1. Optimization Problem

The MFMVDR filter aims at minimizing the total signal output power
while not distorting the correlated speech component, i.e.,

min
h(m)

hH(m)Φyy(m)h(m), s.t. hH(m)γx(m)=1. (15)

Solving this optimization problem yields the MFMVDR filter [3, 4]

hMFMVDR(m)=
Φ−1
yy(m)γx(m)

γHx (m)Φ−1
yy(m)γx(m)

(16)

with the signal output power φout
Y (m)=E

[
|hHMFMVDR(m)y(m)|2

]
, i.e.,

φout
Y (m)=

1

γHx (m)Φ−1
yy(m)γx(m)

. (17)

The MFMVDR filter in (16) is a function of the speech correlation
vector γx(m) and the noisy speech correlation matrix Φyy(m). Typically,
both quantities are highly time-varying, making it difficult to accurately
estimate especially the speech correlation vector when only having access
to the noisy speech signal.

3.2. Estimation of the Noisy Speech Correlation Matrix

Estimating the noisy speech correlation matrix Φyy(m) can be performed
by applying first-order recursive smoothing with smoothing parameter αy,
i.e.,

Φ̂yy(m)=αyΦ̂yy(m−1)+(1−αy)y(m)yH(m). (18)

To improve the robustness of the MFMVDR filter, we apply diagonal
loading with a regularization parameter of 0.04 as in [8], before computing
the inverse matrix.

3.3. Estimation of the Speech Correlation Vector

The optimal speech correlation vector γ̂Opt
x (m), can be estimated as

γ̂Opt
x (m)=

Φ̂xx(m)e

eT Φ̂xx(m)e
(19)

where the speech correlation matrix is estimated as Φ̂xx(m) =

Φ̂yy(m) − Φ̂nn(m). The noise correlation matrix Φ̂nn(m) is es-
timated similarly to (18). Based on (14), the ML estimate of the speech
correlation vector γx(m) was proposed in [8], which is given by

γ̂ML
x (m)=

ξ̂(m)+1

ξ̂(m)
γ̂y(m)− 1

ξ̂(m)
µγn , (20)

with ξ̂(m) an estimate of the a-priori SNR. In comparison to (19), the
estimated noise correlation vector γ̂n(m) is assumed to be constant for
all time-frequency points, such that it can be replaced by its mean value
µγn , which is determined by the frame overlap and the STFT analysis
window [8]. To estimate the a-priori SNR ξ̂(m) we use the noise PSD
estimator proposed in [14], i.e.,

φ̂N(m)=min
[
φ̂Y (m), φ̂N(m−1)

]
(1+ν), (21)

where the parameter ν is set to 5 dB/s as in [8]. For the speech PSD we
use the ML estimator proposed in [15], i.e.,

φ̂X(m)=max
[
φ̂Y (m)−φ̂N(m), 0

]
. (22)
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Fig. 1: Quadratic cost function in (25) with exemplary presumed speech
correlation vector γ̃x and bound ε.

It should be noted that the ML estimate of the speech correlation vector
strongly depends on the a-priori SNR estimate ξ̂(m). Especially for low
a-priori SNRs, the ML estimate may become very large, such that the
estimation error between γx(m) and γ̂ML

x (m) may become very large.
This may cause the ML-based MFMVDR filter to result in unpleasant
artifacts in the background noise or introduce speech distortion [8, 16].

4. ROBUST CONSTRAINED MFMVDR FILTER

In [9] we showed that the performance of the MFMVDR filter is very
sensitive to estimation errors of the speech correlation vector, such that cor-
related speech components may be mistakenly interpreted as uncorrelated
and be suppressed rather than preserved. Inspired by the robust MVDR
beamformer in [10], in this section we propose to estimate the speech
correlation vector as the vector maximizing the total signal output power
of the MFMVDR filter within a spherical uncertainty set. For conciseness,
also the index m is omitted in this section. It should be noted that the
calculations are performed for each frequency-bin k and time-framem.

Given a presumed speech correlation vector γ̃x, e.g., the ML estimate
γ̂ML
x in (20), the mismatch vector to the (unknown) speech correlation

vector γx is defined as δx=γx−γ̃x, with εx= ||γx−γ̃x||22. We now
define the spherical uncertainty set comprising all vectors whose squared
distance to the presumed speech correlation vector γ̃x is smaller than or
equal to a bound ε, i.e.,

Γ=
{
γ=γ̃x+δ | ‖δ‖22≤ε

}
. (23)

Similarly to the method proposed in [10] to robustly estimate the steering
vector for the MVDR beamformer, the RC speech correlation vector is
computed as the vector maximizing the total signal output power of the
MFMVDR filter in (17) within the spherical uncertainty set in (23), i.e.,

γ̂RC
x =argmax

γ
min
h

hHΦyyh, s.t. hHγ=1, (24)

‖γ−γ̃x‖22≤ε.

Using (17), this optimization problem can be reformulated as

γ̂RC
x =argmin

γ
γHΦ−1

yyγ, s.t. ‖γ−γ̃x‖22≤ε (25)

For L=2, the quadratic cost function γHΦ−1
yyγ in (25) is visualized

in Fig. 1 for an exemplary noisy speech correlation matrix Φyy, together
with an exemplary presumed speech correlation vector γ̃x and bound
ε. Obviously, the bound ε in (25) plays an important role and should be
chosen in accordance with the accuracy of the presumed speech correlation
vector γ̃x, i.e., if ||γx−γ̃x||22 is small, then ε should be small, whereas
if ||γx−γ̃x||22 is large, then ε should be large.

In order to avoid the (undesired) solution γ̂RC
x =0, the bound ε should

be chosen such that
ε<‖γ̃x‖22 . (26)

Under this condition and considering the convex nature of the quadratic
cost function in (25), the inequality constraint in (25) can be replaced by
an equality constraint, i.e.,

γ̂RC
x =argmin

γ
γHΦ−1

yyγ, s.t. ‖γ−γ̃x‖22=ε. (27)

This constrained optimization problem can be solved using the method
of Lagrange multipliers. The Lagrangian function is given by

f(γ,λ)=γHΦ−1
yyγ+λ

(
‖γ−γ̃x‖22−ε

)
, (28)

with λ the Lagrange multiplier. Setting the gradient of f(γ,λ) with respect
to γ equal to zero and applying the matrix inversion lemma, we obtain
the RC speech correlation vector γ̂RC

x (λ) as

γ̂RC
x (λ)=γ̃x−(λΦyy+I)−1γ̃x (29)

with I denoting the L×L-dimensional identity matrix. Setting the deriva-
tive of f(γ,λ) with respect toλ equal to zero and substituting (29) results in

∂f(γ,λ)

∂λ
=‖(λΦyy+I)−1γ̃x‖22−ε=0. (30)

Let the eigenvalue decomposition of the noisy speech correlation matrix
be given by

Φyy=QUQH, (31)

where the columns of Q contain the orthogonal eigenvectors of Φyy
and the diagonal elements ofU are the corresponding eigenvalues, with
u0≥u1≥ ...≥uL−1. In addition, let

zx=QHγ̃x, (32)

where zx(l) denotes the lth element of zx. Using (31) and (32) in (30),
we obtain

g(λ)=

L−1∑
l=0

|zx(l)|2

(1+λul)2
=ε (33)

This non-linear equation in the Lagrange multiplier λ can be solved, e.g.,
using Newton’s method. The solution is then used in (29), yielding the
RC speech correlation vector γ̂RC

x . Since the condition in (9) may not
be satisfied, possibly resulting in a scaling inaccuracy, a normalization is
performed by dividing γ̂RC

x with its first element. Using the normalized RC
speech correlation vector γ̂RC

x in (16) results in the RC MFMVDR filter.
As already mentioned, the bound ε should be chosen in accordance with

the accuracy of the presumed speech correlation vector, e.g., assuming that
the optimal bound is equal to ε̂Opt =‖γ̂Opt

x −γ̃x‖22 with the optimal estimate
of the speech correlation vector defined in (19). When using the ML
estimate γ̂ML

x as the presumed speech correlation vector γ̃x, simulations
have shown that the accuracy of the ML estimate (not unexpectedly)
depends on the a-priori SNR estimate ξ̂. Hence, we propose to train a
mapping function ε̂Map

ML (ξ̂) between the a-priori SNR estimate ξ̂, computed
using (21) and (22), and the optimal bound ε̂Opt

ML =‖γ̂Opt
x −γ̂ML

x ‖22. Fig. 2
shows the normalized joint probability density function (PDF) of the optimal
bound ε̂Opt

ML and the a-priori SNR estimate ξ̂ for a wide range of speech and
noise signals (30 TIMIT sentences [17], speech-shaped noise, two traffic
and babble noise signals), for a broadband SNR range of 0 to 15 dB. It can
be observed that with increasing a-priori SNR the optimal bound decreases.
The linear mapping function ε̂Map

ML (ξ̂) (shown in red in Fig. 2) is based on the
maximum value of the normalized PDF for each a-priori SNR estimate ξ̂.
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Fig. 2: Normalized joint PDF of the optimal uncertainty parameter ε̂Opt
ML

and the estimated a-priori SNR ξ̂.

5. EXPERIMENTAL EVALUATION

In this section, we compare the estimation accuracy error of the proposed
RC speech correlation vector in (29) with the ML speech correlation vector
in (20) and the performance of the MFMVDR filter when using these
speech correlation vectors.

Similarly as in [8, 9], to increase the exploitable speech correlation
across time-frames, we use a highly temporally resolved STFT framework
with a frame length of 4 ms and an overlap of 75 %, resulting in a frame
shift of 1 ms. As the STFT analysis and synthesis window we use a
square-root Hann window. The number of consecutive time-frames is
set to L=18, resulting in 21 ms of data used in each filtering operation.
The smoothing parameter in (18) is set to αy = 0.9. As clean speech
signals, we use 60 sentences from the TIMIT database [17], spoken by
different speakers (10 male, 10 female). As noise signals we use modulated
white Gaussian noise, traffic and two babble noise signals. The sampling
frequency is 16 kHz and the considered SNR range is -5 dB to 20 dB. We
make sure that the evaluation data differs from the training set.

The both estimated speech correlation vectors is evaluated using the
mean-square error (MSE) between the optimal speech correlation vector
in (19) and the estimated speech correlation vector, i.e.,

MSE=
1

F
∑
k,m∈F

‖γ̂Opt
x (k,m)−γ̂x(k,m)‖22, (34)

where F is the set of time-frequency points that contain either noise-only
or speech-and-noise points (with a-priori SNR ξ(m) larger than -5 dB).
Furthermore, we classify time-frequency points whose squared error is
larger than 200 as outliers and exclude them from the MSE calculation.
In Fig. 3, the performance averaged over all speech and noise files in
terms of the MSE and the percentage of outliers in speech-and-noise and
noise-only points are shown for different SNRs, separately. It can be
observed that compared to the ML estimate the RC estimate yields a lower
MSE. Moreover, the percentage of outliers is removed, indicating that the
RC estimate is more accurate and much stabler as the ML estimate.

The performance of the MFMVDR filter using both estimates is eval-
uated in terms speech distortion and noise reduction using the segmental
speech SNR (segSSNR) and the segmental noise reduction (segNR) [18],
where both measures have only been computed during time-frames where
speech is active. In addition, to evaluate the noise distortion, more in
particular the presence of musical noise, we use the weighted log kurtosis
ratio ∆Ψlog [19], where the musical noise is lowest at ∆Ψlog =0.

Fig. 4 depicts the results averaged over all speech and noise files. On the
one hand, it can be observed that for all SNRs the proposed RC MFMVDR
filter achieves a larger segSSNR and lower ∆Ψlog than the ML MFMVDR
filter. On the other hand, in terms of segNR it can be seen that for SNRs
up to 10 dB the proposed RC MFMVDR filter achieves a lower noise
reduction than the ML MFMVDR filter. These results indicate that the
RC MFMVDR filter leads to clearly less speech and noise distortion
than the ML MFMVDR filter but is more conservative in suppressing

Fig. 3: Average MSE and percentage of outliers for the ML and RC
speech correlation vectors. The lower and upper parts of the bars represent
the performance in speech-and-noise and noise-only, respectively.

Fig. 4: Average segNR, segSSNR and ∆Ψlog using the ML estimate
γ̂ML
x (m) and the RC estimate γ̂RC

x (m) for different SNRs.

the background noise. Informal listening tests confirm that for the RC
MFMVDR filter the speech sounds clearly less distorted and more natural
and less musical noise is present than for the ML MFMVDR filter.

6. CONCLUSIONS

In this paper, we proposed a robust constrained (RC) multi-frame minimum
variance distortionless response (MFMVDR) filter for single-channel
speech enhancement. Inspired by robust beamforming approaches, we
proposed to estimate the speech correlation vector as the vector maximizing
the total signal output power within a spherical uncertainty set. The
spherical uncertainty set imposes an upper bound on the norm of the
mismatch vector between the speech correlation vector and the presumed
speech correlation vector. We proposed to set this bound by training a
mapping function depending on the a-priori SNR estimate. Simulation
results show that the proposed RC approach leads to a more accurate and
stable estimate of the speech correlation vector than the ML approach.
The RC MFMVDR filter produces less speech and noise distortions than
the ML MFMVDR filter such that the speech sounds more natural and
less musical noise is present but the RC MFMVDR filter leads to a more
conservative noise reduction performance than the ML MFMVDR filter.
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