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Abstract
Recently, the convolutional weighted power minimiza-
tion distortionless response (WPD) beamformer was pro-
posed, which unifies multi-channel weighted prediction er-
ror dereverberation and minimum power distortionless re-
sponse beamforming. To optimize the convolutional fil-
ter, the desired speech component is modeled with a time-
varying Gaussian model, which promotes the sparsity of
the desired speech component in the short-time Fourier
transform domain compared to the noisy microphone sig-
nals. In this paper we generalize the convolutional WPD
beamformer by using an `p-norm cost function, introduc-
ing an adjustable shape parameter which enables to con-
trol the sparsity of the desired speech component. Experi-
ments based on the REVERB challenge dataset show that
the proposed method outperforms the conventional con-
volutional WPD beamformer in terms of objective speech
quality metrics.

1 Introduction
In many hands-free speech communication systems such
as hearing aids, mobile phones and smart speakers, rever-
beration and ambient noise may degrade the speech quality
and intelligibility of the recorded microphone signals. Re-
verberation is caused by reflections of a speech source ar-
riving delayed and attenuated at the microphones [1]. Note
that early reflections, which arrive roughly in the first 50ms
after the direct component, are usually beneficial for hu-
man and automatic speech recognition, whereas late rever-
beration can be detrimental [1–4]. In many scenarios the
microphones also capture undesired noise, e.g., originating
from traffic, house appliances or industrial machinery.

First, to achieve noise reduction, a commonly used
multi-microphone noise reduction technique is the mini-
mum power distortionless response (MPDR) beamformer
[5–8], which aims at minimizing the output power while
leaving the desired speech component undistorted. To im-
plement the MPDR beamformer, the relative transfer func-
tion (RTF) vector of the desired speech source is required,
which can be estimated, e.g., using the covariance whiten-
ing method, assuming that an estimate of the noise covari-
ance matrix is available [9–11].

Second, to achieve dereverberation, the so-called
weighted prediction error (WPE) technique is commonly
applied in the short-time Fourier transform (STFT) do-
main [12–14]. It uses a convolutional filter, to estimate
the late reverberation component by modeling the desired
speech component with a time-varying complex circular
Gaussian (TVG) model. The convolutional filter is ap-
plied to a number of past STFT frames excluding a few
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most recent frames, with the aim of preserving the early
reflections. Since anechoic speech is sparser than rever-
berant speech in the STFT domain, a variant of WPE with
sparse priors has been proposed in [15–17], which uses an
`p-norm cost function to optimize the convolutional filter.
Since both cost functions do not have analytic solutions, it
has been proposed to use iterative alternating optimization
schemes, such as the iteratively reweighted least squares
(IRLS) method [15, 18, 19].

Aiming at joint dereverberation and noise reduction, it
was proposed to perform WPE as a preprocessing stage
before MPDR beamforming in a combined cascade sys-
tem [20, 21]. The so-called weighted power minimization
distortionless response (WPD) convolutional beamformer
proposed in [22–25] was shown to outperform those cas-
cade systems by unifying the optimization of the convolu-
tional WPE filter and the MPDR beamformer. The uni-
fied convolutional WPD beamformer is optimized simi-
larly to the convolutional WPE filter by modeling the de-
sired speech component with a TVG model and addition-
ally introducing a distortionless constraint using the RTFs
of the desired speech source.

In this paper we propose to optimize the convolutional
beamformer coefficients by explicitly taking into account
that the desired speech component is sparser than the noisy
reverberant speech in the STFT domain. Hence, similar to
the WPE variant in [15, 16], we propose to optimize the
convolutional beamformer coefficients using an `p-norm
cost function with an additional distortionless constraint.
The optimization is performed using the IRLS method.
We evaluate the influence of the shape parameter p of
the `p-norm cost function and the influence of initializa-
tion in terms of perceptual evaluation of speech quality
(PESQ) and frequency-weighted segmental signal-to-noise
ratio (FWSSNR) [26, 27]. The simulation results show that
the speech enhancement performance can be improved by
setting the shape parameter p to an appropriate value. In
addition the results show that the multi-channel initializa-
tion approach results in a faster convergence of the iterative
optimization scheme than single-channel initialization.

2 Signal Model
We consider a single speech source captured by M micro-
phones in a noisy and reverberant acoustic environment.
The STFT coefficients of the microphone signals at time
frame t and any frequency bin are denoted as

yt = [y1,t . . . yM,t]
T ∈ CM×1, (1)

with (·)T denoting the transpose operator. The frequency
index is omitted for brevity since it is assumed that each
frequency subband is independent and can hence be pro-
cessed individually. Assuming that T time frames are
available, the batch matrix of the microphone signals is de-
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fined as

Y = [y1 . . . yT ] ∈ CM×T . (2)

As in [12–16] the multi-channel microphone signal yt
is modeled as the convolution of the clean speech sig-
nal st with the stationary multi-channel convolutive trans-
fer function (CTF) matrix A = [a0 . . . aLa−1] ∈ CM×La

plus additive noise nt ∈ CM×1, i.e.

yt =
La−1

∑
l=0

alst−l+nt =
τ−1

∑
l=0

alst−l︸ ︷︷ ︸
:=dt

+
La−1

∑
l=τ

alst−l︸ ︷︷ ︸
:=rt

+nt,

(3)

whereLa denotes the number of taps of the CTFs and τ de-
notes the so-called prediction delay. This delay separates
the early reflections from the late reverberation, i.e. the
reverberant speech is decomposed into the desired speech
component dt ∈ CM×1 and the late reverberation compo-
nent rt ∈ CM×1. The desired speech component can be
approximated using the stationary multiplicative transfer
function (MTF) vector v ∈ CM×1 as [28]

dt ≈ vst = ṽmdm,t with m ∈ {1, ...,M}, (4)

where dm,t and dm ∈ C1×T denote the desired speech
component in the reference microphone m at time frame
t and the full batch vector, respectively. The vector ṽm =
v/vm ∈ CM×1 denotes the RTF vector, where vm is the
m-th entry of v.

2.1 Estimating RTF vector by Covariance
Whitening

As proposed in [9–11], the RTF vector ṽm can be esti-
mated with the covariance whitening method, assuming
that dt and nt are uncorrelated and that rt ≈ 0. The noisy
covariance matrix Ry = 1/T ∑

T
t=1 yty

H
t can be decomposed

into the speech covariance matrix Rd = 1/T ∑
T
t=1 dtd

H
t and

the noise covariance matrix Rn = 1/T ∑
T
t=1 ntn

H
t with (·)H

denoting the Hermitian operator, i.e.

Ry = Rd+Rn ≈ φsvvH +Rn, (5)

where φs denotes the power spectral density (PSD) of the
speech component, and the MTF approximation in (4) has
been used for the speech covariance matrix Rd. Assum-
ing that the (positive definite) noise covariance matrix is
available, the noisy covariance matrix can be whitened as

R−H/2
n RyR

−1/2
n = R−H/2

n RdR
−1/2
n + I (6)

≈ φsR−H/2
n vvHR−1/2

n + I (7)

where I denotes the identity matrix and R
1/2
n is any matrix

square root of Rn so that R
H/2
n R

1/2
n = Rn. The princi-

pal eigenvector v̇ of R
−H/2
n RyR

−1/2
n is equal to αR

−H/2
n v,

where α 6= 0 denotes an arbitrary scaling factor. The RTF
vector ṽm can be obtained by de-whitening v̇ and normal-
izing w.r.t its m-th entry, i.e.

ṽm =
v

vm
=

R
H/2
n v̇

eT
mR

H/2
n v̇

=
R

H/2
n R

−H/2
n v

eT
mR

H/2
n R

−H/2
n v

(8)

where em denotes a selection vector with the m-th entry
equal to one and all other entries equal to zero.

2.2 Convolutional Filter
To obtain an estimate zm,t of the desired speech compo-
nent dm,t in the reference microphone m at time frame t
a convolutional filter h̄m ∈CM(Lh−τ+1)×1, can be applied
to the noisy STFT vector, i.e. [12–16, 22–25]

zm,t = h̄H
mȳt, (9)

where the stacked microphone signal vector ȳt is defined
as

ȳt =
[
yT
t yT

t−τ . . . yT
t−Lh+1

]T ∈ CM(Lh−τ+1)×1. (10)

Note that the vector ȳt only includes a subset of the Lh
most recent frames, i.e. it includes the current frame but
excludes τ − 1 frames, aiming at preserving the early re-
flections. The batch vector zm ∈ C1×T containing esti-
mates of the desired speech component for all time frames
can be obtained as

zm = h̄H
mȲ, (11)

with

Ȳ = [ȳ1 . . . ȳT ] ∈ CM(Lh−τ+1)×T . (12)

3 Conventional WPD
using TVG model

In [22, 24, 25], the WPD convolutional beamformer has
been proposed to achieve joint dereverberation and noise
reduction. The WPD convolutional beamformer h̄m is op-
timized by modeling the desired speech component dm,t
in the reference microphone m with a TVG model sim-
ilarly to WPE dereverberation [12, 13, 15] and addition-
ally introducing a distortionless constraint similarly to the
MPDR beamformer [6]. The corresponding negative log-
likelihood L to be minimized is given by [24]

L
(
h̄m,Λ

)
=

1
T

T

∑
t=1

(
lnλt+

|zm,t|2

λt

)
(13)

=
1
T

(
tr(lnΛ)+zmΛ−1zH

m

)
, (14)

where tr(·) denotes the trace operator, λt =E
[
|dm,t|2

]
de-

notes the PSD of the desired speech component at frame
t, corresponding to the time-varying variance of the TVG
model, and Λ ∈ RT×T+ denotes a diagonal matrix contain-
ing these variances for all T time frames. The distortion-
less constraint is given by [6]

h̄H
mv̄m = 1, (15)

where v̄m =
[
ṽT
m 0T

]T and 0 is a vector containing
M (Lh− τ) zeros. Note that the cost function in (14) de-
pends on the PSDs of the desired speech component, which
are obviously not available in practice. Since the cost func-
tion is non-convex and does not have an analytic solution it
has been proposed in [22, 24] to use an iterative alternating
optimization scheme to approximate the optimal filter. In
the first of the two alternating optimization steps, the vari-
ances Λ are fixed to optimize the convolutional filter, and
in the second step the convolutional filter is fixed to up-
date the variances using the estimate of the desired speech
component.
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(1) Estimating the filter by fixing the variances

By fixing the variances Λi in the i-th iteration of the al-
ternating optimization and using (11), the cost function in
(14) to be minimized reduces to

L
(
h̄m,i

)
∝

1
T

zm,iΛ
−1
i zH

m,i (16)

=
1
T

h̄H
m,iȲΛ−1

i ȲHh̄m,i (17)

= h̄H
m,iR̄y,ih̄m,i, (18)

where R̄y,i = 1/TȲΛ−1
i ȲH denotes the power-weighted

noisy sample covariance matrix of the stacked microphone
signals. The solution of the resulting constrained optimiza-
tion problem

h̄
opt
m,i = argmin

h̄m,i

(
h̄H
m,iR̄y,ih̄m,i

)
s.t. h̄H

m,iv̄m = 1 (19)

is given by the MPDR beamformer [5]:

h̄
opt
m,i =

R̄−1
y,iv̄m

v̄H
mR̄−1

y,iv̄m
. (20)

(2) Estimating the variances by fixing the filter

By now fixing the convolutional filter h̄m,i, the variances
in the i-th iteration can be updated by minimizing (13) [13,
15], i.e.

λt,i+1 = |zm,t,i|2 =
∣∣∣h̄opt,H
m,i ȳt

∣∣∣2. (21)

4 Proposed Method
using Sparse Priors

We propose to optimize the convolutional beamformer co-
efficients by explicitly taking into account that the desired
speech component is sparser than the noisy reverberant
speech in the STFT domain. Hence, instead of the TVG
model in (13), we propose to optimize the convolutional
filter in (11) using an `p-norm cost function similarly to
the WPE variant in [15, 16], i.e.

L
(
h̄m
)

∝ ‖zm‖pp ∝
1
T

T

∑
t=1
|zm,t|p, (22)

where p ∈ (0,2] denotes the so-called shape parameter.
The shape parameter determines the sparsity of the cost
function, where small values of p promote sparsity. It
should be noted that for 0 < p < 1 this cost function is
non-convex. In addition, we use the same distortionless
constraint h̄H

m,iv̄m= 1 as for the conventional WPD beam-
former in (15). Similarly as in [15, 19], we propose to
use an IRLS method with the basic idea to replace the
non-convex `p-norm minimization problem with a series
of convex `2-norm minimization subproblems. In each it-
eration, the `2-norm minimization subproblem has an ana-
lytic solution, which modifies the optimization problem of
the next iteration. This leads to an iterative alternating op-
timization scheme similar to the optimization scheme for
WPD in Section 3. The two alternating steps are described
in the following paragraphs.

(1) Constrained `2–Norm Subproblem Minimization

In each iteration i, the non-convex cost function in (22)
is replaced with a convex weighted `2-norm cost function,
i.e.

L
(
h̄m,i

)
∝

1
T

zm,iWiz
H
m,i, (23)

where Wi denotes the diagonal weighting matrix, i.e.

Wi = diag
(
[w1,i . . . wT,i]

T
)
∈ RT×T+ , (24)

where the weights wt,i are real-valued and positive. It
should be noted that the cost function in (23) is similar to
(16), where the weight matrix Wi takes the role of Λ−1

i .
Hence, similarly to (20), the solution minimizing (23) sub-
ject to the distortionless constraint in (15) is equal to

h̄
opt
m,i =

(
R̄W
y,i

)−1
v̄m

v̄H
m

(
R̄W
y,i

)−1
v̄m

. (25)

where R̄W
y,i = 1/TȲWiȲ

H denotes the weighted noisy
sample covariance matrix of the stacked microphone sig-
nals.

(2) Updating the Weights

Similarly as in [15, 19], in each iteration the weights in
(24) are updated as

wt,i+1 =
1

|zm,t,i|2−p
=

1∣∣∣h̄opt,H
m,i ȳt

∣∣∣2−p , (26)

so that (23) is a first-order approximation of (22). It should
be noted that for p= 0, the conventional and proposed op-
timization schemes are equivalent, since wt,i+1 = λ−1

t,i+1
yielding R̄W

y,i = R̄y,i. This means that the conventional
WPD algorithm models the desired speech component as
the most sparse, while for larger values of p the desired
speech component is modeled less sparse.

5 Initialization
Both the conventional WPD beamformer and the proposed
`p-norm WPD beamformer are based on an iterative alter-
nating optimization scheme. In each iteration, first the con-
volutional filter is estimated, based on which the variances
or equivalent weights are updated. These updates modify
the estimation of the convolutional filter in the next itera-
tion. However, the update equations (21) and (26) depend
on the estimate of the desired speech component, which is
obviously not available in the first iteration. One option to
initialize this estimate is to simply use the noisy and rever-
berant reference microphone signal, i.e.

λt,1 = |ym,t|2 and wt,1 =
1

|ym,t|2−p
. (27)

Another option is to use all noisy and reverberant micro-
phone signals, similarly to [16, 29], i.e.

λt,1 =
‖yt‖2

2
M

, wt,1 =
M

‖yt‖2−p
2

. (28)

ITG-Fachbericht 298: Speech Communication ∙ 29.09. – 01.10.2021, online

ISBN 978-3-8007-5627-8 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach146



Table 1: Algorithm Parameters
Parameter Symbol Value
frame length 512taps =̂ 32ms
frame shift 128taps =̂ 8ms
window square-root-Hann
prediction delay τ 4frames =̂ 32ms
prediction filter length Lh 12frames =̂ 96ms
reference microphone m 1

6 Experiments
In this section, we compare the performance of the conven-
tional WPD beamformer with the proposed beamformer.
More in particular, we evaluate the influence of the shape
parameter p and different initialization approaches.

6.1 Dataset, Evaluation Metrics and Analysis
Conditions

We used the simulated data of the development set of
the REVERB challenge [30, 31] with sampling frequency
fs = 16kHz. The dataset simulates a circular microphone
array with 8 channels in six different reverberation condi-
tions resulting from two speaker-to-microphone distances
of 50cm and 200cm and three different rooms with re-
verberation times of T60 ∈ {0.3s,0.6s,0.7s}. After con-
volving the clean utterances with one of the six room im-
pulse responses, stationary diffuse background noise was
added with a signal-to-noise ratio of 20dB. As objec-
tive measures of the speech quality we computed PESQ
and FWSSNR scores [26, 27], where we used the clean
speech signal st as the reference signal. The parameters
of the algorithms are stated in Tab. 1. The RTF vector
ṽm was estimated blindly using the covariance whitening
(CW) method [9–11], assuming that noise-only frames are
present in the first 225ms and the last 75ms to estimate the
noise covariance matrix Rn.

6.2 Results
Fig. 1 shows the average PESQ and FWSSNR improve-
ment vs. the number of iterations of the `p-norm WPD
algorithm for different shape parameters p and initializa-
tions (see Section 5). First, the results show that for all
considered parameter choices the speech quality is im-
proved in terms of PESQ and FWSSNR compared to the
noisy reference microphone signal. Second, the results
after I = 10 iterations show that for both initializations
a shape parameter of p = 0.5 outperforms the conven-
tional method (p = 0), which stronger promotes sparsity,
and its variant (p = 1), which promotes sparsity less, in
terms of PESQ and FWSSNR improvement, except for the
FWSSNR improvement of the conventional method for the
multi-channel initialization. Third, it can be observed that
the multi-channel initialization consistently outperforms
the single-channel initialization in terms of convergence
speed and for the conventional method (p= 0) also in terms
of performance after I = 10 iterations. These results show
the influence of the shape parameter p and the initializa-
tion on the performance of the proposed WPD beamformer
with sparse priors.

MC: p= 0 p= 0.5 p= 1
SC: p= 0 p= 0.5 p= 1

0 5 10
0.7

0.8

0.9

1

1.1

1.2

1.3

iteration

∆PESQ

0 5 10

4

5

6

iteration

∆FWSSNR (dB)

Figure 1: Average PESQ and FWSSNR improvement
vs. number of iterations for different shape parameters p.
Filled markers correspond to multi-channel (MC) initial-
ization of the weights as in (28), while empty markers cor-
respond to single-channel (SC) initialization of the weights
as in (27).

7 Conclusion
In this paper we proposed a novel convolutional beam-
former for joint dereverberation and noise reduction, based
on a sparse prior for modeling the desired speech com-
ponent. The proposed `p-norm WPD beamformer can be
interpreted as a generalization of the conventional WPD
beamformer using the TVG model. We propose to com-
pute the convolutional beamformer using an IRLS method,
where the non-convex constrained `p-norm minimization
problem is replaced with a series of convex constrained
`2-norm minimization subproblems. The experimental re-
sults show that speech enhancement performance can be
consistently improved by setting the shape parameter p to
an appropriate value. In addition, the results show that
multi-channel initialization improves the performance and
the convergence speed.
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