
1198 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Speech-Aware Binaural DOA Estimation Utilizing
Periodicity and Spatial Features in Convolutional
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Abstract—In recent years, several supervised learning-based ap-
proaches have been proposed for estimating the direction of arrival
(DOA) of a single talker in noisy and reverberant environments.
In the absence of auxiliary information, such as a voice activity
detector (VAD), the estimated DOA may be erroneous due to speech
pauses or noise dominance. In this paper, we consider a speech-
aware DOA estimation system for binaural hearing aids, which
does not require a separate VAD. This system utilizes a combination
of spatial features with an auditory-inspired periodicity feature
called periodicity degree (PD) as input features of a convolutional
neural network (CNN). Using speech and non-speech signals dur-
ing the training, the CNN can capture the harmonic structure
encoded in the PD features, thereby distinguishing speech from
non-speech portions and simultaneously mapping spatial features
to sound source DOA upon speech detection. To investigate the
benefit of using PD features for speech-aware DOA estimation, we
evaluated the performance of speech-aware systems that utilized
either broadband or narrowband feature combinations compared
to baseline systems. We propose to use a novel narrowband feature
combination consisting of the narrowband cross-power spectrum
(CPS) as the spatial feature and a new subband-averaged rep-
resentation of PD features. The broadband feature combination
consisted of the generalized cross-correlation with phase transform
(GCC-PHAT) and the broadband PD features. The baseline sys-
tems considered in this work consisted of a CNN that exploits only
a spatial feature, cascaded with a VAD. Evaluations in reverberant
environments with different background noises for both static and
dynamic single-talker scenarios demonstrate that incorporating
the PD feature in conjunction with any type of spatial feature
provides an advantage for binaural DOA estimation in terms of
accuracy and angular error.

Index Terms—Convolutional neural networks, spatial feature,
periodicity feature, binaural DOA estimation, hearing devices.

I. INTRODUCTION

R ELIABLY estimating the direction of arrival (DOA)
of a target speech source is a crucial task in appli-

cations such as binaural hearing aids. Several DOA estima-
tion approaches have addressed this task. The model-based
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approaches [1], [2], [3], [4], [5], [6] typically rely on spe-
cific assumptions about the signal, noise, or reverberation
model, which can be violated in adverse noisy and reverber-
ant conditions, leading to a degraded DOA estimation per-
formance. In addition to model-based DOA estimation ap-
proaches, in recent years several supervised learning-based
DOA estimation approaches based on deep neural networks
(DNNs) have been proposed [7], [8], [9], [10], [11], [12], [13],
[14], [15], which can provide more robust performance in ad-
verse scenarios when trained in different acoustic conditions
[8], [10].

Most DNN-based binaural DOA estimation methods directly
map features extracted from the signal to the sound source
DOA [8], [12], [13], while some methods follow a two-step
approach by first transforming signal features into enhanced
features [11], [15]. The most frequently-used (spatial) features
for binaural DOA estimation are the interaural level difference
(ILD), the interaural time difference (ITD), the cross-correlation
function (CCF), and the generalized cross-correlation with phase
transform (GCC-PHAT) [16]. The complete CCF or the GCC-
PHAT are typically used as the input feature for the DNN [8],
[13], as this was shown to outperform using the ITD as the input
feature [8]. Whereas most methods estimate the DOA in the az-
imuthal plane [8], [10], [13], [15], a few methods use multi-task
learning approaches to jointly estimate the sound source azimuth
together with elevation [12], [14]. In this work, we only consider
binaural DOA estimation in the azimuthal plane.

As a common DNN-based approach, the binaural DOA esti-
mation task is often formulated as a classification problem, aim-
ing at determining a mapping from input to a spatial probability
map for a discretized azimuth range [8], [10], [13]. For instance,
a binaural sound localization system was proposed in [10],
which employs a convolutional neural network (CNN) to find a
mapping from the raw binaural signal waveforms to a posterior
probability map. Although this system has been successfully
able to outperform the baseline system with the GCC-PHAT
input feature, it has only been trained and evaluated for noiseless
scenarios, which is unrealistic in practical situations. Another
category of DNN-based approaches involves the task of sound
event localization and detection, which aims to identify and lo-
calize specific sound events in audio recordings, including both
speech and non-speech events [17], [18]. In this paper, we focus
on classification-based binaural DOA estimation, specifically
aiming at DOA estimation of a single speech source.
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A challenge when applying DOA estimation systems in real-
life scenarios arises from speech inactivity, which can result in
unreliable DOA estimates [5]. A general approach to deal with
estimation errors due to speech inactivity in both model-based
and DNN-based systems is to utilize a voice activity detector
(VAD) [19] in parallel or cascaded with a DOA estimation
system [5], [20], [21], [22]. It should be realized that a separate
VAD nonetheless usually requires manual and time-consuming
parameter tuning which may entail readjustments when the
system is used in different acoustic conditions. Moreover, a
separate VAD itself can introduce errors that can restrict the
overall performance of the system. In [20], a VAD was integrated
into a CNN-based DOA estimation system for hearing aid ap-
plications, ensuring that the system avoids DOA estimation dur-
ing noise-only frames. We will adopt a similar VAD-informed
approach in the baseline systems considered in this paper. To
address the speech inactivity problem in single-talker binaural
DOA estimation, we will consider an alternative approach in
this study. We treat it as a DOA estimation task without the need
for a separate VAD, which we refer to as speech-aware DOA
estimation.

To mitigate estimation errors caused by speech inactivity,
classification-based systems commonly employ temporal av-
eraging of the posterior probability map in the output over a
relatively long duration [8], [9], [10], [13], [23]. Although this
approach helps to smooth out unreliable estimates and improve
the overall accuracy, it can compromise the reliability of the
DOA estimation system when a new speech source emerges
or becomes inactive. It also prevents the system from quickly
detecting a change in the trajectory of a moving sound source.

A limited number of systems detect periods of silence within
the output of a neural network [24], [25]. However, these ap-
proaches, primarily utilized in robot audition scenarios, have
not been evaluated against the conventional classification-based
approach, leaving their benefits unclear. Furthermore, some of
these approaches have only been evaluated under unrealistic
background noise conditions [24], while others are tailored for
specific source distance and heights and have shown limited
performance when tested in conditions that were not included
in the training data [25].

It is assumed that the human auditory system groups signal
components according to information such as periodicity of
voiced speech and continuity of harmonics, and then ITD infor-
mation is used to segregate the grouped components [1]. It is also
known that about 75% of speech in spoken English is voiced and
periodic [26]. This motivates the usage of an auditory-inspired
periodicity feature in combination with spatial features as input
features of a neural network for DOA estimation of a single
speech source.

In [27], an auditory-inspired feature called periodicity degree
(PD) was proposed for fundamental period detection and esti-
mation and was shown to be useful for VAD in low-SNR condi-
tions. In [28], we proposed a classification-based speech-aware
binaural DOA estimation system based on CNNs, which does
not require a separate VAD. The proposed speech-aware system
was compared to a baseline system that used a conventional
classification-based approach. This study showed the benefit of

using broadband PD features in combination with GCC-PHAT
features as input features of the CNN for speech-aware binaural
DOA estimation in static source scenarios.

In this paper, we extend our earlier study [28] by incorporating
novel narrowband feature combinations. Our objective is to
investigate the advantages of employing PD features in both nar-
rowband and broadband feature combinations for speech-aware
binaural DOA estimation across different static and dynamic
source scenarios. We propose the novel narrowband feature
combinations as follows: First, we introduce a formulation of
the PD that incorporates an auditory pre-processing with an
adjustable frequency resolution. This formulation generates a
subband-averaged representation of the PD, allowing us to take
advantage of the frequency selectivity of the human auditory
system. Second, we propose to use narrowband cross-power
spectrum (CPS) features (as spatial features) in combination
with the subband-averaged PD feature as input features for the
CNN. For the CPS feature, we consider either using the real and
imaginary or the magnitude and phase components of the CPS.
In summary, this study aims to investigate the benefits of PD fea-
tures in the context of novel narrowband feature combinations,
as established for the broadband feature combination in [28].

We conduct evaluations to compare the performance of the
proposed narrowband systems with narrowband baseline sys-
tems consisting of a CNN utilizing only the CPS feature, cas-
caded with a state-of-the-art pitch-based VAD [19]. Addition-
ally, We evaluate the performance of speech-aware and baseline
systems that use broadband features as input features. All sys-
tems have been evaluated for static-source scenarios in rever-
berant environments with matched and unmatched background
noise conditions. Furthermore, experiments were conducted
for dynamic scenarios with a single moving speech source
at different velocities for different signal-to-noise ratio (SNR)
conditions. Our experimental results demonstrate the advantage
of using the auditory-inspired PD feature in combination with
any type of spatial feature (including the GCC-PHAT, real and
imaginary parts, or magnitude and phase components of the
CPS) for binaural DOA estimation.

The remainder of this paper is organized as follows. In
Section II, the single-talker DOA estimation problem is for-
mulated as a classification problem and different approaches
are discussed. In Section III, we introduce the input features
employed in this study. Section IV provides a comprehensive
description of the proposed and baseline systems. The details of
the experimental setup for training and evaluation of all systems
including datasets, data generation, training and network hyper-
parameters, and evaluation metrics appear in Section V. The
proposed and baseline systems are evaluated, and the results are
discussed in Section VI. Section VII summarizes the results and
presents the conclusion.

II. DOA ESTIMATION AS A CLASSIFICATION PROBLEM

In this work, we consider the problem of single-talker DOA
estimation in the azimuthal plane using a binaural hearing aid
setup with M microphones, where the microphones are located
close to the ears on both sides. The acoustic scenario consists
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Fig. 1. Exemplary visualization of broadband PD computed for N = 180
fundamental period candidates and L = 199 consecutive time frames for clean
and noisy (a) female speech and (b) keyboard typing signals in an anechoic
environment with simulated diffuse noise at 0 dB SNR condition.

of a (possibly moving) sound source at DOA θ in the azimuthal
plane and background noise. The m-th microphone signal in the
time domain at time t is given by

ym(t) = xm(t) + vm(t), (1)

where xm and vm denote the desired speech and noise signal
components in the m-th microphone signal, respectively, which
are assumed to be uncorrelated. In the short-time Fourier trans-
form (STFT) domain, the m-th microphone signal at time frame
n and frequency bin k (with K and D the STFT length and hop
size, respectively) can be written as

Ym(n, k) = Xm(n, k) + Vm(n, k). (2)

By dividing the azimuth range into a set of C discrete DOAs
{θ1, . . . , θC}, DOA estimation can be considered as a classifi-
cation problem, where the DOA of a sound source should be
assigned to one of the DOA classes. In this work, we consider
C = 72 classes for the full 360◦ azimuth range, corresponding
to a DOA map with 5◦ resolution. In the next subsections,
two different classification-based approaches for binaural DOA
estimation will be discussed.

A. Conventional DOA Estimation

Conventionally, DOA estimation is formulated as a C-class
classification task, where each output class corresponds to a
DOA [10], [13]. During training, each training example be-
longs to only one output class that has been labeled using
oracle DOA information. During testing, the neural network
predicts a posterior probability map in the output. Under the
single-source assumption, the DOA is then estimated by finding
the DOA class with the highest posterior probability. To deal
with erroneous DOA estimates (e.g., during speech pauses), a
VAD can be cascaded to this system [20], [21], where a DOA is
only estimated from the probability map if the VAD detects the
signal as speech. In this work, we adopt the VAD-informed DOA
estimation approach to design the baseline systems depicted in
Fig. 3.

B. Speech-Aware DOA Estimation

In contrast to the VAD-informed classification-based ap-
proach, in [28] we proposed a classification-based approach

referred to as speech-aware DOA estimation, which can estimate
the DOA of a single talker, without needing a separate VAD.
This problem is formulated as a C + 1-class classification task,
where the first C classes represent the DOA classes and the
last class represents the non-speech activity, regarded as the
detection class. During training, via a one-hot encoding scheme,
if a training example belongs to a speech source from a given di-
rection, the DOA class corresponding to that direction is labeled
by one, whereas all other classes (including the detection class)
are labeled by zero. On the other hand, if a training example
belongs to a non-speech source, regardless of its direction, all
DOA classes are labeled by zero, whereas the detection class
is labeled by one. During testing, if the class with the highest
posterior probability is a DOA class, the direction correspond-
ing to that class indicates the sound source DOA. Otherwise,
no reliable DOA could be estimated. In this work, we adopt
the speech-aware DOA estimation approach in our proposed
systems depicted in Fig. 4.

III. INPUT FEATURES

This section provides an overview of the spatial and periodic-
ity features utilized as input features for various classification-
based DOA estimation methods in this study. In Section III-A,
we present the broadband GCC-PHAT feature, which was also
employed in [28], in addition to the newly introduced narrow-
band CPS features, as spatial features. In Section III-B, we intro-
duce the novel subband-averaged representation of the PD, along
with the broadband PD used in [28]. Furthermore, we present
the rationale for the incorporation of PD through exemplary
visualizations that demonstrate different PD representations.

A. Spatial Features

The GCC-PHAT has been successfully used as a feature for
several data-driven DOA estimation methods [29], [30], [31],
[32]. In this work, the broadband GCC-PHAT between the i-th
pair of microphones is defined as the inverse Fourier transform
of the phase of the instantaneous narrowband CPS which is given
by

Gi(n, k) = Yr(n, k)Y
∗
q (n, k), (3)

where microphones r and q constitute the i-th microphone
pair and (·)∗ denotes complex conjugate. We note that there
areM(M − 1)/2microphone pairs, i.e., i ∈ [1,M(M − 1)/2].
The GCC-PHAT for the i-th microphone pair at time frame n is
computed as

τi(n, d) = IFFT
(

Gi(n, k)

|Gi(n, k)|

)
, (4)

where | · | denotes absolute value, and d represents the index
of the time delay. In order to resolve fractional signal delays
occurring for microphone pairs with a small distance (e.g.,
microphones on a hearing aid), it is useful to interpolate the
GCC-PHAT function by using an oversampled inverse Fourier
transform [2]. With an upsampling factor of κ, the relevant
discrete time delays lie in the range [−κτmax

i , κτmax
i ], where

τmax
i denotes the maximum delay in samples, considered for
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Fig. 2. Exemplary visualization of the subband-averaged PD feature shown for (a) clean female speech, and (b) noisy female speech at 0 dB SNR, computed
for N = 180 fundamental period candidates, L = 199 consecutive time frames, and F = 6 frequency bands in an anechoic environment with simulated diffuse
noise as background noise. The frequency range corresponding to each frequency band is specified at the top of the images.

Fig. 3. Baseline VAD-informed DOA estimation systems using only spatial features: (a) Broadband spatial feature (GCC-PHAT), and (b) narrowband spatial
feature (CPS).

Fig. 4. Proposed systems with (a) broadband feature combination (GCC-PHAT and PD), and (b) narrowband feature combination (CPS and subband-averaged
PD). The architecture of the convolutional branch with a spatial input feature (top branch) in each proposed system is identical to the architecture of the convolutional
branch in a baseline system using the same spatial feature depicted in Fig. 3.

the i-th microphone pair. The GCC-PHAT vector of the i-th
microphone pair is defined as

τ i(n) = [τi(n, 1), . . . , τi(n, Ti)]T , (5)

where (·)T denotes the vector transpose. The first and last ele-
ments in (5) correspond to −κτmax

i and +κτmax
i , respectively.

Therefore, the length of the GCC-PHAT vector is obtained by
Ti = 2κτmax

i + 1. By concatenating the GCC-PHAT vectors
τ i(n) for all possible microphone pairs, and considering L
consecutive time frames (including the current frame n and
the previous L− 1 frames), we obtain the two-dimensional
(2D) GCC-PHAT input feature with dimensions T × L, where

T =
∑M(M−1)/2

i=1 Ti. This 2D feature will be used as a spatial
input feature for broadband systems in Section IV.

As can be seen in (4), the PHAT weighting eliminates the
effect of spectral magnitude, such that phases contribute equally
for all frequencies. Hence, as an alternative to the broadband
GCC-PHAT, in this work, we will also consider the narrowband
CPS [7], encoding both spectral magnitudes and phase differ-
ences, as an input feature.

As the CPS input feature, we consider either the magnitude
and phase (denoted as MagPhase) or the real and imaginary parts
(denoted as ReIm) of the complex-valued CPS Gi(n, k) for
all M(M − 1)/2 unique microphone pairs, for K/2 + 1
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frequencies (up to the Nyquist frequency, i.e., k =
0, 1, . . . ,K/2), and for L consecutive time frames. This
means that the shape of the CPS input feature is equal to
(K/2 + 1)× L× 2M(M − 1)/2. We note here that the first,
second, and third dimensions represent the height, width,
and depth of the input feature, respectively, where the depth
corresponds to the number of input channels. For the CPS
input feature, 2M(M − 1)/2 input channels are constructed by
stacking either the MagPhase or the ReIm for all microphone
pairs. The CPS features will be used as spatial input features
for narrowband systems in Section IV.

B. Periodicity Features

Periodicity is an important cue to segregate and localize dif-
ferent talkers [33], [34]. Periodicity features are often estimated
through an auditory pre-processing step followed by a feature
extraction step [34] where they are estimated independently
for each pre-processed subband signal. In [27] a periodicity
feature called PD was introduced, which captures the salience
of the periodic components in the input signal. In this work,
we propose to use a subband-averaged representation of PD
features, estimated for a set ofN fundamental period candidates.
Similar to spatial features, we will consider PD features from
L consecutive time frames as input PD features. This section
focuses on PD computation for time samples (t) spanning a
block of L consecutive time frames.

To compute PD features, we use one of the M microphones,
referred to as the reference microphone in this paper. It is impor-
tant to note that the choice of the reference microphone is arbi-
trary, and determining the optimal microphone for PD estimation
is not within the scope of this study. In the following, we present
signal processing steps to compute the subband-averaged PD. In
the pre-processing step, the reference microphone signal in the
hearing aid setup is first decomposed into a set of subband signals
using a complex-valued gammatone filter bank GTFB [27]. The
real part of each subband signal is then passed through half-wave
rectification, yielding the half-wave rectified signal y(t, f) in the
f -th gammatone subband. Although the PD is usually computed
for each subband [34], in this paper we introduce a subband
averaging step, enabling us to estimate the PD for frequency re-
gions with adjustable bandwidths. The subband-averaged signal
is computed as

yavg(t, f̄) =
1

σS

f̄S∑
f=(f̄−1)S+1

y(t, f), (6)

where f̄ denotes the (averaged) frequency band index and S
denotes the number of averaged subbands. The normalization
parameter σ represents the standard deviation computed over
all subbands and times (time samples of L consecutive STFT
frames) for the signal y(t, f). This subband averaging step re-
sults in F frequency bands. Subsequently, a fifth-order low-pass
filter with 770 Hz cutoff frequency and a second-order high-pass
filter with 40 Hz cutoff frequency are applied to yavg(t, f̄),
resulting in bandpass-filtered signal envelopes yenv(t, f̄).

In the feature extraction step, a set of N parallel infinite
impulse response (IIR) comb filters designed for a given set
of N fundamental period candidates pj , j = 1, . . . , N , filter the
signal envelopes as

s(j, t, f̄) = (1− α)yenv(t, f̄) + αs(j, t− pj , f̄), (7)

whereα denotes the filter gain. The periodicity degree is defined
as the mean amplitude of the comb-filtered signal, given by

PD(j, t, f̄) = (1− βj)|s(j, t, f̄)|+ βjPD(j, t− 1, f̄), (8)

where the averaging parameter βj for each fundamental period
candidate is defined as βj = e−1/pj .

The PD features in (8) have the same temporal resolution as
the time-domain signal. Since we aim at processing of the PD and
CPS features by the neural network, it is desirable to represent
both features at the same time resolution, which is the frame
resolution of the STFT framework. Hence, the high-resolution
PD features are temporally averaged as

PD(j, n, f̄) =
1

K

(n−1)D+K∑
t=(n−1)D+1

PD(j, t, f̄). (9)

As the subband-averaged input PD feature, we consider PD
features in (9) for all N fundamental period candidates, for L
consecutive time frames, and for all F frequency bands. This
means that the shape of the subband-averaged input PD is equal
to N × L× F , where the first, second, and third dimensions
represent the height, width, and depth of the input feature,
respectively. This three-dimensional feature will be used as the
periodicity input feature of the proposed narrowband speech-
aware DOA estimation systems in Section IV-B.

As mentioned earlier, in this work, we also use the broadband
PD feature from [28] for the broadband speech-aware DOA
estimation system in Section IV-B. To obtain the broadband PD
feature, signals of all gammatone subbands are averaged in (6),
i.e., F = 1. The resulting broadband signal in (6) is utilized for
PD feature extraction. Consequently, the broadband input PD
has a shape of N × L.

Fig. 1 depicts an exemplary representation of the broadband
PD feature computed for N = 180 fundamental period candi-
dates over a 1-second duration (L = 199) of both clean and noisy
speech, as well as non-speech (keyboard typing) signals. While
for the clean and noisy speech signals, the fundamental period
variation, its multiple harmonics and their temporal continuity
are identifiable as a 2D structure over time, no such structure
exists for the keyboard signal, and in general for non-speech
signals. Although speech signals are not perfectly harmonic, we
hypothesize that utilizing the fundamental period information
encoded in the harmonic structure of the PD feature could fa-
cilitate a neural network’s ability to differentiate between signal
portions that are predominantly speech (and periodic) versus
non-speech, particularly when trained with a combination of
speech and non-speech signals.

The 2D structure of the pitch modulations and harmonics
can also be identified in the subband-averaged PD features.
Fig. 2 illustrates the subband-averaged PD features computed
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for N = 180 fundamental period candidates across F = 6 fre-
quency bands (S = 10), using a 1-second duration (L = 199) of
clean and noisy speech signals. As can be seen in Fig. 2(a), the
harmonic structure of the pitch information is captured in most
frequency bands for the clean signal, particularly in frequency
bands with a high degree of periodicity, e.g., in 0.3− 0.6 kHz
and 0.6− 1.1 kHz frequency bands (with a maximum PD value
of 0.5). However, as can be seen in Fig. 2(b), for the noisy signal
this information is substantially masked by the noise except for
the frequency regions mainly in the 0.6− 1.1 kHz frequency
band. By using subband-averaged PD features as input features,
the neural network is expected to be able to select the most
robust and salient periodicity information, particularly for those
frequency bands in which speech signals have more energy, and
hence are less susceptible to noise.

The primary rationale for employing PD features in conjunc-
tion with spatial features is to leverage the salient periodicity
features as a footprint of speech signals in a noisy mixture [35],
[36]. This approach enables the neural network to detect voiced
speech portions of a signal while simultaneously mapping the
CPS features of these portions to the talker’s DOA.

IV. CNN-BASED DOA ESTIMATION SYSTEMS

This section outlines the CNN-based DOA estimation sys-
tems. The baseline systems are discussed in Section IV-A, which
adopt a VAD-informed DOA estimation approach, utilizing
only spatial features. The proposed systems are presented in
Section IV-B, which adopt a speech-aware DOA estimation
approach, utilizing a combination of spatial and PD features as
input features. Finally, we discuss the computational complexity
of the proposed and baseline systems in Section IV-C.

A. Baseline VAD-Informed Systems

Neural network architectures based on CNNs have been
widely and successfully used for DOA estimation and sound
source localization [7]. Fig. 3 depicts the baseline systems con-
sisting of a CNN using only spatial features (cf. Section III-A)
as input, cascaded with a pitch-based binary VAD [19]. We
consider three baseline systems:
� Broadband (Fig. 3(a)) using GCC-PHAT features,
� Narrowband-ReIm (Fig. 3(b)) using the real and imaginary

parts of the CPS,
� Narrowband-MagPhase (Fig. 3(b)) using the magnitude

and phase of the CPS.
The CNN architecture in all considered baseline systems starts

with a cascade of three convolutional blocks, with each block
(Conv1 to Conv3) comprising a sequence of 2D convolutional,
batch normalization, rectified linear unit (ReLU) activation, and
2D max-pooling layer. The outputs of the last pooling layer in
Conv3 are concatenated and then used as an input for a cascade of
three fully-connected blocks (FC1 to FC3), each representing a
fully-connected dense layer followed by batch normalization,
ReLU activation, and dropout layers. In the output layer, a
softmax activation function predicts the posterior probability
map for the C DOA classes.

In addition to the batch normalization layer implemented in
the convolutional and fully-connected blocks of the CNNs, we
applied a normalization scheme only in the input layer and
directly on the input features before the first convolutional block
to improve the performance of the CNNs. We applied layer
normalization [37] on the GCC-PHAT features. Concerning
the CPS input features, layer normalization was applied on
all 2M(M − 1)/2 channels of the real and imaginary parts
of the CPS to preserve phase information encoded by these
features. As for the magnitude and phase parts of the CPS, group
normalization [38] was applied to the two groups of magnitude
and phase features each including M(M − 1)/2 channels. This
means that within each group, features are normalized sepa-
rately. The reason for this is that the magnitude and phase have
different statistical properties, and hence, joint normalization
of the magnitude and phase may not be optimal. We note that
all layer normalizations and group normalizations have been
implemented without an affine transformation.

Each training example consists of a block of L consecutive
time frames, i.e., we employ block-level labeling and the CNN
generates its output for each block. We adopt a one-hot encoding
scheme during the training, i.e., each training example belongs
to only one output class that has been labeled using oracle
DOA information. It is important to note that we assume a
constant DOA when assigning a ground truth DOA label to a
training example of a speech signal, which implies that the DOA
remains consistent throughout the block of L consecutive time
frames. During the testing phase, the CNN in the baseline system
generates a posterior probability map P = [P1, . . . , PC ], which
represents the likelihood of the sound source being located at
each of the C possible DOA classes. It should be noted that
we obtain consecutive input features with an overlap of L− 1
frames for all systems. As input features consist ofL consecutive
time frames, this approach results in the generation of a new
posterior probability map for each new frame.

To mitigate the effects of erroneous DOA estimates that can
arise during periods of speech pauses, the system is augmented
with a cascaded VAD. This configuration enables the DOA
estimation process to be conditioned on the presence of speech,
as determined by the VAD. Specifically, the DOA is estimated
solely from the probability map when the VAD indicates the
presence of speech, which is expected to lead to more robust
and accurate DOA estimates. We note that the VAD decision is
made using the same reference microphone signal that is used to
compute PD features. As a common approach, the sound source
DOA can be estimated as θI for the DOA class I with the highest
posterior probability, i.e.

I = arg maxi Pi. (10)

In this work, to obtain continuous DOA estimates from discrete
DOA classes, we estimate the sound source DOA by employing
parabolic interpolation [39] on three DOA classes centered
around θI , i.e., θI−1, θI and θI+1. As a result, this approach
allows for a more precise estimation of the DOA with a higher
spatial resolution.
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B. Proposed Speech-Aware Systems

Instead of using a separate pitch-based VAD in combination
with a CNN, we adopt the speech-aware approach described in
Section II-B. Fig. 4 depicts the proposed speech-aware DOA
estimation systems, which use PD features (cf. Section III-B)
in combination with spatial features (cf. Section III-A) as input
features of the CNN. In this work, we consider three speech-
aware systems:
� Broadband (Fig. 4(a)) using GCC-PHAT features and the

broadband PD features as input features,
� Narrowband-ReIm (Fig. 4(b)) using the real and imaginary

parts of the CPS and the subband-averaged PD features as
input features,

� Narrowband-MagPhase (Fig. 4(b)) using the magnitude
and phase of the CPS and the subband-averaged PD fea-
tures as input features.

Each proposed system in Fig. 4 consists of two parallel
independent branches of three cascaded convolutional blocks.
The top branch receives the spatial features as input features,
whereas the bottom branch receives the PD features as input
features. The outputs of both branches are then concatenated,
which serves as a hybrid intermediate feature vector used by a
cascade of three fully-connected blocks. Similar to the baseline
systems described in Section IV-A, for the proposed systems
each convolutional block consists of a 2D convolutional, batch
normalization, ReLU activation, and 2D max-pooling layer.
Each fully-connected block is comprised of a fully-connected
dense layer followed by batch normalization, ReLU activation,
and dropout layers. In the output layer, a softmax activation func-
tion predicts the posterior probability map for theC + 1 classes.
We applied layer normalization without an affine transformation
on the PD input features of each proposed system. As for the
spatial input features, we used the same normalization scheme
that was applied to spatial features of the baseline systems (cf.
Section IV-A). Please note that for each proposed system, the
PD and spatial features have been normalized separately.

We note here that for each spatial feature, GCC-PHAT or
CPS, the architecture of the convolutional branch with spatial
input features in the proposed system and the architecture of the
convolutional path in the baseline system are the same. This can
be seen, for instance, by comparing Fig. 3(a) with the top branch
in Fig. 4(a), and also by comparing Fig. 3(b) with the top branch
in Fig. 4(b). As a result, the convolutional path in the baseline
system and the top branch of a proposed system that use the
same spatial features will learn the same number of parameters
and filters, and ultimately contribute to the input of the fully-
connected path by the same amount of (intermediate) features.
Consequently, we can consider the contribution of the spatial
features in the fully connected path of the proposed system to
be equivalent to that of the baseline system. This allows us to
analyze the benefits of using PD features and compare the two
systems using the same spatial features.

We expect that by training the proposed systems with speech
and non-speech signals, the network is able to capture the
harmonic structure of the signal encoded in the PD features over
consecutive frames. This allows the proposed system to discern

between speech and non-speech portions, while simultaneously
mapping the spatial features to a sound source DOA when speech
portions in the signal are detected.

The proposed systems were trained using oracle DOA and de-
tection labels for speech and non-speech signals. All C + 1 out-
put classes were labeled as a single label, meaning each training
example belonged to only one output class. This was achieved
as follows: During the training phase, training examples of input
features are provided for both speech and non-speech sources.
For a given training example of a speech source, the direction
of the speech source is associated with a particular DOA class,
which is labeled by one. The remaining DOA classes, along
with the detection class, are labeled by zero. In contrast, for a
training example of a non-speech sound source, regardless of
its direction, all DOA classes are labeled by zero, except for the
detection class which is labeled by one.

During the testing phase, the proposed system generates a
posterior probability map given by P = [P1, . . . , PC , PC+1]
for a given number of directions C. We note here again that
input features (each including L time frames) are consecutively
obtained with an overlap of L− 1 frames, i.e., a new posterior
probability map is generated for every new frame. The process
of speech-aware DOA estimation can be formulated by first
introducing two hypotheses

Hs : speech DOA detected, (11)

Hns : no speech DOA detected, (12)

and then defining the decision rule as

decide Hns if arg maxi Pi = C + 1

decide Hs otherwise. (13)

For the DOA estimation, we first consider the direction θI
corresponding to the DOA class I with the highest posterior
probability when speech DOA is detected, i.e.

I = arg maxi Pi|Hs. (14)

Then, we estimate the sound source DOA by employing
parabolic interpolation [39] on three DOA classes centered
around θI , i.e., θI−1, θI and θI+1. The process of speech-aware
DOA estimation can be described as follows: the output class
with the highest probability in the predicted probability map
is selected. If the highest probability corresponds to the last
class, which represents the detection class, it indicates that no
reliable DOA estimation is possible. On the other hand, if the
highest probability corresponds to a DOA class, the sound source
DOA is estimated as the parabolic approximation of the direction
associated with that DOA class.

It should be noted that the proposed speech-aware DOA
estimation systems integrate both DOA estimation and VAD
into a unified framework, with speech detection regarded as
an implicit result of the proposed systems. Whereas for the
VAD-informed systems, the DOA estimation is conditioned on
the VAD decision (i.e., an explicit speech detection), for the
speech-aware systems, the DOA estimation is merely condi-
tioned on the joint probability distribution in the CNN output,
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TABLE I
NUMBER OF TRAINABLE PARAMETERS AND MULTIPLY-ACCUMULATE

OPERATIONS (MACS) OF THE BASELINE AND PROPOSED SYSTEMS

including the detection class (i.e., an implicit speech detection
which we refer to as speech DOA detection in (11)). Therefore,
in addition to the performance evaluation of all systems for DOA
estimation, our study will assess their speech detection capabil-
ities. This could offer a more comprehensive insight into these
systems.

C. Computational Complexity

Table I shows the number of trainable parameters and
multiply-accumulate operations (MACs), both in millions for
the baseline and proposed DOA estimation systems. The num-
ber of parameters, i.e. the model size, influences the memory
required to store the model, while MACs provide an estimate
of the arithmetic computations, which inherently affects energy
consumption. By analyzing Table I, we can observe that the size
of the two CNNs employed for the baseline systems using the
broadband (1.37 M) and narrowband (1.36 M) spatial features
are comparable. It is important to note that the number of
convolutional filters in each baseline system (cf. Fig. 3) was
chosen to ensure that both systems have a comparable number of
parameters. However, the proposed narrowband system exhibits
a higher number of trainable parameters (2.82 M) in comparison
to the broadband counterpart (1.55 M). Table I also shows
that while the proposed broadband and narrowband systems
exhibit a larger number of trainable parameters compared to their
respective baseline counterparts, the difference in the number of
trainable parameters is especially noticeable for the narrowband
systems. To the best of our knowledge, it is not possible to
directly implement the considered systems in current hearing
devices. This may be possible after model size optimization,
model quantization and pruning, which is however not the main
topic of this study.

V. EXPERIMENTAL SETUP

In this section, we conduct experiments to assess the perfor-
mance of the speech-aware systems proposed in Section IV-B in
comparison to the baseline systems described in Section IV-A.
Furthermore, we provide details of the datasets utilized in this
study in Section V-A, and describe the procedures for generating
training and evaluation data in Sections V-B and V-C, respec-
tively. Additionally, we present implementation details of the
input features and the VAD in Section V-D, and describe the
training procedure and hyperparameters of the CNNs used in
this study in Section V-E. Evaluation metrics employed to assess
the performance of all systems are described in Section V-F.

A. Datasets

Signals from speech and non-speech datasets were used as
sound source signals to generate the training and validation data
required during the training of all systems. In particular, speech
signals of 462 and 168 speakers from the TIMIT dataset [40]
(including both male and female speakers) were used for training
and validation, respectively. In addition, three categories (natural
soundscapes and water sounds, interior and domestic sounds,
exterior and urban noises) of the ESC50 dataset [41] were used
as non-speech signals, where we used 960 and 240 distinct sound
files for training and validation, respectively. For evaluation,
only speech signals from the validation TIMIT dataset were used
as source signals.

We used a database of multichannel binaural room impulse
responses (BRIRs) [42] to generate data for training and eval-
uation. The considered binaural hearing aid setup consists of
M = 4microphones, where the front and rear microphones (ap-
proximate microphone distance of 15 mm) in both left and right
hearing aids were used. The database in [42] contains BRIRs
measured in anechoic conditions for different source-to-head
distances, and for C = 72 directions in the azimuthal plane, i.e.,
with a resolution of 5◦. This dataset also contains BRIRs in three
reverberant environments (cafeteria with T60 ≈ 1.3 s, courtyard
with T60 ≈ 0.9 s, office with T60 ≈ 0.3 s). We generated the
noisy binaural microphone signals by convolving the source
signals with BRIRs and mixing the resulting clean binaural
microphone signals with background noise. All systems were
trained in noisy anechoic conditions and evaluated in noisy
reverberant environments.

B. Training Data

For training, the clean binaural microphone signals were
generated by convolving both speech and non-speech source
signals with anechoic BRIRs for each of the 72 directions with a
source-to-head distance of 3 m. The noisy binaural microphone
signals were generated by mixing the clean binaural microphone
signals with simulated binaural diffuse noise at SNRs ranging
from −5 dB to +20 dB in 5 dB steps. The noise at the mi-
crophones was generated by convolving uncorrelated speech-
shaped noise from the ICRA noise database [43] with anechoic
BRIRs, and summing all resulting binaural signals from 72
directions. Training examples were constructed for both speech
and non-speech signals for all 72 directions at six different SNRs.
It is important to note that in a data pre-processing step, a simple
oracle broadband energy-based VAD was employed to identify
segments containing enough speech content. This step ensures
that for training examples associated with a speech source, only
those containing meaningful speech content contribute to the
loss function. Each training example consists of a block of
L = 20 consecutive time frames (corresponding to 105 ms).
In total, we obtained 5.9 million examples (about 172 hours)
as training set and 2.4 million examples (about 70 hours) as
validation set. A summary of the training data is presented in
Table II.
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Fig. 5. Evaluation setups for static scenarios (a and b), and dynamic scenarios (c), adapted from [42]. In the cafeteria, static source positions A, B, D, E were
considered, while in the courtyard, static source positions A, B, C, and D were considered. In both environments, the cafeteria and courtyard, the head position is
indicated by dashed arrows extending from the source positions to the head. The two head orientations are denoted by the numbers 1 and 2 positioned in proximity
to the head. For the dynamic scenarios in the office, the source position traveled from left to right with respect to the look direction of the head, either between
−45◦ to +45◦ (6 ◦/s angular velocity) or between −60◦ to +60◦ (8 ◦/s angular velocity). The head position in the office environment is depicted in the middle
of the room. All distances are specified in centimeters.

TABLE II
SUMMARY OF THE TRAINING DATA

C. Evaluation Data

The performance of the baseline and proposed systems was
evaluated for static and dynamic source scenarios in reverberant
environments. As already mentioned, only speech signals from
the validation TIMIT dataset were used as source signals. It
should be noted that the source and background noise signals,
acoustic conditions and source positions used during evaluations
were different from those used during training and validation. A
summary of the evaluation setup and data generation is presented
in Table III.

1) Static Source Scenario: For the static source scenario, we
considered two real environments (cafeteria and courtyard) with
a reverberation time of approximately 1300 ms and 900 ms,
respectively. The clean binaural microphone signals were gen-
erated by convolving the speech source signals with reverberant
BRIRs [42]. The room configurations of both environments are
depicted in Fig. 5(a) and (b). In each environment, we considered
four source positions (specified with dashed boxes), with two
head orientations for each source position. All systems were
evaluated at SNRs ranging from −5 dB to +10 dB either with
matched or unmatched background noise. The same binaural
diffuse noise as that used during training was utilized for the
matched noise condition, whereas recorded cafeteria babble
noise and courtyard ambient noise [42] were used for the un-
matched noise condition. A total number of 150 speech segments
randomly chosen from 30 unique male and female speakers
(each with a length of 1 s) were selected from the validation
TIMIT dataset.

2) Dynamic Source Scenario: In [42], BRIRs of a reverber-
ant office environment with a reverberation time of approx-
imately 300 ms (specified in [42] as Office I) are provided,
which cover the frontal azimuth range from −90◦ to +90◦

with a 5◦ resolution. Since only the BRIRs measured in the
office environment allow to simulate moving sources, simu-
lations for the dynamic source scenario were only performed
for the office environment. To simulate a moving source, a
time-aligned interpolation method [44] with shape-preserving
piecewise cubic interpolation was used to interpolate the original
BRIRs from a 5◦ resolution to a 0.5◦ resolution. A total number
of 10 speech segments were randomly chosen from 30 unique
male and female speakers (each with a length of 15 s) from the
validation TIMIT corpus. The clean binaural microphone signals
were simulated for two source velocities (6 ◦/s and 8 ◦/s angular
velocity) by partial convolution of the interpolated BRIRs with
the clean speech signal using a frame length of 10 ms and 50%
overlap. The office room configuration and the source movement
trajectory are depicted in Fig. 5(c). Simulated binaural diffuse
noise was used to generate noisy binaural microphone signals at
SNRs ranging from −5 dB to +10 dB.

D. Implementation Details

All signals were sampled at 16 kHz. To compute the GCC-
PHAT and CPS features, the microphone signals were trans-
formed to the STFT domain using a Hann window of length
K = 160 (corresponding to 10 ms), and a hop size of length
D = 80 (corresponding to 5 ms), resulting in 81 STFT frequency
bins. To compute GCC-PHAT features, we used an upsampling
factor of κ = 4. In the case of a pair of microphones located
on the same side of the head (left or right), the corresponding
maximum delay τmax

i is considered as 2, which translates to a
time delay of 125 μs and Ti = 17. Conversely, for a pair of
microphones located on opposite sides, the maximum delay
τmax
i is considered as 20, corresponding to a time delay of

1.25 ms and Ti = 161. We note that the chosen maximum delays
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TABLE III
SUMMARY OF THE EVALUATION DATA

are deliberately set to be greater than the maximum possible
delay that can occur for each microphone pair by approximately
a factor of two. In the considered binaural hearing aid setup,
there are a total of four microphone pairs on opposite sides and
two microphone pairs on the same side. As a result, GCC-PHAT
feature vectors of size T = 678 are obtained. For feature extrac-
tion, a block of L = 20 consecutive time frames is employed,
leading to a GCC-PHAT input feature of size 678× 20. For each
pair of CPS features (real and imaginary parts, magnitude and
phase components), the size of the input features is equal to
81× 20× 12.

In this paper, we consider the front microphone of the left
hearing aid as the reference microphone for the PD feature
extraction, and also for the binary VAD decision employed in the
baseline systems. To obtain a binary VAD decision on a block
of L consecutive time frames, a majority vote rule is applied,
where the block is classified as speech if at least 50% of the
time frames are detected as such. In the baseline systems, we
used the pitch-based binary VAD [19] (rVAD) with its original
frame length but adjusted the frame hop size to 5 ms, aligning it
with the proposed systems while keeping its spectral resolution
unchanged.

PD features were computed using a 4-th order gammatone fil-
ter bank (GTFB) implementation [27] with 61 subbands, a group
delay of 256, and minimum and maximum center frequencies
of 60 Hz and 7200 Hz, respectively. By choosing the maximum
and minimum fundamental frequencies as 320 Hz and 70 Hz,
respectively, the range of fundamental period candidates for PD
feature extraction lies between 3.1 ms and 14.3 ms for N = 180
period candidates. To compute the subband-averaged PD fea-
tures, F = 6 frequency bands are obtained by averaging every
S = 10 subband signals. The comb filter gain was chosen to be
α = 0.7. The size of the broadband and subband-averaged input
PD features is equal to 180× 20 and 180× 20× 6, respectively.

E. Training and Network Hyperparameters

All systems were implemented using PyTorch [45]. For all
CNNs, we used a 2D convolutional filter size of 3× 3 with a
stride size of 1× 1. In each convolutional layer of the CNNs
with broadband (GCC-PHAT) and narrowband (CPS) input, 4
and 32 filters were used, respectively. The max-pooling size was
2× 2with strides of the same size. The CNNs were trained using
the Adam optimizer [46], a cross-entropy loss function, an initial
learning rate of 10−5, a mini-batch size of 128 and a dropout rate
of 0.5. We used an early stopping regularization method which
stopped the training if no improvement in validation loss was

observed for 4 epochs, and a variable learning rate scheduler to
halve the learning rate if the validation loss did not improve for
2 epochs.

The maximum epoch number for training all CNNs was set
to 100. In each epoch, 1.63 million examples were randomly
selected from the training set such that the network did not see the
same example twice. Each mini-batch included 128 examples
that were randomly chosen from different SNR conditions, DOA
classes, and speech and non-speech signals. To calculate the
validation loss at the end of each epoch, 200000 examples
were randomly selected from the validation set and kept fixed
throughout the training. The validation data were not seen by
the network during the training.

F. Evaluation Metrics

We evaluated the DOA estimation performance of the pro-
posed and baseline systems in terms of mean absolute error
(MAE) and accuracy (Acc.) [8], [9]. A DOA estimate in block l
is considered accurate if the absolute error between the estimated
DOA θ̂l and the oracle DOA θl is smaller than 5◦, i.e., the
minimum angular resolution of the database in [42]. The MAE
(in degrees) and accuracy are defined as

MAE =
1

L

L∑
l=1

∣∣∣θ̂l − θl

∣∣∣ , (15)

Acc =
Lacc

L × 100, (16)

whereLdenotes the total number of estimates, i.e., the number of
signal blocks with positive speech detections, and Lacc denotes
the total number of accurate estimates.

We evaluated the speech detection performance of the VAD
used in the baseline systems and the performance of the speech
DOA detection in the proposed system using the precision (P)
and recall (R) metrics defined as

P =
TP

(TP + FP )
, (17)

R =
TP

(TP + FN)
, (18)

where for each evaluated system, the number of true positives
(TP) represents the total number of signal blocks detected as
speech by both the system and the oracle VAD, while the
number of false positives (FP) represents the total number of
signal blocks detected as speech by the system but detected
as non-speech by the oracle VAD. Conversely, the number of
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Fig. 6. Exemplary illustration of DOA estimation of the proposed system using the broadband feature combination in (a) SNR = 0 dB and (b) SNR = 10 dB:
(i) Noisy reference microphone signal of a source at −20◦ with simulated diffuse noise, (ii) Estimated block-averaged broadband PD, (iii) Speech DOA detection,
(iv) Absolute angular error of the estimated DOAs over time specified by black lines, and the 5◦ error threshold specified by a red dashed line.

false negatives (FN) denotes the total number of signal blocks
detected as non-speech by the system but detected as speech
by the oracle VAD. While precision indicates the proportion of
detected speech blocks that are actually correct, recall represents
the proportion of actual speech blocks that are detected by the
system. Both metrics range from 0 to 1.

VI. RESULTS AND DISCUSSION

In this section, we will present and analyze the performance
evaluation results of speech-aware systems employing either
broadband or narrowband feature combinations, in comparison
to baseline systems. The baseline systems consist of a CNN that
uses only spatial features, combined with a pitch-based VAD. We
assessed the performance of all systems in various reverberant
environments with different background noises for both static
and dynamic single-talker scenarios in terms of accuracy and
mean absolute error for DOA estimation, as well as precision and
recall for speech detection. Section VI-A serves as an exemplary
demonstration of the proposed speech-aware DOA estimation
using broadband input features. The evaluation results for static
source scenarios in both matched and unmatched noise condi-
tions are discussed in Section VI-B. The evaluation results for
dynamic source scenarios are presented in Section VI-C. Finally,
we discuss the limitations of this study and suggest potential
future works in Section VI-D.

A. Speech-Aware DOA Estimation

To illustrate speech-aware DOA estimation, we consider an
exemplary static source scenario in the courtyard (cf. Fig. 5(b))
for a female speech source at position C and head orientation
1 (corresponding to a DOA of −20◦) with simulated diffuse
noise at 0 dB and 10 dB SNR conditions. The proposed system
with broadband input features (Fig. 4(a)) is chosen for DOA
estimation in this scenario. Fig. 6 depicts the noisy reference
microphone signal with a duration of 1 s, the corresponding
block-averaged representation of the PD feature, the speech
DOA detection (cf. (11) and (13)), and the DOA estimation error.

Please note that the difference in the starting times between the
reference microphone signal in subfigure (i) and the subsequent
subfigures (ii-iv) is due to the design of the proposed system,
which requires input features from consecutive time frames over
a period of 105 ms before generating the first prediction. To aid in
visualization, we obtained the block-averaged PD by averaging
the PD values over consecutive time frames used by the CNN
for each prediction.

When analyzing Fig. 6, several key observations emerge.
First, comparing speech DOA detection results in the two SNR
conditions (Fig. 6(a).(iii) and (b).(iii) shows that the speech-
aware DOA estimation results in fewer signal blocks with DOA
detections in the low SNR condition compared to the high SNR
condition. Second, comparing the DOA detection results with
the absolute error in either of the SNR conditions, e.g., in the low
SNR condition (Fig. 6(a).(iii) and 6(a).(iv), demonstrates that for
this example, all estimated DOAs result in absolute errors below
5◦, i.e., 100% accuracy. These findings illustrate the primary ob-
jective in designing the speech-aware DOA estimation systems,
which is to reliably detect speech DOAs while excluding signal
blocks prone to poor DOA estimation performance, without
needing a separate VAD. As expected, such a system detects
fewer signal blocks with reliable speech DOA in the low SNR
condition. Moreover, when comparing block-averaged PD with
DOA detection results, especially in the low SNR condition (Fig.
6(a).(ii) and (a).(iii), it becomes evident that the proposed system
predominantly estimates the DOA for blocks with a high degree
of periodicity. These observations are noteworthy because they
demonstrate that the proposed system automatically selects the
most reliable signal blocks for DOA estimation, primarily those
with a high degree of periodicity, which are less susceptible to
noise.

B. Evaluation Results for Static Source Scenarios

For the static source scenarios in two reverberant environ-
ments (cafeteria and courtyard), Fig. 7 shows the accuracy and
mean absolute error at different SNRs for three proposed systems
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Fig. 7. Accuracy and mean absolute error of the proposed and baseline systems for the static source scenarios in two reverberant environments (cafeteria and
courtyard) for different SNRs: (a) Matched noise condition with simulated diffuse background noise and (b) unmatched noise condition with recorded background
noise. Colored bars show the performance of the proposed systems using broadband feature combination (GCC-PHAT and broadband PD) or narrowband feature
combination (either CPS ReIm or MagPhase and subband-averaged PD), whereas white bars show the performance of the baseline systems using only broadband
(GCC-PHAT) or narrowband (either CPS ReIm or MagPhase) spatial features.

Fig. 8. Speech detection performance of the proposed systems and rVAD in terms of the precision and recall for the static source scenarios in two reverberant
environments (cafeteria and courtyard) for different SNRs: (a) Matched noise condition with simulated diffuse background noise and (b) unmatched noise condition
with recorded background noise.

(Section IV-B) and three baseline systems (Section IV-A) using
either broadband or narrowband features. Performance mea-
sures of three proposed systems, i.e., the proposed system with
broadband PD and GCC-PHAT (Prop. broadband), the proposed
system with subband-averaged PD and real and imaginary parts
of CPS (Prop. narrowband ReIm), and the proposed system with
subband-averaged PD and magnitude and phase parts of CPS
(Prop. narrowband MagPhase) are depicted by colored bars. To
facilitate the direct comparison between each proposed system
and the corresponding baseline system using the same spatial
feature, white narrow bars in front of the colored bars show the
performance measures of the corresponding baseline system. A

dashed line in the top plots of each figure shows the maximum
accuracy of 100% that each system can achieve. In addition to
the DOA estimation metrics depicted in Fig. 7, Fig. 8 shows
the speech detection evaluation results in terms of precision and
recall at different SNR conditions for three proposed systems
(Section IV-B) and the rVAD [19] used in the baseline systems
(Section IV-A).

1) Matched Noise Condition: Fig. 7(a) depicts the perfor-
mance measures for the matched noise condition with simulated
diffuse background noise (also used during training). Comparing
the performance of the proposed systems (colored bars) with
the corresponding baseline systems (white bars), we can clearly
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observe the benefit of using PD in combination with a spatial
feature in both environments for all systems at low SNRs (−5 dB
and 0 dB), whereas the benefit also persists for the broadband
system at high SNRs (5 dB and 10 dB). For example, for an
SNR of 0 dB in the cafeteria environment, the benefit of using
PD features in terms of accuracy is approximately 14% points
for the broadband system, 6% points for the narrowband system
(ReIm), and 1% points for the narrowband system (MagPhase),
whereas the benefit in terms of MAE is 11.7◦ for the broadband
system, 8◦ for the narrowband system (ReIm), and 3.8◦ for the
narrowband system (MagPhase).

Fig. 8(a) depicts the speech detection performance measures
for the matched noise condition. It can be observed that all
proposed systems exhibit nearly perfect precision, approaching
1. This suggests a low likelihood of falsely detecting a signal
portion for DOA estimation (i.e. low false positive). It can
be clearly seen for all conditions that the proposed systems
demonstrate either better or comparable precision compared to
the rVAD, but a lower recall. It is important to emphasize once
more that the rVAD is specifically designed for speech detection,
whereas the proposed systems are designed for speech DOA
detection. This distinction is crucial, as the proposed systems
leverage an output class which indeed serves as an uncertainty
measure for DOA estimation. Although this class is regarded as
a detection class, it has not been merely trained for the speech
detection task.

2) Unmatched Noise Condition: Fig. 7(b) depicts the per-
formance measures for the unmatched noise condition with
recorded background noise (not seen during training). Except for
the narrowband system (MagPhase) in the cafeteria environment
at 10 dB SNR and the narrowband system (ReIm) in the court-
yard environment at 10 dB SNR, the proposed systems using
PD in combination with a spatial feature outperform the corre-
sponding baseline systems for all SNRs in both environments.
For example, for an SNR of 0 dB in the cafeteria environment,
the benefit of using PD features in terms of accuracy is approxi-
mately 10% points for the broadband system, 9% points for the
narrowband system (ReIm), and 5% points for the narrowband
system (MagPhase), whereas the benefit in terms of MAE is
8◦ for the broadband system, 12.1◦ for the narrowband system
(ReIm), and 9.2◦ for the narrowband system (MagPhase).

Fig. 8(b) depicts the speech detection performance measures
for the unmatched noise condition. It can be observed that in
the courtyard environment, the proposed narrowband systems
result in notably low recall, particularly in low SNR conditions.
The very low recall in this condition corresponds to a high
number of missed detections (i.e. high false negative). However,
as observed in Section VI-A, it’s essential to emphasize that
the primary objective of speech-aware systems is to detect the
speech DOA for reliable localization, rather than solely focusing
on speech activity detection. The good results for the proposed
narrowband systems at low SNRs in the courtyard in the un-
matched condition (Fig. 7(b)) can be attributed to the fact that
these systems use only a small fraction of speech signal blocks
for DOA estimation.

When comparing the performance measures between the
matched and unmatched noise conditions (Fig. 7(a) and (b)),

Fig. 9. Average spectro-temporal Gini index for two environments (cafeteria,
courtyard), two background noise types (simulated, recorded) and different
SNRs.

it can be clearly observed that in the cafeteria environment the
performance for the recorded babble noise is worse than that for
the simulated diffuse noise, whereas (somewhat surprisingly)
in the courtyard environment the performance for the recorded
ambient noise is better than that for the simulated diffuse noise.
This can be explained by investigating the spectro-temporal
sparsity of the signals for the different conditions. For the
sparsity analysis, we use the Gini index [47], where a large
Gini index (close to 1) corresponds to high sparsity, and a small
Gini index (close to 0) corresponds to low sparsity. More in
particular, we consider the joint spectro-temporal Gini index
according to [48], computed on the STFT spectrogram of the
noisy reference microphone signal. For each environment and
background noise type and for different SNRs, Fig. 9 depicts
the spectro-temporal Gini index averaged over all 150 speech
segments. On the one hand, in the cafeteria environment, it
can be observed for all SNRs that the spectro-temporal sparsity
of the microphone signals with recorded babble noise is less
than the spectro-temporal sparsity with simulated diffuse noise.
On the other hand, in the courtyard environment, it can be
observed for all SNRs that the microphone signals with recorded
ambient noise exhibit a sparser spectro-temporal structure than
with the simulated diffuse noise. Hence, in conjunction with
the DOA estimation performance in Fig. 7, we can deduce that
signals with sparser spectro-temporal structure appear to lead to
better speech-aware DOA estimation.

Taking a closer look at Fig. 7(b), it becomes evident that,
in the courtyard environment with recorded background noise,
the two proposed narrowband systems perform best under the
lowest SNR condition (0 dB SNR). The Gini index, however,
does not provide a comprehensive explanation for this particular
case. Unlike the simulated diffuse noise and cafeteria babble
noise, the courtyard ambient noise energy predominantly falls
within the first frequency band of PD features. This means that
at low SNRs, especially at −5 dB, the noise can mask the
harmonic structure of speech signals in this frequency band.
This masking potentially aids the CNN in almost perfectly
identifying segments with prevalent noise, enhancing DOA es-
timation accuracy. As SNR increases, enhanced harmonics in
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Fig. 10. Accuracy and mean absolute error of the proposed and baseline
systems using broadband and narrowband features for the dynamic source
scenarios in the office environment for different SNRs and angular velocities.

low frequencies may introduce uncertainties, potentially com-
promising DOA estimation accuracy. However, this does not
affect our main findings and conclusions for speech-aware DOA
estimation.

C. Evaluation Results for Dynamic Source Scenarios

For the moving source scenario in the office environment,
Fig. 10 depicts the DOA estimation performance measures of the
proposed systems (colored bars) and the corresponding baseline
systems using the same spatial feature (white bars) for different
SNRs and two angular velocities. Similarly as for the static
source scenario (Fig. 7), a clear benefit of using PD features can
be observed, especially for the broadband system at all SNRs
and for the narrowband system (ReIm) at low SNRs. For the
narrowband system (MagPhase), whose performance is anyway
lower than the narrowband system (ReIm), the baseline system
(using MagPhase) exhibits comparable or better performance.
These results further reveal the benefit of using PD features in the
proposed speech-aware DOA estimation systems compared to
the baseline systems using merely spatial features. This benefit
even increases with angular velocity, particularly at low SNRs.

For the moving source scenario, the evaluation results of
speech detection performance for all considered systems are il-
lustrated in Fig. 11. It becomes evident that in dynamic scenarios
across all conditions, the proposed narrowband systems yield a
higher recall when compared to all other systems (including
rVAD), while maintaining a high level of precision. This is
particularly noteworthy, as the higher recall facilitates speech
source tracking by generating more observations of the dynamic
scene.

Evaluation results in Figs. 7 and 10 show that, except for the
matched condition in the static source scenario, the proposed
broadband system outperforms the proposed narrowband sys-
tems, while indicating a larger benefit from the inclusion of PD
features. The results also demonstrate that the broadband base-
line system using GCC-PHAT features typically outperforms

Fig. 11. Speech detection performance of the proposed systems and rVAD in
terms of the precision and recall for the dynamic source scenarios in the office
environment for different SNRs and angular velocities.

narrowband baseline systems using CPS features. Despite a
similar number of trainable parameters (cf. Table I), the narrow-
band baseline systems must learn more intricate patterns from
CPS features, whereas GCC-PHAT directly provides time delay
information. This suggests that the narrowband baseline systems
may need more capacity (trainable parameters) to match the per-
formance of the broadband one. As our main goal was to study
the benefit of using PD features in the proposed narrowband and
broadband systems, we didn’t optimize the narrowband systems
for performance parity with the broadband system, potentially
causing performance limitations when combining CPS and PD
features.

D. Limitations and Future Works

This study only considered binaural DOA estimation of a
far-field speech source. For a speech source in the near field of
a microphone array, accurate estimation of the time delay (and
phase) involves considering both the range and the DOA of the
sound source. The normalization inherent in the PHAT weight-
ing (see (4)) eliminates the effect of the signal level (and hence
range information) due to the source-microphone distance. Con-
sequently, a model trained solely on the GCC-PHAT may have
limited capability to leverage range-dependent information in
the near-field scenarios. Although this study only considered
binaural DOA estimation in the azimuthal plane, the proposed
systems, in principle, can be extended for DOA estimation in
terms of both azimuth and elevation as azimuth and elevation
information are encoded by the spatial input features [7], [12].

In this study, we examined single-talker speech-aware DOA
estimation in the presence of background noise. Future research
may explore the potential benefits of using PD features for
speech-aware DOA estimation in the presence of non-speech
interference and binaural DOA estimation in multi-talker sce-
narios.
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VII. CONCLUSION

In this study, we proposed novel feature combinations for
speech-aware DOA estimation in the context of binaural hearing
aids. The proposed systems utilize CNNs and receive a spatial
feature and an auditory-inspired periodicity feature as inputs
to two parallel branches of convolutional layers. In particular,
we introduced a subband-averaged PD feature as the periodicity
feature, and combined it with either the real and imaginary or
the magnitude and phase components of the narrowband CPS as
the spatial feature. The performance of speech-aware systems
was evaluated against CNN-based baseline systems which only
use spatial features and a pitch-based VAD.

Comprehensive evaluations in static single-talker scenarios
with different background noise types and SNRs demonstrate
that for any type of spatial feature, the proposed method outper-
forms baseline systems in terms of DOA estimation accuracy
and mean absolute error, particularly in adverse SNR condi-
tions and in conditions with higher degrees of spectro-temporal
sparseness. This study also shows that the proposed method
using PD features is effective for speech-aware DOA estimation
of a moving talker, and is robust to changes in talker velocity.
Our proposed speech-aware system is able to estimate the sound
source DOA when a high degree of periodicity is captured by
the CNN, without any need for a separate VAD or pitch period
estimation.

The primary finding of this study was that the usage of PD fea-
tures in both narrowband and broadband feature combinations
benefits the speech-aware binaural DOA estimation in different
static and dynamic scenarios. It was also found that the proposed
system employing the broadband feature combination typically
demonstrated better performance than the proposed systems us-
ing the narrowband feature combinations in the specific system
configuration employed in this study.

Overall, this study demonstrates the potential benefits of
utilizing periodicity-based features in conjunction with spatial
features for speech-related applications such as DOA estimation.
The results also suggest that these features may have wider
applications in other speech-related tasks. The findings of this
study can contribute to the development of improved methods for
sound source localization and speech enhancement in binaural
hearing aids.
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