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ABSTRACT

Unlike model-based direction of arrival (DoA) estimation algo-
rithms, supervised learning-based DoA estimation algorithms based
on deep neural networks (DNNs) are usually trained for one specific
microphone array geometry, resulting in poor performance when
applied to a different array geometry. In this paper we illustrate
the fundamental difference between supervised learning-based and
model-based algorithms leading to this sensitivity. Aiming at de-
signing a supervised learning-based DoA estimation algorithm that
generalizes well to different array geometries, in this paper we pro-
pose a geometry-aware DoA estimation algorithm. The algorithm
uses a fully connected DNN and takes mixed data as input features,
namely the time lags maximizing the generalized cross-correlation
with phase transform and the microphone coordinates, which are
assumed to be known. Experimental results in a reverberant sce-
nario demonstrate the flexibility of the proposed algorithm towards
different array geometries and show that the proposed algorithm out-
performs model-based algorithms such as steered response power
with phase transform.

Index Terms— DoA estimation, deep neural network, micro-
phone array processing

1. INTRODUCTION

Estimating the direction of arrival (DoA) of an acoustic source is re-
quired in many speech communication applications, e.g. to steer a
beamformer in hearing aids or to steer a camera in a teleconferencing
system [1, 2]. Most DoA estimation techniques use multiple micro-
phone signals that are recorded by a microphone array with a known
geometry [3, 4]. Apart from classical model-based approaches that
exploit time differences at the microphones directly, e.g., the gen-
eralized cross-correlation with phase transform (GCC-PHAT) [5, 6],
steered response power with phase transform (SRP-PHAT) [7], and
subspace-based methods such as multiple signal classification (MU-
SIC) [8], in the last years many supervised learning-based algorithms
based on deep neural networks (DNNs) have been proposed for DoA
estimation [9–14].

While model-based DoA estimation algorithms exploit different
signal properties, such as time difference of arrival [5] or the co-
variance matrix estimated from the microphone signals [8], at their
core is the computation of an analytic function that incorporates the
microphone array geometry. For example in SRP-PHAT [7, 15] the
acoustic power is sampled at candidate DoAs by an acoustic beam-
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former whose steering vector depends on the microphone array ge-
ometry. Similarly, the MUSIC pseudo-spectrum [8] is based on the
orthogonal projection of the noise subspace of the covariance matrix
of the microphone signals with an array geometry-dependent steer-
ing vector.

The preceding observations do not apply to supervised learning-
based DoA estimation algorithms, where a DNN learns the relation-
ship between input features and the DoA. These data-driven systems
are trained using either microphone array recordings (simulated or
real-world) or features that are extracted from such recordings. As
a consequence, all training data is implicitly based on the underly-
ing array geometry [16], of which the DNN compiles some form
of internal representation. Without explicit information on the array
geometry, the DNN is only able to learn the relationship between
input features and DoA provided that all data originates from the
same geometry. This holds for fully connected deep neural networks
(FC-DNNs) as well as for convolutional neural networks (CNNs), in
which the first layers perform a convolution operation on the input
features. If this geometry assumption is not satisfied at inference,
e.g., a DNN trained for one array geometry is applied to another ar-
ray geometry, the DoA estimation performance may be substantially
degraded unless a retraining step is performed, requiring a com-
pletely new data set [17] besides processing time and power. Fig. 1
illustrates the general dependency of model-based and supervised
learning-based DoA estimation algorithms on the array geometry,
i.e. model-based algorithms require knowledge of the microphone
array geometry to compute an analytic function, whereas supervised
learning-based techniques operate using an internal geometry repre-
sentation.

In this paper we present a feasibility study on geometry-aware
supervised learning-based DoA estimation. We propose a deep
neural network that takes as input two separate types of indepen-
dent data, namely the time lags maximizing the GCC-PHAT and
the microphone array geometry, which is assumed to be perfectly
known. Based on two experiments we demonstrate that the proposed
geometry-aware DNN is flexible towards different array geometries
and outperforms state-of-the-art model-based algorithms.

2. MODEL-BASED DOA ESTIMATION

We assume an array of M omnidirectional microphones with a
known geometry r capturing a single static acoustic source in a
reverberant environment where some background noise is present.
In the frequency domain, the signal at the m-th microphone is
composed of

Ym(ω) = S(ω)Hm(ω) + Vm(ω), (1)IC
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Fig. 1. Model-based DoA estimation approaches: Computation of
an analytic function based on the array geometry r. Supervised
learning-based approaches: DoA estimation using an internal geom-
etry representation, which depends on the array geometry assumed
during training

where S(ω) denotes the source signal, Hm(ω) denotes the acoustic
transfer function between the acoustic source and the m-th micro-
phone, and Vm(ω) denotes the additive noise component at the m-th
microphone.

Based on this signal model, model-based algorithms estimate
the DoA of the acoustic source by computing an analytic function
incorporating knowledge of the microphone array geometry. For
example, SRP-PHAT computes an acoustic power map for candi-
date DoAs θ using an acoustic beamformer whose steering vector is
based directly on the microphone array geometry r as

P (θ, r) = 2π

M∑
k=1

M∑
l=1

∞∫
−∞

Γk,l(ω)e
jωτk,l(θ)dω, (2)

where Γk,l denotes the frequency-domain representation of the
GCC-PHAT, γk,l, between microphones k, l, which is defined as

γk,l = F−1

{
Yk(ω) · Y ∗

l (ω)

|Yk(ω) · Y ∗
l (ω)|

}
, (3)

where F−1 denotes the inverse Fourier transform and (·)∗ denotes
complex conjugation. The DoA-specific time delay τk,l(θ) between
microphones k, l is determined by their coordinates, i.e.

τk,l(θ) =
|rk − rl| sin θ

c
, (4)

where c is the speed of sound, indicating the direct dependence of P
on r. The MUSIC algorithm [8] computes the noise subspace from
the covariance matrix of the microphone signals and establishes the
so-called MUSIC pseudo-spectrum P (θ, r) as

P (θ, r) = 1

||aH(θ, r)ENEH
Na(θ, r)||

, (5)

where EN denotes the noise subspace and a(θ, r) is an array
geometry-dependent steering vector, again indicating a direct de-
pendence of P on r and showing the flexibility of model-based
algorithms towards different microphone array geometries. Please
refer to [8] for more detailed information on MUSIC.

3. SUPERVISED LEARNING FOR DOA ESTIMATION

In this section we discuss three supervised learning-based DoA es-
timation algorithms, which share the same FC-DNN architecture
(Section 3.1). After describing the conventional GCC-PHAT input

Fig. 2. Universal FC-DNN architecture comprising an input layer of
varying size, depending on the algorithm-specific input features, four
fully connected (FC) layers, and an output layer with C neurons.

features in Section 3.2, in Section 3.3 we introduce a reduced set
of GCC-PHAT-based input features. In Section 3.4, we propose a
geometry-aware DoA estimation algorithm, which uses the micro-
phone geometry as additional input features.

3.1. DNN Architecture

In this study, the DoA estimation problem is formulated as a multi-
class classification task, with C DoA classes θ that span the 360°
azimuth range. For each signal frame the class maximizing the pos-
terior probability map P in the output layer is determined by

I = argmax
i ∈ C

Pi, (6)

with the DoA estimate given by θ̂ = θI . Because in most cases the
posterior probability is not concentrated in a single class, a better es-
timate is obtained through parabolic interpolation [18] incorporating
the three DoA classes centered around the maximum. For signals
consisting of multiple frames, the global DoA estimate θ̃ is calcu-
lated as the median value over all frames.

For all supervised learning-based algorithms we consider an FC-
DNN architecture (see Fig. 2) consisting of an input layer, four fully
connected hidden layers with 1024 neurons each, followed by an
output layer with C neurons. Every fully connected layer comprises
a 20 % dropout stage and is activated by a ReLU function. Because
each of the FC-DNNs uses different input features, the sizes of their
input layers are different, as indicated in Fig. 2.

3.2. FC-DNN with GCC-PHAT (FCfull)

The first FC-DNN uses a discrete time version of the GCC-PHAT in
(3) as input feature. GCC-PHAT is a representation of the time dif-
ferences between microphone signals and has been shown to be ro-
bust against reverberation and noise due to its phase transform prop-
erty [19]. For practical reasons we constrain the discrete time lag
τ δ to the interval [−τ δ

max,τ δ
max−1], where τ δ

max corresponds to the
largest possible inter-microphone time delay measured in samples,
i.e.

τ δ
max =

⌈
rmax · fs

c

⌉
+ η, (7)

where rmax denotes the largest inter-microphone distance within the
array, fs denotes the sampling rate, ⌈·⌉ indicates the operation of
rounding up, and η denotes an additional margin. By concatenating
the discrete GCC-PHAT vectors for all non-redundant microphone
pairs, the final feature vector is constructed as

ffull = [γδ
1,2,γ

δ
1,3, . . . ,γ

δ
M−1,M ] (8)



Because this FC-DNN uses the full GCC-PHAT feature vector in (8)
as input feature, it is referred to as FCfull. The size of the input layer
is equal to M(M − 1)/2 · 2τ δ

max, i.e., the number of non-redundant
microphone pairs multiplied by the width of each GCC-PHAT.

3.3. FC-DNN with GCC-PHAT maximum locations (FCmax)

The second FC-DNN uses a reduced feature set of GCC-PHAT-
based features as input feature, where we propose to only use the
location of the maximum in each GCC-PHAT vector. This is per-
formed for three reasons. First, the size of the feature set is dras-
tically reduced. Second, this excludes local maxima in the GCC-
PHAT, e.g. arising from room reflections. Third, it can be argued
that the location of the maximum is the most important piece of
information in GCC-PHAT, where we would like the DNN to fo-
cus on. We first determine the discrete time lag that maximizes the
GCC-PHAT using

dk,l = argmax
τδ

γδ
k,l. (9)

Since the true maximum is most likely situated between two discrete
time lags, we then determine the interpolated time lag d̃k,l by ap-
plying parabolic interpolation between dk,l-1 and dk,l+1. The final
feature vector is constructed by concatenating all estimated time lags
as

fmax = [d̃1,2, d̃1,3, . . . , d̃M−1,M ] (10)

Because this DNN uses the locations of GCC-PHAT maxima, it
is referred to as FCmax. The size of the input layer is equal to
M(M − 1)/2, i.e., the number of non-redundant microphone pairs.

3.4. Geometry-aware FC-DNN (FCGA)

Whereas the FC-DNNs in the previous sections only use signal-
based input features, in this section we propose a geometry-aware
FC-DNN, which uses a combination of two types of independent
data as input feature: the GCC-PHAT maximum locations, fmax in
(10), and the microphone coordinates fr , separated into their x and
y components, i.e.

fr = [x1, . . . , xM , y1, . . . , yM ] (11)

Both parts, maximum locations and array coordinates, are then con-
catenated to form the final feature set:

f = [fmax, fr] (12)

It should be noted that experiments have shown that the combina-
tion of GCC-PHAT maximum locations and microphone coordinates
produces more accurate and robust estimates than the combination
of the full GCC-PHAT vector and microphone coordinates. Since
this DNN is geometry-aware, it is referred to as FCGA. The size of
the input layer is equal to M(M − 1)/2 + 2M , i.e., the number
of non-redundant microphone pairs plus the x- and y-coordinates of
the microphones.

4. EXPERIMENTAL EVALUATION

In this section the performance of the proposed geometry-aware
DNN is validated and compared to several baseline algorithms
under different acoustic conditions. In Section 4.1 the considered
acoustic setup is presented, while Section 4.2 describes the training
procedure. The performance metrics are introduced in Section 4.3,
and the evaluation results are presented in Section 4.4. In addi-
tion to FCfull and FCmax as baseline algorithm we consider the

Room dimensions: [9.0, 5.0, 3.0] m ± [1.0, 1.0, 0.5] m
Array position: [4.5, 2.5, 1.5] m ± [0.5, 0.5, 0.5] m
Source distance: 1.0 - 3.0 m [within boundaries]
Source direction: 0° : 5° : 355°
T60: 0.13 s - 1.0 s
SNR: 0 - 30 dB

Table 1. Acoustic simulation parameters

Fig. 3. 2-dimensional arc-shaped microphone array geometry

CNN-based algorithm from [11], which uses raw signal phases as
input feature. We further consider SRP-PHAT and MUSIC, both
implemented in [20], as baseline model-based algorithms as well.

4.1. Acoustic Setup and Algorithm Parameters

For the evaluation we consider a 2-dimensional arc-shaped micro-
phone array comprising M=5 microphones with a width of 0.4 m
and a depth of about 0.15 m, as shown in Fig. 3. The microphone ar-
ray is situated inside a rectangular room and records the signal from
a single acoustic source and noise. For both training and evaluation
we utilize data consisting of 50% speech and 50% white noise as
suggested in [14]. Speech data is taken from the “clean” section of
the LibriSpeech corpus [21]. Directional cues are simulated by con-
volving monophonic signals with room impulse responses (RIRs)
generated using the image source method implemented in pyrooma-
coustics [20]. The additive noise consists of diffuse-like stationary
babble noise generated using [22, 23].

In the output layer of the FC-DNNs we consider C=72 DoA
classes, leading to an angular resolution of 5°. Since for the consid-
ered array geometry τ δ

max=14, including a margin, the input layer
size for FCfull, FCmax, and FCGA is equal to 280, 10 and 20, re-
spectively. Training as well as evaluation are performed on non-
overlapping Hann windowed 32 ms signal frames at a sampling rate
of fs=8 kHz, yielding a frame size of 256 samples.

4.2. Training

Every training sample consists of a single frame containing a sin-
gle acoustic source as well as noise. We introduce variability in the
acoustic parameters defining the training data aiming to achieve a
robust algorithm that generalizes well to unmatched acoustic con-
ditions. To this end, for every training sample a rectangular room
with different dimensions and acoustic properties and an acoustic
source with different directions and distances according to Table 1 is
considered. FCfull, FCmax and the CNN are trained using the mi-
crophone array geometry in Fig. 3. The proposed geometry-aware
FCGA is trained using a 2-dimensional array of randomly positioned
microphones with a width and depth of 0.4 m, whose coordinates are
perfectly known, where a completely different array is considered
for every training sample. We employ mini batches of 32 samples,
the Adam optimizer with a learning rate of 10−4, and a cross en-
tropy loss function. Training is concluded when no reduction of the
validation loss can be observed for 10 epochs.



4.3. Performance Metrics

Two performance metrics are used to quantify the performance of the
considered algorithms: mean absolute error (MAE) and Accuracy.
In order to account for circular wrapping, first the absolute angular
error, δn, is calculated for every estimate n as

δn =
∣∣∣ arg

{
ei2π · (θ̃n−θn) / 360◦

} ∣∣∣ · 360◦

2π
, (13)

where θ̃n is the estimated global DoA defined in Section 3.1 and θn
is the ground truth DoA. Based on δn both performance metrics are
then calculated as

MAE [°] =
1

N

N∑
n=1

δn, (14)

Accuracy [%] =
1

N

N∑
n=1

Θ(ε− δn)× 100, (15)

where N is the overall number of trials, Θ represents the Heaviside
step function and ε denotes the margin of tolerance – here we use a
margin of one DoA class, i.e. 5°.

4.4. Evaluation Results

This section presents the results of two experiments employing sig-
nals of length 5 s with moderate reverberation and low noise.

First experiment: Coordinates deviating from trained geometry

The first experiment investigates the sensitivity of the baseline
supervised learning-based algorithms (CNN, FCfull, FCmax) to
coordinates deviating from the trained array geometry compared to
the sensitivity of the proposed geometry-aware algorithm (FCGA)
and the performance of the baseline model-based algorithms. In
this experiment, random rooms and source positions are simulated
according to Table 1, but with a fixed reverberation time of T60=0.5 s
and SNR=20 dB. Starting from the microphone array in Fig. 3, we
consider microphone coordinate deviations in all directions. For
every deviation in steps of 10−2 m, all microphone coordinates de-
viate by the same amount, but in separate, random directions. Each
deviation step is simulated 104 times.

Figs. 4 and 5 illustrate the effect of microphone coordinate devi-
ation on all considered DoA estimation algorithms in terms of MAE
and Accuracy, respectively. First, it can be observed that the baseline
supervised learning-based algorithms (CNN, FCfull, FCmax) out-
perform the baseline model-based algorithms (SRP-PHAT, MUSIC)
when no coordinate deviations occur. Second, up to a deviation
of about 0.01 m, no considerable decrease in performance can be
observed for the supervised learning-based baseline systems. Larger
deviations, however, lead to a substantial decrease in performance.
Third, it can be clearly observed that the proposed geometry-aware
algorithm (FCGA) is much more robust to coordinate deviations
than the baseline supervised learning-based algorithms.

Second experiment: Fully randomized geometry

We conducted 104 simulations, each using a different 2-dimensional
array geometry with uniformly distributed coordinates, with a max-
imum width and depth of 0.4 m. For all considered algorithms in
this experiment, we assume that the microphone coordinates are
perfectly known. All other acoustic parameters are the same as in
the first experiment, again with T60=0.5 s and SNR=20 dB.

Table 2 shows the results in terms of MAE and Accuracy av-
eraged over all simulations. These results show that the proposed

Fig. 4. MAE averaged over all simulations of model-based (SRP-
PHAT, MUSIC) and supervised learning-based (CNN, FCfull,
FCmax, FCGA) algorithms with respect to deviating array coordi-
nates (T60=0.5 s, SNR=20 dB)

Fig. 5. Accuracy of model-based (SRP-PHAT, MUSIC) and super-
vised learning-based (CNN, FCfull, FCmax, FCGA) algorithms with
respect to deviating array coordinates (T60=0.5 s, SNR=20 dB)

geometry-aware algorithm (FCGA) not only generalizes to unseen
array geometries, but also outperforms the model-based baseline al-
gorithms (SRP-PHAT, MUSIC), both in terms of MAE and Accu-
racy.

Algorithm MAE [°] Accuracy [%]
SRP-PHAT 2.44 93.5
MUSIC 2.69 86.0
FCGA 1.47 96.1

Table 2. MAE and accuracy of model-based algorithms (SRP-
PHAT, MUSIC) and proposed geometry-aware (FCGA) algo-
rithm for the randomized geometry simulation with T60=0.5 s and
SNR=20 dB

5. CONCLUSIONS

In this paper we presented a feasibility study on geometry-aware
DNN-based DoA estimation. First, we demonstrated the sensitivity
of common supervised learning-based techniques towards deviations
from the array geometry employed during training. The proposed
geometry-aware algorithm uses as a novel feature the locations of
GCC-PHAT maxima alongside the microphone coordinates. Exper-
imental results showed that the proposed geometry-aware algorithm
outperformed the evaluated model-based algorithms for different ar-
ray geometries. Further studies will investigate the generalization
to 3-dimensional arrays, the performance in adverse acoustic condi-
tions as well as the robustness to inaccuracies in the assumed micro-
phone coordinates.
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