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Abstract
Recently, a Euclidean distance matrix (EDM)-based 3D source
position estimation method was proposed, which relies on
estimated time-differences-of-arrival (TDOAs) between micro-
phones with a known array geometry. These TDOAs are often
estimated by determining the time lag that maximizes the gener-
alized cross-correlation with phase transform (GCC-PHAT) func-
tion for each microphone pair. In noisy and reverberant environ-
ments, the time lag corresponding to the direct source component
may no longer correspond to the maximum of the GCC-PHAT
function, which leads to TDOA estimation errors and consequent
source localization errors. In this paper, we assume the avail-
ability of an external microphone at an unknown position in the
vicinity of the source, in addition to the microphone array, hence,
typically having a high direct source component relative to the
noise and reverberation. Aiming at improving the reliability of
the GCC-PHAT function, we propose a new approach to com-
pute the GCC-PHAT function for each microphone pair in the
array by convolving the GCC-PHAT functions between the ex-
ternal microphone and the respective microphones in the array.
Experimental results demonstrate that incorporating an external
microphone enables a significant improvement in the source lo-
calization performance of the EDM-based method, when the ex-
ternal microphone is close enough to the source.

1 Introduction
Microphone arrays are extensively employed to localize speech
sources [1–3] for acoustic processing. Several learning- and
non-learning based approaches have been proposed for source
localization, e.g., approaches using time-differences-of-arrival
(TDOAs) [2, 4], the steered response power with phase transform
method [5–7], the subspace-based multiple signal classification
approach [8], matching estimated relative transfer functions with
a database of prototype relative transfer functions [9], and deep
neural network-based approaches [10, 11]. Often, the localization
constitutes estimating the source direction of arrival using com-
pact microphone arrays, where it can be assumed that the source
is in the far field.

We consider a recently proposed Euclidean distance matrix
(EDM)-based method [12], which does not rely on the far field
assumption, but rather a sufficiently large array geometry for
which the 3D source position can be estimated, i.e., using spa-
tially distributed microphones of an acoustic sensor network.
This method considers the geometry of the distributed micro-
phone array (DMA), which is assumed to be known, and per-
forms best when multiple candidate TDOA estimates are consid-
ered between the reference microphone and each other micro-
phone. These candidate TDOAs are estimated using the popular
generalized cross correlation with phase transform (GCC-PHAT)
method [13]. An EDM-based cost function determines the spe-
cific combination of TDOA estimates and the distance between
the source and the reference microphone which best corresponds
to the source position. Nevertheless, in high levels of reverber-
ation and noise, the GCC-PHAT function may exhibit too many
candidate TDOA estimates that do not match the TDOA of the
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direct source component, leading to an incorrect estimate of the
source position.

In addition to the main microphone array with a known ge-
ometry, sometimes an external microphone with an unknown po-
sition is available. If this external microphone is in the vicinity
of the speech source it might capture a loud direct source refer-
ence and if it is far enough from the other microphones, its cap-
tured noise and reverberation reference might be more uncorre-
lated, in comparison to the correlation between the microphones
of the main microphone array. Several strategies have been pro-
posed to harness these properties, e.g., in beamforming for speech
enhancement/noise reduction [14–17], dereverberation [18], and
source localization approaches, such as relative transfer function
matching [19], deep neural network-based [20], and informed
sound source localization [21, 22]. In this paper, we incorporate
the external microphone, aiming to improve the accuracy of the
EDM-based source localization method by means of improving
the reliability of the TDOA estimation.

We propose to exploit the potentially more favourable con-
ditions in the external microphone by incorporating its captured
signal in the computation of the GCC-PHAT function between
the reference microphone and the other microphones of the main
array. We replace the GCC-PHAT functions between the ref-
erence microphone and the other microphones with new func-
tions which are obtained by convolving the GCC-PHAT function
between the reference microphone and the external microphone
with the GCC-PHAT function between the external microphone
and the other microphones. This convolution cancels out the time
difference corresponding to the signal delay between the refer-
ence microphone of the main array and the external microphone,
hence, the new function has a peak at the time lag corresponding
to the TDOA between the reference microphone and the corre-
sponding other microphone.

Experimental results for different distances between the
source and the external microphone show that the source posi-
tion estimation error can be considerably reduced when an exter-
nal microphone, positioned between the source and the DMA, is
used to estimate the TDOAs.

2 TDOA Estimation Using GCC-
PHAT

We consider a reverberant and noisy acoustic environment with a
single static speech source and a DMA with M>3 microphones
at positions M=[m1,...,mM ]∈R3×M . In addition, we assume
that an external microphone is available at an unknown position
mE close to the speech source at an unknown position s. Assum-
ing synchronized microphones and free-field transmission, i.e.,
no object or head between the source and the microphones, the
TDOA of the direct source component between the i-th and the
j-th microphone is equal to τi,j(s)=(αi−αj)/ν, where αm de-
notes the distance between the speech source and them-th micro-
phone and ν denotes the speed of sound. The distance between
the i-th and j-th microphone is denoted as Di,j .

A common approach to estimate the TDOA between two
microphones is based on the real-valued time-domain general-
ized cross-correlation with phase transform (GCC-PHAT) func-
tion [13]. The GCC-PHAT function between microphones i and
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j is defined as

ξi,j(τ) =
∫ ω0

−ω0

ψi,j(ω)e
ȷωτdω , (1)

with radial frequency −ω0 ≤ω≤ω0, time lag τ in seconds, and
phase spectrum ψi,j(ω) given by

ψi,j(ω) =
E{Yi(ω)Y ∗

j (ω)}
|E{Yi(ω)Y ∗

j (ω)}|
, (2)

where Ym(ω) denotes the m-th microphone signal in the
frequency-domain and E{·} denotes the expectation operator.
The estimated TDOA τ̂i,j between the i-th and j-th microphone
is computed as the time lag which maximizes ξi,j(τ), i.e.,

τ̂i,j = argmax
τ

ξi,j(τ) . (3)

To analyze the GCC-PHAT function in more detail, we decom-
pose the noisy and reverberantm-th microphone signal, similarly
to [23], as

Ym(ω,αm)=Xd,m(ω,αm)+Xr,m(ω)+Nm(ω) , (4)

where Xd,m(ω, αm) denotes the direct source component,
Xr,m(ω) denotes the reverberation component, and Nm(ω) de-
notes the noise component. The direct source component is a
delayed and attenuated version of the source signal S(ω) [24],
i.e.,

Xd,m(ω,αm)=
exp(−ȷωαm/ν)√

4παm
S(ω) . (5)

We now assume that the direct source component, the reverber-
ation component, and the noise component are mutually uncor-
related. Although in practice the reverberation component is not
completely uncorrelated with the direct source component due to
early reflections, we use this common assumption for a simpli-
fied derivation. In addition, we assume reverberation and noise
are homogeneous sound fields with spatial coherence Γi,j(ω) be-
tween the i-th and j-th microphone [25]. Using these assump-
tions, it can easily be shown that

E{Xd,i(ω,αi)X
∗
d,j(ω,αj)}= ϕD(ω,αi,αj)G(ω,αi,αj) , (6)

E{Xr,i(ω)X
∗
r,j(ω)}=ϕR(ω)Γi,j(ω) , (7)

E{Ni (ω)N
∗
j (ω) }=ϕN (ω)Γi,j(ω) , (8)

where
G(ω,αi,αj)=exp(−ȷω(αi−αj)/ν) (9)

denotes the relative direct transfer function and ϕD(ω,αi,αj)=
ϕS(ω)/(4παiαj), ϕS(ω), ϕR(ω), and ϕN (ω) denote the direct,
source, reverberation, and noise power spectral densities (PSDs),
respectively.

Omitting the radial frequency ω for a more concise notation,
the phase spectrum in (2) can be written as

ψi,j(αi,αj) =
ϕD(αi,αj)G(αi,αj)+(ϕR+ϕN )Γi,j

|ϕD(αi,αj)G(αi,αj)+(ϕR+ϕN )Γi,j |
, (10)

=
DUR(αi,αj)G(αi,αj)+Γi,j

|DUR(αi,αj)G(αi,αj)+Γi,j |
, (11)

with the direct-to-undesired ratio (DUR) in the DMA, i.e.,
DUR(αi,αj)=ϕD(αi,αj)/(ϕR+ϕN ).

Clearly, in the noise-free and anechoic case (i.e.,
DUR(αi, αj) = ∞), the phase spectrum in (11) is equal to
G(αi,αj) and the GCC-PHAT function is equal to a time-shifted
delta function δ(τ − (αi − αj)/ν) = δ(τ − τi,j), such that the
TDOA estimate in (3) exactly corresponds to the TDOA, i.e.,
τ̂i,j = τi,j . In the presence of reverberation and noise, the
GCC-PHAT function is influenced by the DUR and the spatial
coherence, possibly introducing additional peaks and resulting in
TDOA estimation errors.

s

mE
mi

mj

Baseline estimate

Proposed estimate

τi,jτi,E

τE,j

Figure 1: TDOA equivalency in (14) for an anechoic and noise-
free scenario. Top: 2D schematic of an exemplary microphone
layout. Bottom: GCC-PHAT functions corresponding to the ex-
emplary microphone layout.

3 TDOA Estimation Exploiting an
External Microphone

In this section, we propose a method which exploits the external
microphone to improve the TDOA estimates between the micro-
phones of the DMA. We assume the external microphone to be in
the vicinity of the speech source, i.e., the distance αE between
the source and the external microphone is assumed to be smaller
than the distances between the source and the microphones of the
DMA. This generally means that the DUR is larger in the external
microphone than in the microphones of the DMA.

Since the reliability of the GCC-PHAT function is directly
related to the DUR, cf. (11), the reliability of the GCC-PHAT
function ξi,E(τ) between the i-th microphone of the DMA and
the external microphone is in general better than the reliability of
the GCC-PHAT function ξi,j(τ) between the i-th and j-th mi-
crophone of the DMA. Hence, we propose to compute the GCC-
PHAT function between the i-th and j-th microphone by convolv-
ing the GCC-PHAT functions ξi,E(τ) and ξE,j(τ), i.e.,

ξ
(E)
i,j (τ) =

∫
∞

−∞

ξi,E(τ ′)ξE,j(τ−τ
′)dτ ′ (12)

Fig. 1 depicts the acoustic scenario with a source at position s,
two microphones of the DMA at positions mi and mj and an
external microphone at position mE . In the anechoic and noise-
free case, it can easily be shown that the GCC-PHAT function in
(12) becomes

ξ
(E)
i,j (τ) =

∫
∞

−∞

δ(τ ′−αi−αE

ν
)δ(τ−

αE−αj

ν
−τ ′)dτ ′ , (13)

=δ(τ−τi,j) , (14)

which is equivalent to the baseline GCC-PHAT function without
the external microphone ξi,j(τ), as shown by the overlap of the
green line and the dashed black line in Fig. 1.

Fig. 2 shows the baseline GCC-PHAT function ξi,j(τ) in (1)
and the GCC-PHAT function ξ(E)

i,j (τ) in (12) exploiting the exter-
nal microphone, computed using the theoretical formula (11), for
an exemplary acoustic scenario with source position s=[0,0,0]T

m, external microphone position mE = [0.1,0,0]T m, and DMA
positions m1 = [−2.95,−0.05,0]T m and m2 = [3.05,0.05,0]T
m. The PSDs were configured such that the DUR in the DMA
was −10 dB and a spherically isotropic coherence was assumed
for the reverberation and noise, i.e., Γ1,2(ω) = sinc(D1,2ω/c).
It can clearly be observed that the baseline GCC-PHAT function

ITG-Fachbericht 312: Speech Communication ∙ September 20-22 2023, Aachen DOI:10.30420/456164002

ISBN: 978-3-8007-6164-7 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

 

17



Figure 2: Baseline GCC-PHAT function ξi,j(τ) and proposed
external microphone-based GCC-PHAT function ξ(E)

i,j (τ).

ξi,j(τ) exhibits spurious peaks which are larger than the peak at
the true TDOA τi,j , whereas the proposed GCC-PHAT function

ξ
(E)
i,j (τ) exhibits a clear peak at the true TDOA.

3.1 Implementation of GCC-PHAT
In practice, the phase spectrum in (2) is calculated in the short-
time Fourier transform (STFT)-domain as

ψi,j [k,l] =
Yi[k,l]Y

∗
j [k,l]

|Yi[k,l]Y ∗
j [k,l]|

, (15)

where k denotes the frequency bin index and l denotes the time
frame index. The phase spectrum is recursively smoothed as

ψ̃i,j [k,l] = λψ̃i,j [k,l−1]+(1−λ)ψi,j [k,l] , (16)

where λ denotes the recursive smoothing factor. The time-
domain GCC-PHAT in (2) is then computed using the inverse
discrete Fourier transform (DFT) for discrete time lags n= τfs,
i.e.,

ξi,j [n,l] =
1
K

K−1

∑
k=0

ψ̃i,j [k,l]e
ȷ2πnk/K , (17)

where fs is the sampling frequency and K denotes the DFT
length. The proposed external microphone-based GCC-PHAT
function in (12) is computed using a discrete convolution as

ξ
(E)
i,j [n,l] =

K−1

∑
n′=−K+1

ξi,E [n′,l]ξE,j [n−n
′,l] . (18)

To achieve a more precise TDOA estimate, the time domain
GCC-PHAT functions ξi,j [n,l] and ξ(E)

i,j [n,l] can be interpolated
with a factor R> 1. We only consider physically realistic time-
lags, i.e., nmin

i,j ≤ni,j≤nmax
i,j , with nmax

i,j =−nmin
i,j =RfsDi,j/ν.

Using the interpolated GCC-PHAT function, the sample de-
lay between these microphones is estimated as

n̂i,j = argmax
nmin
i,j≤ni,j≤nmax

i,j

L

∑
l=1

ξi,j [n,l] , (19)

where it should be noted that in (19) the interpolated GCC-PHAT
functions are summed over all L frames, such that only one es-
timate for the whole signal is obtained. The TDOA estimate is
then obtained as τ̂i,j= n̂i,j/(Rfs).

4 EDM-Based 3D Position Estimation
Although the proposed TDOA estimation method exploiting an
external microphone can be applied for several source localiza-
tion algorithms, in this paper we will apply it in a recently pro-
posed EDM-based method for 3D position estimation [12]. In
this section, we will briefly review the method from [12].

The EDM-based method aims at estimating the 3D source
position s by first estimating the distance αs between the source
and a reference microphone of the DMA (here arbitrarily chosen

as the first microphone). The distance between the source and the
m-th microphone can be written as

dm(αs,τm,1)=αs+ντm,1 , (20)

where τm,1 denotes the TDOA between them-th microphone and
the reference microphone. An (M + 1)× (M + 1)-dimensional
EDM can then be constructed as

D(αs,τ ) =

[
D d(αs,τ )

dT(αs,τ ) 0

]
, (21)

where D = [D2
i,j ] is an EDM containing the squared dis-

tances between all microphones of the DMA, d(αs, τ ) =[
d2

1(αs,0),d2
2(αs,τ2,1),...,d

2
M (αs,τM,1)

]T is a vector containing
the squared distances between the source and the microphones,
and τ is a vector containing (M−1) TDOAs between the micro-
phones of the DMA and the reference microphone. In [26] it was
shown that the EDM in (21) has a rank of at most P +2 (where
P denotes the dimensionality of the acoustic scenario, i.e., P =3
in this paper), and the corresponding Gram matrix

G(αs,τ ) =−1
2
(I−1eT)D(αs,τ )(I−e1T) , (22)

has a rank of at most P . Since, in practice, estimated TDOAs
are used and αs is obviously unknown, it was proposed in [12] to
estimate αs by minimizing the 1-dimensional cost function

J(α,τ̂ )=
M+1

∑
p=P+1

|λp(α,τ̂ )| , (23)

where λp denotes the p-th eigenvalue of the Gram matrix G(α,τ̂ )
and τ̂ denotes the vector of estimated TDOAs. Using perfect
TDOAs, i.e., τ̂ = τ , αs corresponds to the minimum of the cost
function in (24). If the TDOAs are estimated as the maximum
of the GCC-PHAT function as in (18), estimation errors typi-
cally occur, since due to noise and especially early reflections,
the GCC-PHAT function may exhibit peaks that are larger than
the peak corresponding to the direct path. Basing the TDOA es-
timate on these erroneous peaks may result in large source lo-
calization errors. Therefore, it was proposed in [12] to consider
C candidate TDOA estimates per microphone pair, correspond-
ing to the C highest local peaks in the GCC-PHAT function. The
distance between the source and the reference microphone is then
estimated (using an exhaustive search) as

α̂s = argmin
α,c2,...,cM

J(α,τ̂c2
2,1,...,τ̂

cM
M,1) , (24)

where the index cm ∈ {1, ... ,C} denotes the candidate TDOA
estimate τ̂cmm,1 between the m-th microphone and the reference
microphone.

The estimated relative positions matrix P̂rel =
[
M̂rel,ŝrel

]
of

the microphones and the source is estimated using the 3 largest
positive eigenvalues and the corresponding eigenvectors of the
Gram matrix (for which the cost function (24) is minimized) as

P̂rel=
[
diag

(√
λ1,...,

√
λ3

)
|03×((M+1)−3)

]
UT , (25)

where 03×((M+1)−3) denotes a 3×((M+1)−3) matrix of zeros
and U denotes the matrix containing the eigenvectors. As the fi-
nal step, Procrustes analysis is used as the alignment procedure to
map the estimated relative source position ŝrel, contained within
P̂rel, to the estimated absolute source position ŝ, as described in
[12].

5 Experimental Evaluation
In this section, we compare the position estimation performance
of the EDM-based position estimation method using TDOA esti-
mates without and with an external microphone, for five different
distances between the source and the external microphone.
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Table 1: SNR and DRR in the external microphone for the con-
sidered distances αE between the source and the external micro-
phone.

Ext. Mic. Distance [m] 0.1 0.5 1 1.5 2

SNRE [dB] 23 9 5 2 1
DRRE [dB] 24 11 6 3 2

5.1 Scenario and Algorithm Parameters
For the simulations, we considered a rectangular room with di-
mensions 6× 6× 2.4 m and simulated room impulse responses
using the image method [27, 28], assuming equal reflection co-
efficients for all walls. The DMA consisted of M = 6 spatially
distributed microphones, randomly positioned within a cube with
cube length 2 m (with a minimum distance of 2 cm between
the microphones). The source was positioned at αc = 3 m
from the centroid of the DMA (in a random direction). We
considered an external microphone for five different distances
αE ∈ {0.1,0.5,1,1.5,2} m along a line between the source and
the centroid of the DMA. For each distance αE , we considered
100 acoustic scenarios, using a 5 s speech signal randomly se-
lected from [29] (with equal probability for a male or female
speaker) as the source signal. For each acoustic scenario, the
reflection coefficients were set such that the room impulse re-
sponses had an average direct-to-reverberant ratio (DRR) of 0
dB across the microphones of the DMA. This was achieved by
setting T60 = 0.25 ± 0.03 s. Spherically isotropic multi-talker
babble noise was generated using [30] and added to the rever-
berant speech in the microphones such that an average signal-to-
noise ratio (SNR) of 0 dB was achieved across microphones of
the DMA. The configured DRR and SNR in the microphones of
the DMA reflect a DUR ≈ -5 dB. Table 1 shows the resulting
mean SNRs and DRRs in the external microphone, over all sce-
narios, for different distances between the source and the external
microphone.

The algorithms were implemented with a sampling frequency
of 16 kHz, using an STFT framework with a frame length of 512
samples (corresponding to 32 ms), 50% overlap between frames,
a DFT-length with zero-padding of 1024 samples and using a
square-root-Hann analysis window.

For the EDM-based source position estimation method, the
phase spectrum in (16) was averaged temporally with a smooth-
ing factor λ= 0.98, corresponding to 0.8 s, and the GCC-PHAT
function in (19) was interpolated with a factor R = 50, using
resampling. C = 3 candidate TDOA estimates were selected
per microphone pair using a peak finding algorithm. This corre-
sponds to CM−1 = 35 = 243 combinations for which an exhaus-
tive search with a resolution of 1 mm was performed to deter-
mine the distance α̂s minimizing (24), up to a maximal distance
determined by the distance between opposite corners of the room
(i.e.,

√
62+62+2.42 m ≈ 8.82 m). For the EDM-based method,

the positions of the microphones of the DMA were assumed to
be perfectly known, whereas for the external microphone-based
TDOA estimation, the position of the external microphone was
not required.

5.2 Influence of External Microphone Posi-
tion on Position Estimation Performance

To analyze and compare the performance of the baseline GCC-
PHAT and the proposed external microphone-based GCC-PHAT
to estimate the TDOAs for the EDM-based position estimation
method, we used the position estimation error

εs = ||s− ŝ||2 . (26)

Fig. 3 depicts box plots of the position estimation errors εs,
where the TDOAs were estimated either without or with an ex-
ternal microphone, for different distances αE between the source
and the external microphone.

Figure 3: Position estimation errors using the EDM-based
method, where the TDOAs were estimated without an external
microphone (blue) and with (red), for various distances between
the source and the external microphone. The red numbers at the
top indicate the number of results outside of the plotted range.

Table 2: Median position estimation errors for different exter-
nal microphone distances and for the GCC-PHAT implementa-
tion without an external microphone.

Ext. Mic.
Distance [m] No Ext. Mic 0.1 0.5 1 1.5 2

εs [m] 0.04 0.01 0.01 0.02 0.04 0.08

Table 2 shows the corresponding median position estimation
errors. First, it can be observed that the position estimation error,
when only using the microphones of the DMA, has a low median
value of 4 cm. However, the upper quartile of the box plot is
around 65 cm, and in 22% of the simulated scenarios, the posi-
tion estimation error was outside of the plotted range (i.e., εs> 1
m). This indicates that in many of the considered scenarios, the
source position could not be accurately estimated. When incor-
porating an external microphone for the TDOA estimation, it can
be observed that when the external microphone is closer than 1.5
m from the source, the median position error and especially the
number of large position errors are considerably reduced. This
result reflects the expectation from the theory in Section 2, since
the direct source component is dominant compared to the noise
and reverberation components. For external microphone posi-
tions which are close to the DMA, i.e., αE≥1.5 m, no advantage
can be observed of using the external microphone for TDOA esti-
mation. For αE=2 m, using the external microphone for TDOA
estimation even results in larger position estimation errors. Con-
sidering the relatively low SNR and DRR in the external micro-
phone for these distances, as seen in Table 1, the large position
estimation errors can be intuitively explained by the fact that it
is likely better to use one unreliable GCC-PHAT function rather
than convolving two unreliable GCC-PHAT functions.

6 Conclusions
In this paper, we have proposed a method to improve the TDOA
estimation accuracy for EDM-based source position estimation,
by exploiting GCC-PHAT functions between an external micro-
phone and a distributed microphone array. When the external
microphone is close to the source, the method can make use of
a loud direct source signal, in relation to the reverberation and
noise, which results in a strong direct source component in the es-
timated phase spectrum. By convolving the corresponding GCC-
PHAT functions between the external microphone and the respec-
tive microphones in the array, the TDOAs can be estimated more
reliably, even in the presence of heavy noise and reverberation.
Experimental results for EDM-based position estimation show
that incorporating the external microphone for the TDOA estima-
tion considerably improves the position estimation performance,
particularly when the microphone is located close to the source.
In future work we will explore the usage of the proposed TDOA
estimation method for other source localization methods.
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