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Abstract
Recently, algorithms based on deep neural networks have
led to a significant speech enhancement performance
improvement in terms of speech quality and intelligibility
both for offline as well as online processing. However,
obtaining a low-complexity and resource-efficient system
is still a challenge. In this paper, we focus on real-time
single-channel speech enhancement systems that are
both compact and resource-efficient during inference.
We propose two systems, either applying a real-valued
or a complex-valued mask. Both systems are based
on the Skip-GRU architecture, which employs a skip
connection between the GRU layers. Experimental results
on reverberant noisy signals demonstrate significant
advantages of using the Skip-GRU architecture vs. the
GRU architecture and applying a complex-valued mask vs.
a real-valued mask. Moreover, the proposed Skip-GRU
system with complex-valued masking achieves a similar
speech enhancement performance as the best-performing
baseline system but with a significantly reduced number
of parameters and computational complexity.

1 Introduction

Speech enhancement algorithms aim at improving the
perceived quality and intelligibility of noisy speech sig-
nals. Recently, the use of deep neural networks (DNNs)
has enabled significant progress in speech enhancement,
both for offline processing [1–7] as well as for online pro-
cessing [8–15]. Offline processing does not consider the
causality in the processing chain and exploits both past as
well as future information of the input signal for speech
enhancement (see Figure 1(a)), whereas online process-
ing maintains the causality in the processing chain and
does not consider future information (see Figure 1(b)). Re-
search on online speech enhancement mainly focuses on
further improving the performance, often without consid-
ering the model size and overall computational complex-
ity. However, running such systems on resource-limited
mobile devices may be very challenging. In this paper,
we focus on single-channel real-time speech enhancement
systems that are resource-efficient and have low computa-
tional complexity.

Various architectures have been explored for single-
channel real-time speech enhancement, either performing
enhancement in the time-domain [8, 9] or in the spectral
domain [10–14]. The systems in [8, 9] perform speech en-
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Figure 1: An overview of offline and online processing for
speech enhancement.

hancement in the time-domain using an encoder-decoder
architecture, either with a temporal convolutional neural
(TCN) network or a long short-term memory (LSTM) net-
work as the bottleneck. The systems in [10–12] perform
speech enhancement in the spectral domain using a real-
valued mask, where the mask is estimated using LSTM-
based architectures. Instead of using real-valued masks,
the systems in [13, 14] use a complex-valued mask, es-
timated using either an LSTM or a TCN-based architec-
ture. Because of their temporal modeling capabilities and
low computational complexity during inference, recurrent
neural networks (RNNs) are a prevalent choice to perform
real-time speech enhancement [10–13], especially using
spectral features [16]. Therefore, in this paper, we fo-
cus on speech enhancement in the spectral domain based
on RNNs, more specifically gated recurrent units (GRUs)
[17].

Inspired by the successful application of skip con-
nections in DNN-based speech enhancement systems
[18–20], we propose to utilize gated recurrent units with
skip connection (Skip-GRU), where a skip connection
with an identity weight matrix is applied between the
GRU layers. The skip connection along the depth of
the GRU layers ensures a smooth flow of information
directly from the lower layer to the upper layer without
adding significant additional complexity to the system. We
propose two systems based on the Skip-GRU architecture,
either estimating a real-valued mask or a complex-valued
mask. Experimental results on reverberant noisy signals
from the test set of the first DNS challenge [21] show that
both proposed Skip-GRU systems achieve a significant
performance improvement compared to the plain GRU
systems without the skip connection. In addition, the
Skip-GRU system estimating a complex-valued mask
outperforms the Skip-GRU system estimating a real-
valued mask. Moreover, the proposed complex-valued
masking Skip-GRU system outperforms two baseline
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Figure 2: Proposed Skip-GRU for real-valued masking.

systems for real-time speech enhancement [11, 14] in
terms of the scale-invariant signal-to-distortion ratio (SI-
SDR) [22], while achieving a similar performance as the
best-performing baseline system [9] with a significantly
reduced number of parameters and complexity.

The remainder of this paper is organized as follows.
In Section 2 we present the proposed Skip-GRU systems
for real-valued and complex-valued masking. Section 3
discusses the utilized datasets, architectures, and parame-
ters used for training and evaluation. Section 4 presents
the experimental results for the proposed systems and the
baseline systems.

2 Methods
We consider a scenario where a single microphone records
a mixture of the desired speech signal and background
noise. In the short-time Fourier transform (STFT) domain,
the microphone signal Y (k, l) is equal to

Y (k, l) =X(k, l)+V (k, l), (1)

where X(k, l) and V (k, l) denote the desired speech com-
ponent and the noise component, respectively, and k and l
denote the frequency bin index and the time frame index,
respectively. In this paper, we consider masking-based ap-
proaches [10–14, 23], where the enhanced speech signal
X̂(k, l) in the STFT-domain is estimated by applying a
mask to the noisy signal, i.e.

X̂(k, l) =M(k, l) ·Y (k, l), (2)

where M(k, l) represents either a real-valued mask, only
enhancing the magnitude, or a complex-valued mask, en-
hancing both magnitude as well as phase.

In the next subsections we will discuss how these
masks are estimated using the proposed Skip-GRU archi-
tecture. The enhanced speech signal in the time-domain
is computed by applying an inverse STFT to X̂(k, l) and
using an overlapp-add procedure.

2.1 Skip-GRU for Real-valued Masking
Figure 2 depicts the proposed Skip-GRU system for real-
valued masking. The system consists of 3 GRU layers with
a skip connection between the input of the first GRU layer
and the output of the second GRU layer. The output of
the second GRU layer is utilized as the input of the third
GRU layer to ensure a smooth flow of information from the
lower GRU layer to the higher GRU layer. The real-valued
mask is estimated using a fully connected (FC) layer with a
sigmoid activation. The input feature to the first GRU layer
is the magnitude of the noisy STFT coefficients |Y (k, l)|.

2.2 Skip-GRU for Complex-valued Masking
Figure 3 depicts the proposed Skip-GRU system for
complex-valued masking, where the architecture with 3
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Figure 3: Proposed Skip-GRU for complex-valued mask-
ing.

GRU layers and a skip connection very similar to Figure 2
is utilized. The real and imaginary parts of the mask are
estimated using an FC layer with sigmoid activation. The
input feature to the first GRU layer is the concatenation of
the real and imaginary part of the noisy STFT coefficients
Y (k, l).

3 Experiments
In this section, we discuss the dataset used for training, and
validation along with the network architectures and their
training procedures.

3.1 Datasets
To generate the training and validation data, we consider 3
different datasets with a sampling rate of 16 kHz, namely
the second DNS challenge dataset [24], the MUSAN
dataset [25], and the GlobalPhone dataset [26]. The
second DNS challenge dataset consists of clean speech
samples categorized as read speech, singing voice, emo-
tional speech, and non-English speech, while the noise
samples come from 150 different categories. The MUSAN
dataset consists of clean speech, noise, and music, while
the GlobalPhone dataset consists of only clean speech
samples from 20 different languages. The second DNS
challenge dataset also consists of room impulse responses
(RIRs) collected from the SLR26 and SLR28 datasets
[27].

For the training, we generated both noisy input signals
with and without reverberation. To generate noisy signals
without reverberation, we randomly selected a clean
speech sample either from the second DNS challenge
dataset or the MUSAN dataset or the GlobalPhone dataset
and a noise sample either from the second DNS challenge
dataset or from the MUSAN dataset (noise or music) and
mixed them together at an SNR between −10 and 30
dB. When considering reverberation, we first convolved
the speech signal with a randomly chosen room impulse
response from the SLR26 and SLR28 datasets. All
samples have a fixed length of 4 seconds. In total, we
generated 700 hours of training data containing 300 hours
with reverberation and 400 hours without reverberation.
The data were split into an 80 : 20 ratio for training
and validation. It should be noted that we utilized all
clean speech categories from the second DNS challenge
dataset including singing voice, emotional speech, and
non-English speech.

3.2 Network Architectures and Training Set-
tings

Both proposed Skip-GRU systems utilize 3 GRU layers
along with an FC layer and sigmoid activation, where a
skip connection with an identity weight matrix is employed
between the input of the first GRU layer and the output of
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(Layers,Nodes) FC
Nodes

GRU (real) 3, 256, 256, 256 257
Skip-GRU (real) 3, 256, 256, 256 257
GRU (complex) 3, 512, 512, 256 514
Skip-GRU (complex) 3, 512, 512, 256 514

Table 1: Parameters of the proposed Skip-GRU systems
with real-valued and complex-valued masks.

the second GRU layer. For both systems, the STFT input
features are computed using an FFT size of 512, a square-
root Hann window with a frame length of 512, and a frame
shift of 256 samples. The zeroth frequency is not consid-
ered for the input features for both Skip-GRU systems.

The Skip-GRU system for real-valued masking using
the noisy magnitude |Y (k, l)| as input feature utilizes 256
nodes in each GRU layer and 257 nodes for the FC layer.
The Skip-GRU system for complex-valued masking uses
the concatenation of real and imaginary parts of Y (k, l)
as input feature and hence, doubling the input size com-
pared to the Skip-GRU system for real-valued masking.
The Skip-GRU system for complex-valued masking uti-
lizes 2 ·256 nodes for the first two GRU layers to efficiently
employ a skip connection between the input of the first
GRU layer and the output of the second GRU layer con-
cerning real and imaginary parts, whereas it utilizes only
256 nodes for the last GRU layer. The last GRU layer is
followed by an FC layer having 2 ·257 nodes (257 for the
real part and 257 for the imaginary part). A dropout of 50%
is utilized between the last GRU layer and the FC layer for
both Skip-GRU systems. The number of nodes in the last
GRU layer in the Skip-GRU system for complex-valued
masking is kept the same as the Skip-GRU for real-valued
masking to reduce the number of parameters and keep it
as small as possible while comparing with the Skip-GRU
system for real-valued masking.

To investigate the advantage of employing a skip
connection between GRU layers, we have also considered
plain GRU systems without a skip connection, one for
real-valued masking and one for complex-valued masking.
Table 1 summarizes the parameters utilized for plain
GRU systems and the proposed Skip-GRU systems. To
train all systems, we have utilized the scale-invariant
signal-to-noise ratio (SI-SNR) loss function [28] and a
max-normalization scheme on the input signals. It should
be noted that the max-normalization is only utilized during
the training of the systems. Each system has been trained
for 200 epochs with an early stopping criterion of 10
epochs using the ADAM optimizer [29] with a learning
rate of 0.0002.

We consider 3 different speech enhancement baseline
systems, namely: DEMUCS [9], DTLN [11], and FullSub-
Net+ [14]. DEMUCS performs the speech enhancement
in the time-domain utilizing an encoder-LSTM-decoder
architecture, while DTLN and FullSubNet+ perform the
speech enhancement in the spectral domain utilizing an
LSTM architecture to compute a real-valued mask and
a TCN architecture to compute a complex-valued mask,
respectively. In particular, DEMUCS and FullSubNet+
have shown impressive speech enhancement results.
However, they consist of a large number of parameters and
require high computational complexity. On the other hand,
DTLN is a system having less parameters and requires low

computational complexity. All these systems are current
state-of-the-art and can perform speech enhancement in
real time. As the goal of this work is to achieve a resource-
efficient low-complexity real-time speech enhancement
system, to make a fair comparison of the performance of
proposed systems we chose two baseline systems with
relatively large complexity having a large number of
parameters and one system with low complexity having
less number of parameters. It should be noted that all
considered baseline systems have been retrained on the
same data as the proposed systems without using any
look-ahead. It should also be noted that all considered
systems have the same latency of 32 ms.

4 Results and Discussion
The performance of all considered speech enhancement
systems was evaluated on the publicly available test
set of the first DNS challenge dataset [21], where we
only considered the reverberant subset (150 signals). As
performance measures for speech enhancement, we have
used the scale-invariant signal-to-distortion ratio (SI-SDR)
[22], the wideband perceptual evaluation of speech quality
(PESQ) metric [30], and the short-time objective intelligi-
bility (STOI) metric [31]. For all performance measures,
the clean speech signal was used as the reference signal.
Furthermore, we have also utilized a DNN-based MOS
predictor, namely: DNSMOS [24] to evaluate the perfor-
mance of all considered systems. As additional metrics for
complexity and computational costs, we also computed
the total number of multiplications and additions (MACs)
per second and the total number of parameters (#Param)
using the Torchinfo library of PyTorch.

Table 2 shows the mean SI-SDR (in dB), the mean
PESQ, the mean STOI, the DNSMOS, the number of
MACs, and the number of parameters obtained for the
considered baseline systems, plain GRU systems, and the
proposed Skip-GRU systems. First, it can be observed that
the proposed Skip-GRU system for real-valued masking
achieves a significant performance improvement in terms
of all performance measures compared to the input signal
and the plain GRU system for real-valued masking. By
employing the skip connection, a significant performance
improvement can hence be achieved for the same system
complexity and number of parameters. Second, it can
be observed that both the plain GRU system and the
proposed Skip-GRU system for complex-valued masking
improve the performance compared to their corresponding
systems for real-valued masking, however at a larger
system complexity and number of parameters. It can
also be observed that the proposed Skip-GRU system for
complex-valued masking achieves a better performance in
terms of both SI-SDR as well as DNSMOS compared to
the plain GRU system for complex-valued masking.

When comparing the proposed Skip-GRU systems to
the baseline systems [9, 11, 14], it can be observed that
both Skip-GRU systems have significantly less parameters
and number of MACs than the FullSubNet+ and DEMUCS
systems, while the DTLN system has even less parame-
ters and number of MACs than the Skip-GRU systems.
In terms of all performance measures, the best-performing
Skip-GRU system for complex-valued masking achieves
a similar performance as the best-performing DEMUCS
baseline system, but with a significantly lower computa-
tional complexity and number of parameters. In addition,
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Systems SI-SDR (dB) WB-PESQ STOI DNSMOS MACs (G/s) #Param
Input Noisy Signals 9.2 1.8 0.87 2.73 - -
FullSubNet+ (ret) [14] 13.5 2.6 0.89 2.96 31.81 8.7 M
DEMUCS-48 (ret) [9] 14.5 2.5 0.90 3.08 1.51 18.9 M
DTLN (ret) [11] 12.2 2.1 0.88 2.84 0.12 1.0 M
GRU (real) 13.2 2.2 0.89 2.92 0.21 1.8 M
Skip-GRU (real) 13.9 2.3 0.90 2.95 0.21 1.8 M
GRU (complex) 14.1 2.4 0.90 2.96 0.39 4.4 M
Skip-GRU (complex) 14.4 2.4 0.90 2.98 0.39 4.4 M

Table 2: SI-SDR (dB), wideband PESQ, STOI, DNSMOS, MACs, and number of parameters for the baseline systems,
plain GRU systems without skip connections, and proposed skip-GRU systems for real-valued and complex-valued mask-
ing. The performance measures were averaged over all signals of the test set of the first DNS challenge dataset.

the same Skip-GRU system achieves a significant perfor-
mance improvement of 0.9 dB in terms of SI-SDR com-
pared to the FullSubNet+ system and 2.2 dB compared to
the DTLN system, while achieving a comparable perfor-
mance in terms of PESQ and STOI.

5 Conclusions
In this paper, we investigated the advantages of incorpo-
rating a skip connection between GRU layers for real-time
masking-based speech enhancement in the spectral
domain. Aiming at achieving a compact enhancement
system with low complexity, we proposed two Skip-GRU
systems, which utilize a skip connection between the input
of the first GRU layer and the output of the second GRU
layer. We evaluated the proposed systems on synthetic
reverberant noisy signals from the first DNS challenge
dataset. Experimental results demonstrate the advantage
of the skip connection both for real-valued masking as
well as for complex-valued masking. The best-performing
Skip-GRU system achieves a similar performance as the
best-performing baseline DEMUCS system but with about
4 times less parameters and computational complexity.
In future work, we will focus on further reducing the
complexity as well as the latency.
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