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ABSTRACT

Ensuring intelligible speech communication for hearing assistive
devices in low-latency scenarios presents significant challenges in
terms of speech enhancement, coding and transmission. In this
paper, we propose novel solutions for low-latency joint speech
transmission and enhancement, leveraging deep neural networks
(DNNs). Our approach integrates two state-of-the-art DNN archi-
tectures for low-latency speech enhancement and low-latency analog
joint source-channel-based transmission, creating a combined low-
latency system and jointly training both systems in an end-to-end
approach. Due to the computational demands of the enhancement
system, this order is suitable when high computational power is
unavailable in the decoder, like hearing assistive devices. The pro-
posed system enables the configuration of total latency, achieving
high performance even at latencies as low as 3 ms, which is typically
challenging to attain. The simulation results provide compelling ev-
idence that a joint enhancement and transmission system is superior
to a simple concatenation system in diverse settings, encompass-
ing various wireless channel conditions, latencies, and background
noise scenarios.

Index Terms— low-latency, joint source-channel coding, ana-
logue speech transmission, speech enhancement.

1. INTRODUCTION

Speech transmission and enhancement in low-latency scenarios pose
significant challenges in ensuring high intelligibility and quality
communication [1, 2]. Traditional speech enhancement methodolo-
gies often rely on simple statistical models [3], while conventional
speech transmission strategies encompass separate approaches for
source coding and channel coding [2]. Recent advancements in deep
learning have showcased promising outcomes in addressing both
enhancement [4, 5] and speech transmission [6, 7] objectives.

In the domain of speech enhancement, data-driven approaches
using deep learning have emerged as powerful alternatives to con-
ventional methods, demonstrating superior performance in enhanc-
ing speech quality and reducing noise [4, 5, 8]. However, many
data-driven speech enhancement methods are non-causal, resulting
in high latencies, often exceeding a second [5, 9]. Researchers have
proposed causal variants of these methods to prioritize lower laten-
cies, albeit at the expense of some performance.

Traditional methods for low-latency speech transmission often
rely on separate source-channel coding techniques [2]. While recent
advances in deep learning-based source coding (audio codecs) [6,
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10] and channel coding [11, 12] have shown superior performance
over conventional methods, these approaches are typically developed
independently, which may impact overall system performance and
introduce extra latency [2]. In the context of low-latency speech and
audio transmission, several researchers have explored deep learning
techniques for joint source-channel coding [7,13,14]. However, very
little focus has been given to handling noisy inputs effectively, i.e.
low-latency joint speech enhancement and source-channel coding.

In the context of joint speech transmission and enhancement,
the presence of acoustic background noise, speech coding, and com-
munication over noisy wireless channels introduces sources of error
in the clean speech signal. Traditional joint source-channel-based
speech transmission techniques primarily address speech coding and
transmission channel effects, while speech enhancement systems fo-
cus on mitigating background noise. However, only a few studies
have attempted to tackle all these error sources simultaneously. One
notable approach is the development of a noise-robust audio codec
[15], which handles audio coding and background noise; however,
it does not include transmission channel effects. Also, an investiga-
tion of all three error sources is presented in [16], where the authors
assume digital communication and model communication channel
effects as packet losses with a latency of 20 ms. Such high latency
is impractical for low-latency applications, e.g. wireless hearing as-
sistive devices [17].

In this paper, we propose novel solutions for low-latency joint
speech analogue transmission and enhancement, harnessing the po-
tential of deep neural networks. Analogue communication, with its
lower bandwidth requirements and latency compared to digital com-
munication, presents an attractive alternative in low-latency appli-
cations. Our approach combines Conv-TasNet [5] state-of-the-art
DNN architectures for speech enhancement and TransNet, a state-
of-the-art DNN architecture for analogue joint source-channel-based
speech transmission [18]. The latency of the proposed system is con-
figurable but can operate with total system latencies as low as 3ms.

We seek to address the challenges posed by acoustic background
noise, speech coding, and transmission channel errors simultane-
ously in the context of low-latency joint speech analogue transmis-
sion and enhancement. By incorporating deep learning-based meth-
ods, we aim to offer an innovative solution that effectively handles
these error sources and ensures high-quality speech communication
in real-time applications.

We propose two novel methods for low-latency joint speech
transmission and enhancement. Firstly, we concatenate pre-trained
versions of Conv-TasNet and TransNet to form a combined system.
This is a simple solution for low-latency speech transmission and
enhancement problems because it uses existing pre-trained DNNs
and does not require further training. This problem has not been
studied before to the best of our knowledge. Secondly, we jointly
train both systems using an end-to-end approach to optimize their
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performance collaboratively. We conduct comprehensive simula-
tions, comparing the performance of these methods for various
transmission bandwidths, wireless SNRs, and system latencies. The
simulations demonstrate the superiority of the joint method over the
simple concatenation method in terms of estimated speech intelligi-
bility and reconstruction quality.

2. LOW LATENCY SPEECH TRANSMISSION AND
ENHANCEMENT

In this section, we present our low-latency speech transmission and
enhancement system, comprising two distinct subsystems: one ded-
icated to speech enhancement and the other to speech transmission.
We will begin by providing separate descriptions of the speech en-
hancement and speech transmission systems in the following sub-
sections. Subsequently, we introduce our proposed method.

2.1. Low latency speech enhancement

For achieving low-latency speech enhancement, we employed the
Conv-TasNet architecture, as proposed in [5]. This system deals with
background noises as a source of error in the input speech signal.
Fig. 1(a) provides an overview of its structure. In the Conv-TasNet
system, input frames in the time domain are transformed into inner
domain representations through the Encoder, which is a learned lin-
ear map. Subsequently, the Separator estimates scalar weight values
which are applied point-wise to the inner domain representation to
enhance the signal. An enhanced time-domain output waveform is
then obtained through the Decoder, another learned linear map. In
our work, we implement Conv-TasNet with causal convolutions and
cumulative layer normalization (cLN), resulting in a latency of 3 ms
of Conv-TasNet. The full detail of causal Conv-TasNet is provided
in [5].

2.2. Low latency speech transmission

In the proposed joint low-latency speech enhancement and transmis-
sion system, we used the system from [18] for transmission, which
we refer to as ”TransNet” [18]. The TransNet structure is shown in
Fig. 1 (b). This structure has demonstrated outstanding performance
in various audio applications, including neural vocoders [19,20], au-
dio codecs [6, 10], and artificial bandwidth extension [21, 22], and
recently for speech transmission [18].

TransNet is a deep analogue joint source-channel-based speech
transmission approach with configurable latency ranging from 2-8
ms [18]. This system effectively addresses two sources of degrada-
tion in the transmitted speech. The first source pertains to distor-
tion caused by audio coding, while the second source involves the
effects of wireless transmission on the encoded data. The system
is composed of an encoder, a decoder, and a model of a wireless
transmission channel Fig. 1(b). The encoder commences with a
1D convolutional layer followed by three layers of encoder blocks
with stride = 2, a 1D convolutional layer, and concludes with a layer
normalization layer. These five layers have 4, 8, 16, 16, and 8 ker-
nels, respectively. The encoder blocks consist of three residual units
with dilations convolutions of 1, 3, and 9, followed by a convolu-
tion layer to apply the stride. The encoder downsampling rate is 8.
The encoded data is transmitted over a wireless channel and subse-
quently received at the decoder. The decoder mirrors the encoder
structure but in reverse order, excluding the normalization layer and
substituting transpose convolutions with normal convolution layers
for upsampling inside decoder blocks. Further details on the encoder
and decoder blocks can be found in [6].

(a) Conv-TasNet (b) TransNet
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Fig. 1: Overview and the structure of the proposed methods,
TransNet [18], and Conv-TasNet [5].

2.3. Proposed methods

We present two novel methods for achieving low-latency speech
transmission and enhancement. In both methods, we leverage a
low-latency speech enhancement module (Conv-TasNet) and a low-
latency speech transmission module (TransNet) and cascade them.
In the first approach, we separately train the Conv-TasNet and
TransNet modules, each serving the specific independent purpose
of speech enhancement and speech transmission, respectively. In
contrast, the second method involves joint training of both systems.
This approach aims to optimize the performance of both modules
collaboratively, fostering a more integrated and efficient system for
low-latency speech transmission and enhancement.

Conv-TasNet, in its default setting, contains 5.1M parameters,
while TransNet contains 20k parameters. Conv-TasNet precedes
TransNet in the processing sequence Fig. 1(c.1). This order is more
suitable for applications where the noisy speech signal is captured in
a device with high computational complexity available, e.g. a wire-
less microphone, and transmitted to a low-complexity device, e.g. a
hearing assistive device.
2.3.1. System 1: Separate training

The proposed separate training method is illustrated in Fig. 1(c.1).
We discuss the separate training of Conv-TasNet and TransNet sep-
arately in following.

Conv-TasNet: Let us assume the noisy input speech signal is
represented as y = x+na, where x ∈ Rn denotes the clean speech
signal and na ∈ Rn represents the background acoustic noise. In
this separate training context, the objective of the Conv-TasNet net-
work is to take the noisy input y and produce an estimated speech
signal, x′ ∈ Rn that closely resembles the clean speech signal x,
Fig. 1(a). To achieve this goal, the Conv-TasNet network is trained
using the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) met-
ric denoted by L = SI-SDR(x,x′) as the cost function [5].

TransNet: During the separate training of TransNet, we con-
sider a scenario where a clean speech signal x is provided, Fig 1
(b). The objective is to obtain an output speech signal x̃ ∈ Rn from
the decoder closely resembling the original input speech signal. We
model the wireless communication channel as Additive White Gaus-
sian Noise (AWGN) (see Fig. 1(b)), where noise nw ∈ Rk is added
to the encoded signal, with k representing the dimension of the en-
coded signal generated by TransNet. To train TransNet, we utilize
the Mean Square Error (MSE) metric as the cost function, given by
L = MSE(x, x̃). In addition, we introduce a parameter called the
bandwidth compression ratio, denoted as R = k/n, which repre-
sents the ratio between the dimension of the input speech signal
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Fig. 2: Performance of the proposed joint enhancement and transmission methods for different bandwidths in terms of speech intelligibility
(ESTOI), speech quality (PESQ), and reconstruction quality (SI-SDR) versus SNRa of the speech signal against background noise. Curves
with the same circle marker and triangle marker belong to joint and separate training systems, respectively, and curves with the same colour
belong to the two systems with the same bandwidth.

frame (n) and the dimension of the encoded data (k) in TransNet
[18]. The bandwidth compression ratio allows us to quantify the
level of data compression achieved during the speech transmission
process.

2.3.2. System 2: Joint training

Fig. 1(c.2) presents the overview of our proposed joint training
method. The system takes the noisy speech signal y as input and
aims to jointly perform speech enhancement and transmission, yield-
ing the output signal x̂. The first stage of the proposed method is
Conv-TasNet, followed by TransNet (Fig. 1(c.2)). We employ the
SI-SDR metric

L = SI-SDR(x, x̂) (1)

as the cost function to train the system in an end-to-end manner.
This training approach aims to optimize the joint enhancement and
transmission performance, enabling the system to effectively address
background noise and wireless transmission challenges in real-world
scenarios.

3. SIMULATION RESULTS

In this section, we present a simulation study to demonstrate the ef-
fectiveness of our proposed methods. We evaluate the performance
of the proposed approaches under different scenarios, considering
speech signals in a range of acoustic signal-to-noise ratios SNRa,
various bandwidth compression ratios, diverse wireless transmission
channel SNRs (SNRW), different system latencies and system or-
ders. To assess the performance, we employ three key metrics for
comparison: Perceptual Evaluation of Speech Quality (PESQ) [23]
as a speech quality metric, SI-SDR as a reconstruction metric, and
Extended Short-Time Objective Intelligibility (ESTOI) [24] as an
intelligibility metric. For training and testing, we use the LibriMix
dataset [25], comprising 13900 wav files with a sampling frequency
of 16 kHz. The dataset combines the Librispeech dataset [26] for
clean speech and the WHAM! noise dataset [27] to create different
SNR combinations. In all simulations, SNRa values are generated
by LibriMix dataset, ranging from −5 dB to 12 dB.

During the training phase, we divide the data into an actual train-
ing set (80%) and a validation set (20%). We utilize the Adam opti-
mizer [28] for training all systems. For the separate method, where
Conv-TasNet and TransNet are trained separately and independently,
we set the learning rates to 0.001 and 0.0001, respectively. For joint
training, the learning rate is set to 0.0001. To prevent overfitting,

we implement early stopping with a patience of 12 epochs and the
batch size is set to 8. We initialize the weights of each network
randomly, except for the joint system, where we initialize Conv-
TasNet’s weights with a pre-trained version. This initialization re-
sults in improved performance based on all metrics compared to ran-
dom initialization. Moreover, we observed no significant difference
when initializing TransNet’s weights with its pre-trained version.

The focus of simulations is to evaluate the performance of the
joint and separate methods. The study refers to [16] as the closest
state-of-the-art system to the proposed system. Differences in trans-
mission methods and total latency are highlighted between these two
systems, with the proposed system using analog transmission and
having a total latency of 3 ms, while the system in [16] simulates
digital wireless transmission with packet losses and having total la-
tency of 20 ms. Therefore, we contend that a direct comparison with
state-of-the-art systems may not be equitable.

3.1. Performance vs. Bandwidth

First, we investigate and compare the performance of the two pro-
posed methods across various transmission bandwidths. We set the
wireless channel SNR to SNRW = 10 dB, and the total system la-
tency is 3 ms.

Fig.2 illustrates the results, showcasing three figures that rep-
resent the performance metrics: SI-SDR, ESTOI, and PESQ versus
acoustic SNRs (SNRa). The black curve in the figures represents the
performance of the standalone enhancement system, which acts as
an upper bound, signifying the performance under ideal transmis-
sion conditions, and the dashed curve represents the performance of
the standalone transmission system. The orange curve corresponds
to the scores obtained from the noisy input data. Hence, the differ-
ence between the orange curve and the other performance curves re-
flects the level of improvement with respect to the noisy input speech
achieved after transmission and enhancement. Also, the difference
between the dashed curve and the curves at k/n = 0.25 indicates
the achieved improvement with respect to standalone transmitting
speech system at k/n = 0.25. Across all the considered metrics and
bandwidths, the joint method consistently outperforms the separate
system. Surprisingly, there are instances where the joint system with
lower bandwidth surpasses the separate system with higher band-
width. Additionally, we observe that the performance gap between
the joint and separate systems increases for lower bandwidths and
higher SNRa. These results underscore the effectiveness of the joint
approach, especially under challenging transmission conditions.
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Fig. 3: Performance of the proposed joint enhancement and transmission methods for different wireless channel conditions (SNRW) versus
SNR of the speech signal against background noise.

3.2. Performance vs. Wireless Channel SNR

In this subsection, our focus is on comparing the performance of
joint and separate methods under various wireless transmissions
SNRW. We maintain a fixed transmission bandwidth compression
ratio of k/n = 1 and a latency of 3 ms throughout the experiments.
Fig. 3 depicts the simulation results. As before, the black curve
signifies the performance of the standalone enhancement system,
which serves as an upper bound, representing ideal channel con-
ditions, and the dashed curve represents the performance of the
standalone transmission system at specific SNRWs.

For higher wireless transmission SNRW, the performance of
both the joint and separate methods approach the black curve, indi-
cating greater performance under better channel conditions. Across
all considered wireless channels SNRW, the joint approach consis-
tently outperforms the separate method. Notably, the performance
gap between the two methods widens for lower wireless transmission
SNRs (SNRW) and higher acoustic SNRs (SNRa). For SNRW = 0
dB, the initial observation reveals that the overall performance falls
below that of the noisy input data. However, to ascertain the ex-
tent of improvement, a comparison with the performance of the
standalone transmission system (dashed curve) is imperative. This
comparison unveils improvements across all SNRa values.

Taking into account the results from this and previous simula-
tions, it becomes evident that the joint approach is better equipped
to handle more challenging wireless transmission scenarios, particu-
larly those involving lower transmission bandwidths and lower trans-
mission SNRs. This finding highlights the robustness and effective-
ness of the joint method in adverse conditions.

3.3. Performance vs. Latency

In this subsection, our objective is to compare the performance of
the proposed joint and separate approaches for different total system
latencies. During this simulation, we use k/n = 1 and SNRW = 10
dB and Tab. 1 displays the average performance over all acoustic
SNRs (SNRa). Both separate and joint methods demonstrate bet-
ter performance for higher latencies. Furthermore, we observe that
increasing the latency leads to only a slight improvement in per-
formance for both the joint and separate methods. Consistent with
the previous findings, the joint method outperforms the separate ap-
proach across all system latencies.

3.4. Performance vs. different orders

In this subsection, we aim to compare the performance of the pro-
posed joint and separate approaches under varying orders of Conv-
TasNet and TransNet. The simulation is conducted with the trans-
mission ratio set at k/n = 1 and SNRW = 10 dB. The perfor-

Table 1: Performance of proposed joint and separate method for
various system latencies and orders.

Methods SI-SDR
(dB) ESTOI PESQ

Joint latency 3 ms 10.71 0.72 1.54
Joint latency 5 ms 10.86 0.73 1.59
Joint latency 9 ms 11.22 0.74 1.62
Separate latency 3 ms 9.32 0.70 1.46
Separate latency 5 ms 9.60 0.71 1.51
Separate latency 9 ms 9.74 0.72 1.55
Joint(TransNet + Conv-
TasNet) latency 9 ms 11.32 0.74 1.62

Separate (TransNet + Conv-
TasNet) latency 9 ms 9.43 0.70 1.49

mance evaluation of the (TransNet + Conv-TasNet) configuration is
detailed in the last two rows of Tab. 1 for a latency of 9 ms for joint
and separate methods. When considering the joint method with the
reversed order, a marginal improvement is observed based on the
SI-SDR metric, while the other performance metrics exhibit com-
parable results. In contrast, the separate method with the reversed
order demonstrates inferior performance compared to the normal or-
der. This discrepancy might be attributed to Conv-TasNet not being
explicitly trained to address errors introduced by TransNet in the re-
versed order configuration.

4. CONCLUSION

In this study, we proposed novel solutions for low-latency joint
speech analogue transmission and enhancement, leveraging deep
neural networks. By combining two existing system architectures,
Conv-TasNet and TransNet, we effectively addressed background
noise, speech coding, and transmission channel effects simulta-
neously. Comprehensive simulation experiments demonstrate the
superiority of the proposed joint approach over a simpler system
consisting of separate, independently trained Conv-TasNet and
TransNet sub-systems for various transmission bandwidths, wire-
less SNRs, and latency values. The performance improvements
achieved through concatenation and joint training of Conv-TasNet
and TransNet modules highlight the potential of our approach. In
conclusion, our findings underscore the significance of deep neu-
ral networks in tackling the challenges of low-latency joint speech
transmission and enhancement. We envision that our work could
benefit a wide range of applications that require real-time speech
communication and enhancement, like wireless hearing assistive
devices.
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