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ABSTRACT

Manual annotation of audio material is cumbersome. Active
learning aims at minimizing the annotation effort by iteratively
selecting an acquisition batch of unlabeled data, asking a human
to annotate the selected data and re-training a classifier until
an annotation budget is depleted. In this paper we propose the
Gaussian-dense active learning (GDAL) algorithm to train a sound
event classifier. The classifier is a Bayesian neural network where
the weights are normally distributed. This is in contrast to conven-
tional neural networks where weights are not distributed, but have
assigned values. The Bayesian nature of the classifier empowers
GDAL to select acquisition batches from a set of unlabeled audio
clips based on their estimated informativeness. Evaluation results
on the UrbanSound8k dataset show that GDAL outperforms a
state-of-the-art algorithm based on medoid active learning for all
considered annotation budgets and an algorithm based on dropout
active learning for sufficiently large annotation budgets.

Index Terms— sound event classification, active learning,
Bayesian neural networks, PANN embeddings

1. INTRODUCTION

Sound event classification [1] aims at distinguishing events or
situations based on properties of audio signals [2]. Some of its appli-
cations are wildlife [3] or environmental [4] monitoring and health-
care [5]. Training a sound event classifier requires a sufficiently
large collection of annotated audio material. Providing manual an-
notations for such an audio corpus is often the most time-consuming
part in the entire process of generating a sound event classifier.

In active learning (AL) [6,7], the annotation process is integrated
into the training process: the model learns from labels provided
by a human annotator on the fly. The AL process iterates between
selecting an acquisition batch of unlabeled data, collecting the
annotations, and re-training the model on the updated dataset. As
a result, the annotator does not need to label the entire dataset, but
only the data that was selected by the AL algorithm.

Bayesian AL [8,9] is a subset of AL where the model trained
is Bayesian. A Bayesian model allows the AL algorithm to select
acquisition batches based on the estimated informativeness of

unlabeled data. A popular type of Bayesian models are Bayesian
neural networks (BNNs) [10–14].

Bayesian AL algorithms have been deployed on multiple oc-
casions to solve computer vision problems [8,15–17]. However,
they have not yet been applied to the sound event classification
problem. This paper proposes Gaussian-dense active learning, in
the following denoted as GDAL, a Bayesian AL algorithm that
trains a sound event classifier.

GDAL makes use of transfer learning and semi-supervised
learning to train a label-efficient BNN on a corpus of initially
unlabeled sound clips. Semi-supervised learning is implemented by
tailoring the Bayesian prior around the empirical data distribution -
an approach not yet explored in the context of AL with BNNs. Eval-
uated on the UrbanSound8k dataset [18], GDAL consistently beats
the MAL-PANN [19] baseline, while outperforming a modification
of the DAL [19] baseline for sufficiently large annotation budgets.

2. ACTIVE
LEARNING WITH BAYESIAN NEURAL NETWORKS

Developing an accurate classifier requires a collection of data where
a sufficiently large portion of the dataset is annotated with the respec-
tive class labels. Collecting manual labels for the data can be tedious.
To this end, AL is a machine learning paradigm which exploits the
idea that a machine learning algorithm can be more label-efficient
if it is allowed to choose which data is to be annotated [6].

Given is a set of class labels C and a dataset D={ai}i=1...|D|
of unlabeled audio clips ai, i.e. signals, with |D| denoting the
cardinality of D. The goal of an AL algorithm is to train a classifier
that can accurately predict the respective class label of any clip
a ∈ D. To do so, an AL algorithm is allowed to request an
annotator to assign labels for up to A clips, where A is the so-called
annotation budget. An AL algorithm does not have to request all
A labels at once, but can do so iteratively, by querying smaller
acquisition batches and re-training the classifier on each iteration.
Whenever a clip a∈D is annotated with a class label c∈C, the
tuple (a,c) is added to the labeled dataset L=

{
(ai,ci)

}
i=1...|L|.

The size of an acquisition batch we denote as ∆|L|.
Bayesian AL is a subclass of AL algorithms where the classifier

does not define a single mapping from input a to class probabilities,
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but is capable of representing a Bayesian distribution over map-
pings. By defining some prior distribution p(w) over mappings
w, and observing human annotations in L, the posterior distribution
p(w|L) over mappings can be constructed via the Bayes rule

p(w|L)=p(w)
∏

(a,c)∈L
p(c|w,a)·const. (1)

where p(c|w,a) is the likelihood of observed annotation (class
label) c for input a predicted by a mapping w. A Bayesian
AL algorithm selects unlabeled data for annotation based on the
Bayesian posterior distribution: a data sample is deemed more
informative when the different mappings in the Bayesian posterior
predict different classes [8,9,15].

A popular family of models capable of representing a Bayesian
distribution over mappings are Bayesian neural networks (BNNs) [10,
12,20]. For these, a mapping from input to class probabilities corre-
sponds to a configuration of network weights. While the Bayesian
posterior p(w|L) in (1) is not tractable, it can be approximated.
To this end, a BNN defines a variational distribution q

(
w
∣∣θθθ) over

weights, which depends on some parameter set θθθ. This variational
distribution is fitted towards the Bayesian posterior p(w|L) by
finding a θθθ that minimizes an objective that is based on the evidence
lower bound (ELBO) [20]

L(θθθ)=KL
(
q
(
w
∣∣θθθ)∥∥∥p(w)

)
−Eq(w|θθθ)

 ∑
(a,c)∈L

logp(c|a,w)

,

(2)
where KL(·∥·) is the Kullback-Leibler divergence and E denotes
the expectation.

While BNNs have been employed for AL tasks, the algorithm
proposed in this paper, GDAL (cf. next Section for more details) is
the first application of a BNN to solve the AL task in the domain
of sound event classification.

3. GAUSSIAN-DENSE ACTIVE LEARNING (GDAL)

GDAL is comprised of a feature extractor, a BNN classifier and
an acquisition mechanism. The feature extractor (cf. Section 3.1)
makes use of transfer learning by feeding clips ai into a pre-trained
neural network and obtaining respective feature vectors xi.

The classifier (cf. Section 3.2) operates on the feature vectors.
It models the Bayesian posterior distribution over mappings from
a feature vector to the respective predicted label. The model learns
from the empirical clip distribution by explicitly incorporating it
into the Bayesian prior. To our knowledge such an approach has
not yet been explored in the context of AL with BNNs.

For each iteration of the AL process, the acquisition mechanism
(cf. Section 3.3) is invoked to select a batch of unlabeled clips for
annotation, and the classifier is re-trained on the updated dataset.
The acquisition mechanism incorporates two different approaches,
a geometric approach and an information-theoretic approach, to
find most informative unlabeled clips for annotation.

3.1. Feature extractor

GDAL uses a pre-trained audio neural network (PANN) [21] to
generate a 2048-dimensional feature vector x for each clip a in

the dataset D. As a result, all signals ai are transformed into
feature vectors xi, upon which the classifier (Section 3.2) and the
acquisition mechanism (Section 3.3) operate.

3.2. Classifier

GDAL employs a Bayesian classifier which models different map-
pings from input clip a to class probabilities. This allows GDAL
to quantify the informativeness of unlabeled clips and incorporate
this quantity into the acquisition mechanism (Section 3.3).

The classifier is shown in Figure 1. An audio clip a is trans-
formed into the respective feature vector x. The feature vector
passes through a dense layer followed by a softmax layer to produce
a class probability distribution.

Fig. 1. Computation graph of the classifier in GDAL.

The dense layer in Figure 1 multiplies a weight matrix W with a
feature vector x. Crucially, instead of assigning deterministic values
to the entries of W, the weight matrix is sampled from a probability
distribution. Throughout the AL process, this probability distribu-
tion is fitted towards the Bayesian posterior distribution over W. In
other words, GDAL trains a BNN (cf. Section 2) where the weights,
denoted as w in (1) and (2), are given by the weight matrix W.

Training a BNN requires defining a Bayesian prior p(W) (cf.
Section 3.2.1) and a variational Bayesian posterior parameteriza-
tion q

(
W
∣∣θθθ) (cf. Section 3.2.2) before optimizing the resulting

objective function (2) (cf. Section 3.2.3).

3.2.1. Bayesian prior & data-driven regularization

To infer the Bayesian distribution of the network weights W in
the dense layer in Figure 1, a prior distribution p(W) over those
weights needs to be defined. To make the model learn from unla-
beled data typically present abundantly in AL settings, we propose
a prior which explicitly incorporates the empirical data distribution:

p(W)=
∏

i,j
N
(
wi,j

∣∣∣0,σ2
p

)
·exp

(
λ
∑

a∈D
max

c
logp(c|W,a)

)
·const. (3)

where i and j denote the rows and columns of W.
The first factor in (3) is the Gaussian prior over network weights

W, widely used in the literature [12,20] to apply weight regulariza-
tion, i.e. enforce small weights. It is regulated by the standard devia-
tion σp of the Gaussian term: smaller σp leads to more weight decay.

The second factor is a product over all clips in the dataset D and
makes the prior favor weight matrices W that result in confident
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class predictions for all labeled and unlabeled clips. This can be
seen as a generalization of pseudo-label training [22] to BNNs.
The strength of this data-driven regularization is determined by the
non-negative parameter λ: higher λ incurs higher prior preference
for weight matrices that give confident class predictions. Although
the general idea to incorporate data into the prior is not new [20],
to our knowledge, a data-driven regularization as in (3) has not yet
been explored for BNNs in AL tasks.

3.2.2. Variational Bayesian posterior

To approximate the Bayesian posterior over weights W in Figure 1
the variational distribution q

(
W
∣∣θθθ) needs to be parameterized. To

this end, GDAL employs a fully factorized Gaussian variational
posterior [12,20,23]. For that, the variational parameters θθθ in (2)
are defined as θθθ=(Θµ,Θσ), i.e. a tuple of two matrices, each with
the same dimensions as W. The variational distribution is

q
(
W
∣∣Θµ,Θσ

)
=
∏

i,j
N
(
wi,j

∣∣∣θµ,i,j,f(θσ,i,j)2) (4)

f(θσ,i,j)=log(1+exp(θσ,i,j)), (5)
where the standard deviation in (4) is defined by applying the
softplus function (5) toΘσ as in [20]. In other words, the weights in
the dense layer are distributed independently and normally, whereby
the mean is defined by the parameter Θµ, and the variance by Θσ.

3.2.3. Optimization

BNNs are trained by minimizing the objective (2). The prior (3)
in conjunction with the variational parameterization (4) amount to
the objective

L(Θµ,Θσ)=
∑
i,j

(
logσp−logf(Θσ,i,j)+

f(Θσ,i,j)
2+Θ2

µ,i,j

2σ2
p

)

−λEq(W|Θµ,Θσ)

[∑
a∈D

max
c∈C

logp(c|a,W)

]
−Eq(W|Θµ,Θσ)

[∑
(a,c)∈L

logp(c|a,W)

]
+const., (6)

with the set of clips D and the labeled set L.
The first term in (6) is the KL divergence between the Gaussian

variational posterior (4) and the Gaussian term in the prior (3). The
second term results from the KL divergence between the variational
posterior and the data-driven regularization term in (3). The third
term is the likelihood contribution to the objective.

Unlike the first term, the second and the third cannot be computed
analytically, and are estimated via Monte Carlo sampling. First, a
minibatch of B clips is sampled, where one half is drawn from D
and used to compute the second term, and the other half is drawn
from L to compute the third term. For each sampled clip, the weight
matrix W is sampled ntrain number of times. The loss computed
from a minibatch is backpropagated to (Θµ,Θσ) and the parameters
of the variational distribution are updated via Adam. On each iter-
ation of the AL process, parameter update is repeated several times.

3.3. Acquisition mechanism

GDAL employs a two-stage approach to select unlabeled clips for
annotation. To select the first K clips, K-medoid clustering [24] is

done in the feature space, and the medoid of each of the K clusters
is annotated. The distance metric s between two feature vectors
xi and xj is based on the cosine similarity:

s(xi,xj)=1− xT
i xj

∥xi∥2·
∥∥xj

∥∥
2

(7)

After the initial acquisition of K annotations, each further acqui-
sition is done via the BatchBALD algorithm [15], which employs
the Bayesian model described in Section 3.2 to select an acquisition
batch of ∆|L| clips that maximizes the mutual information between
the weight matrix W and the class label c, thus seeking the most
informative clips.

4. BASELINE ALGORITHMS

In Section 5.5, GDAL’s performance is compared against two
state-of-the-art AL algorithms for sound classification: one based
on medoid active learning (MAL) and another based on dropout
active learning (DAL).

MAL [25] splits sound clips into clusters by performing K-
medoid clustering [24] with mean cluster size κ. Given the
annotation budget A, the medoids of the A largest clusters are
annotated, and the medoid labels are propagated to the other clips
in the respective clusters. A support vector machine classifier is
then trained on ground truth and propagated labels. While the
original MAL algorithm operates on features that are based on
mel frequency cepstral coefficients, a PANN-embedding-based
modification, denoted as MAL-PANN [19], has been shown to
achieve significantly better performance. MAL-PANN is evaluated
for the mean cluster size κ=4, same as in [25].

DAL [19] uses a classifier architecture similar to the one in
Figure 1. Instead of defining a Gaussian distribution over weights,
DAL achieves randomized predictions by applying random dropout
masks to the PANN feature vector. Unlabeled clips are selected by
making each prediction cast a vote in favor of one class, and picking
the clip with the highest vote entropy, one clip per iteration of the
AL process. Unlike GDAL, DAL incorporates unlabeled data into
the training by assigning pseudo-labels, and training against those.
For a fair comparison, DAL is modified to use the same acquisition
batch size as in GDAL, and the initial acquisition is identical to
GDAL’s (i.e. based on K-medoid clustering).

5. EXPERIMENTS

The performance of GDAL and the baseline methods is evaluated
by simulating an AL process and measuring the classification
accuracy at each iteration. Section 5.1 describes the dataset and the
performance metric. The default parameter values of GDAL are
listed in Section 5.2. Finally, experimental results are presented in
Sections 5.3 to 5.5.

5.1. Dataset and performance metric

The AL process is simulated on the UrbanSound8k [18] dataset,
which consists of 8732 short, weakly labeled clips, each belonging
to one of 10 classes.
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First, the clips in the training split (without the class labels) are
presented to the AL algorithm; this is the dataset D in (3) and (6).
Manual annotations are simulated by revealing the ground truth
labels to the algorithm. In each iteration of the simulated AL
process, the performance is evaluated as the macro-recall [26] on
the test split, i.e. the percentage of correctly predicted class labels,
averaged over all classes.

AL processes are simulated for annotation budgets A up to 500
for baseline comparisons, and up to 100 for other experiments.
Each experiment is conducted on 10 trials, measuring the mean
macro-recall via 10-fold cross-validation. 80% confidence intervals
for the mean macro-recall are computed via bootstrapping and
shown as shaded areas in all following plots.

5.2. Default parameter values in GDAL

In the following, we define GDAL’s default parameter values used
for experiments. The prior p(W) in (3) over network weights W
is defined by the standard deviation σp of the Gaussian term and the
data regularization strength λ, which are set to σp=30, λ=10. The
optimization-related parameters (cf. Section 3.2.3) are the minibatch
size B=4096, the number of weight samples for each input sample
ntrain=2048 and the learning rate of the Adam optimizer which is
set to 0.1. For the first acquisition, GDAL acquires K=30 annota-
tions via K-medoid-clustering, and applies 6400 backpropagations
to train the classifier. For each further iteration, ∆|L|=3 labels
are acquired via BatchBALD, and 2048 backpropagations are done.

The choice of σp and λ was motivated by preliminary experi-
ments in which the classifier’s performance on the training split
was analysed, i.e. all clips in the UrbanSound8k dataset that are
not in the test split. From all tested combinations, we chose the
one with the strongest regularization (i.e. highest λ, lowest σp) just
before the performance starts dropping. The other parameters were
chosen to result in a reasonable computation time.

The impact of the prior parameters λ and σp on GDAL’s per-
formance is studied in Sections 5.3 and 5.4, respectively. For that,
multiple experiments are conducted for different values for one
parameter, while the other is fixed at the default value defined above.

Finally, a comparison with baseline methods is performed in Sec-
tion 5.5, while all of GDAL’s parameters are at their default values.

5.3. Varying the strength λ of the data-driven regularization

The parameter λ in (3) regulates the impact of unlabeled audio clips
on the classifier.
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1

Fig. 2. Macro-recall over annotation budget A up to 100 for varying
data-driven regularization strength λ.

As λ is varied, best performance is observed for λ=10 as shown
in Figure 2. The extreme case of λ=0 makes the model ignore

unlabeled data, whereas too high λ presumably leads to a poor
variational posterior approximation, especially for low number of
annotations, ultimately resulting in low classification accuracy. Most
importantly, Figure 2 shows that data-driven regularization with
moderate strength has a beneficial effect on GDAL’s performance.

5.4. Varying the width σp of the Gaussian term in the prior

The standard deviation σp of the Gaussian term in (3) defines the
strength of the weight decay in the dense layer shown in Figure 1.
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Fig. 3. Macro-recall over annotation budgetA up to 100 for different
widths σp of the Gaussian factor in the prior.

Simulations of the AL process with different values of σp are
shown in Figure 3. Best performance is observed for intermediate
levels of σp around 30. Too weak (σp=100) or too strong (σp=3)
weight decay worsens the performance, whereby too strong weight
decay has a more detrimental effect. This is in analogy to conven-
tional neural networks: a network’s performance can be boosted by
a small weight decay, but degrades if the decay is too strong [27].

5.5. Comparison with baselines

GDAL’s performance is compared with baseline methods (cf. Sec-
tion 4) in Figure 4.
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modified DAL
GDAL

1

Fig. 4. Macro-recall over annotation budget A up to 500 for GDAL
and baseline methods.

The proposed GDAL clearly outperforms the MAL-PANN ap-
proach, while performing similarly to the DAL approach. For anno-
tation budgets above ca. 280, GDAL outperforms all other baselines.

6. CONCLUSION

In this paper we propose and analyse GDAL, a Bayesian AL
algorithm for solving the sound event classification task. GDAL is
label efficient due to its application of pre-trained feature extractors,
incorporation of unlabeled data into the training process, and a smart
acquisition mechanism that is based on estimated informativeness
of unlabeled clips. For sufficiently large annotation budgets, GDAL
was shown to beat state-of-the-art baselines.
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