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ABSTRACT

Reverberation can severely degrade the quality of speech signals recorded
using microphones in an enclosure. In acoustic sensor networks with
spatially distributed microphones, a similar dereverberation performance
may be achieved using only a subset of all available microphones.
Using the popular convex relaxation method, in this paper we propose
to perform microphone subset selection for the weighted prediction
error (WPE) multi-channel dereverberation algorithm by introducing a
group sparsity penalty on the prediction filter coefficients. The resulting
problem is shown to be solved efficiently using the accelerated proximal
gradient algorithm. Experimental evaluation using measured impulse
responses shows that the performance of the proposed method is close
to the optimal performance obtained by exhaustive search, both for
frequency-dependent as well as frequency-independent microphone
subset selection. Furthermore, the performance using only a few micro-
phones for frequency-independent microphone subset selection is only
marginally worse than using all available microphones.

Index Terms— Dereverberation, weighted prediction error, acoustic
sensor networks, microphone subset selection, group sparsity

1. INTRODUCTION

Microphone recordings of a speech source inside an enclosure are
typically degraded by reverberation, i.e. acoustic reflections against
walls and objects in the enclosure. While early reflections may improve
speech intelligibility, late reverberation typically reduces both speech
intelligibility as well as automatic speech recognition performance [1,2].
Therefore, effective speech dereverberation is required for many appli-
cations, including voice-controlled systems, hearing aids and hands-free
telephony [3–14]. A popular blind multi-channel dereverberation algo-
rithm is the weighted prediction error (WPE) algorithm [10–14], which
is based on multi-channel linear prediction (MCLP). WPE performs
dereverberation by estimating a multi-channel prediction filter to predict
the late reverberant component in a reference microphone and subtracting
this estimate from the reference microphone signal. Several variants of the
WPE algorithm have been proposed, e.g., aiming at controlling sparsity
of the dereverberated output signal in the time-frequency domain [11,13].

In multi-microphone processing for compact arrays, typically all
available microphones are utilized. However, when considering spatially
distributed microphones, the spatial diversity of the microphone signals
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may allow for similar performance using only a subset of microphones,
reducing computational complexity. However, microphone subset selec-
tion is a combinatorial problem, which may become computationally
infeasible when using a large number of microphones. Several micro-
phone subset selection methods have been proposed for different speech
enhancement algorithms, e.g., beamforming [15–18]. However, to the
best of our knowledge no microphone subset selection method for the
WPE algorithm exists.

Using the popular convex relaxation approach [19], in this paper we
propose to perform microphone subset selection for the WPE algorithm
by introducing a group sparsity penalty on the prediction filter coefficients.
The group sparsity penalty helps promote a sparse representation among
the filter coefficients for different groups, i.e. microphones, which has
proven effective for subset selection [20]. The resulting problem is shown
to be solved efficiently using the accelerated proximal gradient algorithm.
In the proposed method, first a group-sparse prediction filter is computed
using the fast iterative shrinkage thresholding algorithm (FISTA) to then
select the microphones with the largest prediction filter coefficients in
the ℓ2-norm sense in a variable selection step. The proposed method is
evaluated using measured impulse responses for 9 spatially distributed
microphones in a measurement laboratory [21] with a reverberation time
T60 of approximately 1300 ms for different source positions. The results
show that the performance of the proposed method is close to the optimal
performance using exhaustive search for both for frequency-dependent as
well as frequency-independent microphone subset selection for a suitable
choice of the group sparsity factor. Furthermore, even when performing
frequency-independent microphone subset selection with a fixed group
sparsity factor, the performance using the resulting subset of microphones
is only marginally worse than using all microphones.

2. SIGNAL MODEL

We consider a scenario where a single speech source is captured in
an enclosure by M spatially-distributed microphones. Similarly as
in [10, 11, 13], we consider a scenario without additive noise. In the
short time Fourier transform (STFT)-domain, let s(f,n) denote the
clean speech signal with f ∈ {1, ..., F} the frequency bin index and
n ∈ {1, ...,N} the time frame index, where F and N denote the number
of frequency bins and time frames respectively. The reverberant signal
at the m-th microphone xm(f,n) can be written as

xm(f,n) =

Lh−1∑
l=0

hm(f, l)s(f,n− l) + em(f,n), (1)

where hm(f,n) denotes the subband convolutive transfer function
with length Lh between the speech source and the m-th microphone,
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and em(f,n) denotes the subband modelling error [22]. Without loss
of generality, we define the first microphone as the reference micro-
phone. Assuming the term em(f,n) in (1) can be disregarded, the
dereverberation problem, with the index f omitted, can be formulated as

d(n) = x1(n)− r(n). (2)

The desired component d(n) =
∑Ld−1

l=0 h1(l)s(n− l) consists of the
direct path and early reflections in the reference microphone signal x1(n),
where Ld denotes the temporal cut-off between early and late reflections.
The undesired component r(n) =

∑Lh−1
l=Ld

h1(l)s(n − l), which we
aim to estimate, is the late reverberant component in the reference micro-
phone signal x1(n). Using the MCLP model [10], the late reverberant
component r(n) can be written as the sum of delayed filtered versions
of all reverberant microphone signals. Whereas for compact microphone
arrays typically the same prediction delay is used in each microphone, it
has recently been shown in [23] that for spatially distributed microphones
it is beneficial to use a microphone-dependent prediction delay, i.e.

r(n) =

M∑
m=1

Lg−1∑
l=0

gm(l)xm(n− τm − l), (3)

where gm(l) denotes the m-th prediction filter of length Lg and τm
denotes the prediction delay for the m-th microphone. Using (3), the
signal model in (2) can be rewritten in vector notation as

d = x1 −Xτg, (4)

with
d =

[
d(1) · · · d(N)

]T ∈ CN , (5)

x1 =
[
x1(1) · · · x1(N)

]T ∈ CN . (6)

The multi-channel delayed convolution matrix Xτ in (4) is defined as

Xτ =
[
Xτ1 · · · XτM

]
∈ CN×MLg , (7)

where Xτm ∈ CN×Lg is the convolution matrix of xm delayed by τm
frames with τ = τ1 the prediction delay in the reference microphone.
The prediction filter g is defined as

g =
[
gT
1 · · · gT

M

]T ∈ CMLg , (8)

where gm ∈ CLg is the stacked vector of the filter coefficients gm(n).

3. MICROPHONE SUBSET SELECTION

In this section, we propose a method to perform microphone subset
selection for the WPE algorithm. Using the convex relaxation approach,
we perform microphone subset selection by introducing a group sparsity
penalty on the prediction filter coefficients. The resulting problem is
shown to be efficiently solved using the accelerated proximal gradient
algorithm. After computing the group-sparse prediction filter, we perform
a variable selection step, which is typical for convex relaxation based
methods. In Section 3.1, we first define the combinatorial microphone
subset selection problem using the ℓ0-norm and perform convex relax-
ation to reformulate the nonconvex combinatorial problem. In Section
3.2, we discuss the solution of the resulting problem using the proximal
gradient algorithm. In Section 3.3, we discuss the variable selection step
on the computed group-sparse prediction filter.

3.1. Convex relaxation

In [11], it has been shown that the WPE problem can be reformulated
as an ℓp-norm minimization problem

min
g

J(g) = ∥d∥p = ∥x1 −Xτg∥p , (9)

where ∥.∥p denotes the ℓp-norm. For effective dereverberation, the
sparsity-promoting parameter p is typically chosen in the range
0 < p < 1 [11], leading to a nonconvex optimization problem in
(9). When selecting a (frequency-dependent) subset S of K < M
microphones, M −K groups gm of the prediction filter g in (8) need
to be set to the zero vector. Since the reference microphone always needs
to be part of the subset S, this can be reformulated as

∥u∥0 = K − 1, (10)

where ∥.∥0 denotes the ℓ0-norm and u denotes the group vector, which
contains the ℓ2-norms of the prediction filter groups gm (not including
the reference microphone), i.e.

u =
[
∥g2∥2 · · · ∥gM∥2

]T
. (11)

Using (10), the microphone subset selection problem for WPE can be
defined as

min
g
∥x1 −Xτg∥p s.t. ∥u∥0 = K − 1. (12)

However, the optimization problem in (12) is difficult to solve efficiently,
both due to the nonconvexity of the ℓp-norm for 0 < p < 1 as well as
the nonconvex ℓ0-norm constraint, which turns (12) into a combinatorial
problem. One possible approach to reformulate the ℓp-norm as a convex
function is using the weighted ℓ2-norm [11,24], leading to the following
intermediate problem

min
g
∥x1 −Xτg∥2W s.t. ∥u∥0 = K − 1, (13)

where ∥.∥W denotes the weighted ℓ2-norm with the weighting matrix
W typically updated iteratively for I iterations.

A popular approach to solve combinatorial problems as in (13)
efficiently is to perform convex relaxation [19], whereby the ℓ0-norm
constraint is replaced with a constraint on the ℓ1-norm. The motivation
behind this step is that the ℓ1-norm has been shown to be the closest
convex approximation to the ℓ0-norm [25], therefore allowing the subset
selection problem to be solved using conventional optimization methods.

We propose to reformulate the problem in (13) using convex
relaxation, i.e.

min
g
∥x1 −Xτg∥2W s.t. ∥u∥1 =

M∑
m=2

∥gm∥2 = C, (14)

where C is a constant. This problem can be alternatively formulated
as [26]

min
g
∥x1 −Xτg∥2W︸ ︷︷ ︸

f(g)

+λ
M∑

m=2

∥gm∥2︸ ︷︷ ︸
h(g)

(15)

for an appropriate choice of the hyperparameter λ. The term h(g) in
(15) is the well known group sparsity penalty [27], also known as the
ℓ2,1-norm. The group sparsity penalty h(g) is nondifferentiable and
convex, hence making the overall problem in (15) a nondifferentiable
convex problem. Typically, the group sparsity hyperparameter λ is
calculated as λ = λcλmax [28], where the group sparsity factor λc is a
constant and λmax denotes a data-dependent maximum value.
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3.2. Iterative optimization using proximal gradient

Many different methods have been proposed to solve nondifferentiable
convex optimization problems such as (15), one popular method being
the proximal gradient algorithm [28]. The proximal gradient algorithm,
also known as the iterative shrinkage-thresholding algorithm (ISTA) and
its accelerated version, the fast iterative shrinkage-thresholding algorithm
(FISTA), are well suited for solving problems that can be decomposed
into a convex differentiable and nondifferentiable part, i.e. f(g) and h(g)
in (15), respectively. In each iteration, the proximal gradient algorithm
combines a gradient descent step on f(g) with the proximal operator of
h(g). The proximal operator can be viewed as a generalized projection
and allows to efficiently minimize potentially nondifferentiable functions.

Applying the proximal gradient algorithm to the problem at hand
in (15) yields the following iterative solution for g

g(j+1) = Tm

(
g(j) − α

(
XH

τ WXτg
(j) −XH

τ Wx1

)
, λ

)
, (16)

where j denotes the proximal gradient iteration index and α is the
step-size. Tm(gm) is an operator which includes the proximal mapping
of the group sparsity penalty h(g), given by

Tm(gm, λ) =

{
gm, if m = 1

max
(
1− αλ

∥gm∥2
,0
)
gm, otherwise

. (17)

For the accelerated proximal gradient algorithm or FISTA [28], an
additional momentum term y is computed for each iteration in (16), i.e.

y(j) = g(j) +
j

j + 3

(
g(j) − g(j−1)

)
, (18)

replacing the update step in (16) with

g(j+1) = Tm

(
y(j) − α

(
XH

τ WXτy
(j) −XH

τ Wx1

)
, λ

)
. (19)

3.3. Variable selection

When performing convex relaxation, an additional step of variable selec-
tion is typically performed, e.g., in the form of a thresholding or maxi-
mum/minimum operation. To select a subset S of K microphones out of
the available M microphones, we propose to select the microphones with
the K − 1 largest entries in the group vector u alongside the fixed ref-
erence microphone. Note that performing variable selection requires run-
ning the WPE algorithm once more on the selected subset. The complete
proposed microphone subset selection method is outlined in Algorithm 1.

Since each frequency bin is processed independently, the selected
microphone subsets S are inherently frequency-dependent. To select
the same K microphones for all frequency bins, frequency-independent
microphone subset selection can be achieved by performing the variable
selection step on the broadband group vector ub =

∑F
f=1 u(f).

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed frequency-
dependent and frequency-independent microphone subset selection
methods for an acoustic sensor network in a reverberant enclosure.
In Section 4.1, we discuss the considered acoustic scenario and the
algorithm parameters. In Section 4.2, we present the simulation results
and evaluate the performance for different subset sizes.

Algorithm 1: Microphone subset selection using group
sparsity penalty

Parameters: Subset size K, sparsity-promoting parameter p,
group sparsity factor λc, number of reweighting iterations I,
number of accelerated proximal gradient iterations J,
filter length Lg, microphone-dependent prediction delays τm
Input: Microphone signals xm ∀m
Output: Microphone subset S
x1 ← N · x1/∥x1∥p
xm(n− τm)← N · xm(n− τm)/∥xm(n− τm)∥p
Xτm ← compute convolution matrix using xm(n− τm)

d(1) ← x1

for i← 1 to I do
W(i) ← diag(|d(i)|2 + 10−8)p/2−1

A←XH
τ W(i)Xτ

b←XH
τ W(i)x1

α← 1/P(A)
λ← 2λc ∥b∥∞
for j ← 1 to J do

y(j) ← g(j) + j
j+3

(
g(j) − g(j−1)

)
g(j+1) ← Tm

(
y(j) − α

(
Ay(j) − b

)
, λ

)
end
d(i+1) ← x1 −Xτg

(J)

end
S ← {1, (K − 1)-max(u)}

4.1. Acoustic setup and algorithm parameters

We consider an acoustic sensor network with M = 9 spatially distributed
microphones and a single speech source in a laboratory with dimensions
of about 6m×7m×2.7m and reverberation time T60 ≈ 1300 ms. Fig. 1
depicts the position of the microphones and the considered positions of
the speech source. The microphones are placed nonuniformly on a grid
with of dimensions 4m×5m. The reference microphone is chosen as the
microphone in the approximate center of the network and fixed for all
considered source positions. In total 12 source positions are considered
on a circle with equal spacing between the source positions.

The reverberant microphone signals were generated at a sam-
pling rate of 16 kHz by convolving anechoic speech signals from the
TIMIT database [29] with measured room impulse responses from the
BRUDEX database [21]. The signals were processed using an STFT
framework with frame size of 1024 samples, frame shift Lshift = 256
samples and square-root Hann analysis and synthesis windows. The
microphone-dependent prediction delays were estimated using the gen-
eralised cross-correlation with phase transform (GCC-PHAT) [30] and
implemented using crossband filtering [23].

The proposed microphone subset selection algorithm was imple-
mented with the following WPE parameters: prediction filter length
Lg = 20, prediction delay τ = 2, sparsity-promoting parameter
p = 0.5 and number of reweighting iterations I = 10. The group
sparsity hyperparameter λ was computed using a maximum value
λmax = 2

∥∥XH
τ Wx1

∥∥
∞ [28] and we considered different group

sparsity factors λc ∈ {10−5,10−4,10−3,10−2,10−1,1}. The accel-
erated proximal gradient algorithm was implemented with step-size
α = 1/P(XH

τ WXτ ) and number of iterations J = 50, where the
operator P(.) computes the largest eigenvalue.

1103



Fig. 1: Positions of M = 9 spatially distributed microphones ( )
with fixed reference microphone ( ) and 12 considered speech source
positions ( )

4.2. Simulation results

First, in section 4.2.1, we select the value of the group sparsity factor
λc based on the WPE cost function in (9) when performing frequency-
dependent microphone subset selection. Secondly, in section 4.2.2,
using the selected group sparsity factor we evaluate the dereverberation
performance of the processed signal using selected microphones. The
dereverberation performance is measured using the perceptual evaluation
of speech quality (PESQ). The reference signal used in PESQ is the
direct component in the reference microphone.

4.2.1. Frequency-dependent microphone subset selection

For different values of the group sparsity factor λc, Fig. 2 depicts the dif-
ference between the average WPE cost function J in (9) for the proposed
frequency-dependent microphone subset selection method (Javg

GS ) and the
optimal subset selection using exhaustive search (Javg

optimal). The average
frequency-dependent cost functions have been computed by averaging
over all frequency bins for all 12 considered source positions and different
subset sizes K ∈ {2,3,4,5}. Hence the results in Fig. 2 can be seen
as an overall measure of the performance of the proposed frequency-
dependent subset selection method, where it can be seen that the best
performance can be achieved when setting the group sparsity factor λc =
10−2, as it minimizes both the mean cost difference and its standard error.

For the best and worst trial (combination of source position and
subset size), Fig. 3 depicts the WPE cost per frequency for the optimal
solution (Joptimal) and the proposed frequency-dependent microphone
subset selection algorithm (JGS) using a fixed group sparsity factor
λc = 10−2. For the best trial, it can be seen in Fig. 3a that the proposed
method performs close to the optimal solution. For the worst trial, it
can be seen in Fig. 3b that there is a larger difference between the
performance of the proposed method and the optimal solution.

4.2.2. Frequency-independent microphone subset selection

Using the selected group sparsity factor, Fig. 4 depicts the average
performance improvement over all considered source positions in terms
of ∆PESQ for the proposed frequency-independent microphone subset
selection method. For different subset sizes K ∈ {2,3,4,5}, the
performance of the proposed method using the group sparsity factor
λc = 10−2 is compared to the performance using the optimal exhaustive
search solution based on (12), the performance using a randomly selected
subset and the performance using all M = 9 microphones. First, it can
be seen that the performance of the proposed method is close to that of
the optimal solution for all considered subset sizes K. Secondly, using
the proposed method the performance when using only 4 microphones
is very close to that when using all 9 microphones.
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Fig. 2: Average WPE cost difference between proposed frequency-
dependent method and the optimal solution for different values of the
group sparsity factor λc
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Fig. 3: WPE cost for optimal solution and proposed frequency-dependent
microphone subset selection using λc = 10−2 for best and worst trials
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Fig. 4: Average PESQ improvement for proposed frequency-independent
microphone subset selection algorithm, optimal solution and random
selection for different subset sizes, compared to using all microphones

5. CONCLUSION

In this paper we have presented a microphone subset selection method
for the WPE algorithm. Using the popular convex relaxation method
on the microphone subset selection problem, we performed microphone
subset selection by introducing a group sparsity penalty on the predic-
tion filter coefficients. Using measured impulse responses, we have
evaluated the performance of the proposed frequency-dependent and
frequency-independent microphone subset selection methods for a range
of microphone subset sizes. The experimental evaluation showed that the
performance of the proposed methods is close to the performance of the
optimal exhaustive search approach using a fixed group sparsity factor.
Furthermore, when using the proposed method, performance similar to
using all 9 microphones can be achieved with only 4 microphones.
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