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ABSTRACT

This paper addresses the challenge of estimating the relative transfer
function (RTF) vectors of multiple speakers in a noisy and reverberant en-
vironment. More specifically, we consider a scenario where two speakers
activate successively. In this scenario, the RTF vector of the first speaker
can be estimated in a straightforward way and the main challenge lies in
estimating the RTF vector of the second speaker during segments where
both speakers are simultaneously active. To estimate the RTF vector of
the second speaker the so-called blind oblique projection (BOP) method
determines the oblique projection operator that optimally blocks the
second speaker. Instead of blocking the second speaker, in this paper
we propose a covariance blocking and whitening (CBW) method, which
first blocks the first speaker and applies whitening using the estimated
noise covariance matrix and then estimates the RTF vector of the second
speaker based on a singular value decomposition. When using the es-
timated RTF vectors of both speakers in a linearly constrained minimum
variance beamformer, simulation results using real-world recordings for
multiple speaker positions demonstrate that the proposed CBW method
outperforms the conventional BOP and covariance whitening methods
in terms of signal-to-interferer-and-noise ratio improvement.

Index Terms— successive speakers, RTF vector estimation, LCMV
beamforming

1. INTRODUCTION

In many hands-free speech communication systems such as hearing
aids, mobile phones and smart speakers, interfering sounds and ambient
noise may degrade the speech quality and intelligibility of the recorded
microphone signals [1]. When multiple microphones are available,
beamforming is a widely used technique to enhance a target speaker
and suppress interfering speakers and noise [2–4]. One commonly used
beamforming technique is the linearly constrained minimum variance
(LCMV) beamformer [2,5–7], which requires estimates of the relative
transfer function (RTF) vectors of the target speaker and interfering
speakers, as well as an estimate of the noise covariance matrix.

Over the last decades, several methods have been proposed to
estimate the RTF vector of a single speaker in a noisy environment, e.g.,
based on (weighted) least-squares [8,9], using covariance subtraction
and covariance whitening [10–14], using manifold learning [15] or by
jointly estimating the RTF vector and power spectral densities [16,17].
The state-of-the-art covariance whitening (CW) method estimates the
RTF vector of a single speaker by de-whitening the principal eigenvector
of the whitened noisy covariance matrix, where an estimate of the noise
covariance matrix is used for the whitening.

In contrast to estimating the RTF vector of a single speaker, estimat-
ing the RTF vectors of multiple speakers that are simultaneously active is
more challenging. In a multi-speaker scenario, the CW method can only
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Figure 1: Example of successive speaker scenario with two speakers,
depicting a microphone signal and its speech and noise components for
three different segments.

estimate a subspace spanning the RTF vectors of all speakers, instead
of the individual RTF vectors [11]. Methods to estimate the RTF vectors
of multiple speakers have been proposed, e.g., using an expectation
maximization algorithm [18], utilizing subframes to perform factor anal-
ysis [19] or using joint diagonalization [20]. A drawback of the methods
is the permutation ambiguity, requiring a method to correctly assign the
estimated RTF vectors to the speakers in each frequency band. An RTF
vector update method using Procrustes analysis was proposed in [21].

In this paper, we consider a specific scenario with two speakers that
activate successively (see Figure 1). In this scenario, the RTF vector of
the first speaker can be estimated in the single-speaker segment, e.g.,
using the CW method with an estimate of the noise covariance matrix
from the noise-only segment. The focus of this paper is on estimating
the RTF vector of the second speaker in the dual-speaker segment,
using available estimates of the noise covariance matrix and the RTF
vector of the first speaker. First, we consider a modified version of the
conventional CW method, where the whitening is performed using the
undesired covariance matrix (estimated in the single-speaker segment)
instead of the noise covariance matrix. A disadvantage of this method is
its dependence on the possibly time-varying power spectral density (PSD)
of the first speaker. Second, we consider the blind oblique projection
(BOP) method [22], which estimates the RTF vector of the second
speaker by determining the oblique projection operator which optimally
blocks the unknown second speaker. A disadvantage of the BOP method
is that it assumes a sufficiently large signal-to-noise ratio (SNR). Third,
we propose the covariance blocking and whitening (CBW) method,
which overcomes the mentioned disadvantages of the CW and BOP
methods, i.e. it is independent of the PSD of the first speaker and does not
assume a large SNR. Instead of blocking the unknown second speaker as
done by the BOP method, the CBW method uses a residual maker matrix
to block the known RTF vector of the first speaker, followed by noise
whitening. Since the blocking of the first speaker leads to a dimension
reduction, it is shown that a singular value decomposition (SVD) instead
of an eigenvalue decomposition is required to extract the RTF vector of
the second speaker. When using the estimated RTF vectors in an LCMV
beamformer, simulation results using real-world recordings for multiple
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speaker positions and signal-to-interferer ratios (SIRs) demonstrate that
the proposed CBW method outperforms the conventional methods in
terms of signal-to-interferer-and-noise ratio (SINR) improvement.

2. SIGNAL MODEL

We consider a scenario where two speakers are successively activated
and captured by an array withM microphones in a noisy and reverberant
environment. Figure 1 depicts this specific scenario, which can be
divided into three time segments: a noise-only segment (s = 1), a
single-speaker segment containing the first speaker and noise (s=2),
and a dual-speaker segment containing both speakers and noise (s=3),
where s denotes the segment index. We assume that the segment
boundaries are known. Without loss of generality, the first speaker
is considered the interfering speaker, whereas the second speaker is
considered the target speaker. We assume that for the whole signal
duration the scenario is spatially stationary, i.e., the speakers do not
move. The short-time Fourier transform (STFT) coefficients of the
microphone signals at time frame t are denoted by

yt=
[
y1,t ··· yM,t

]T∈CM×1, (1)

where {·}T denotes the transpose operator. The frequency index is
omitted as it is assumed that each frequency band is independent and
can be processed individually. The multi-channel microphone signal
yt can be written as the sum of the target speaker component xt and
the undesired component vt, which consists of the interfering speaker
component ut and the noise component nt, i.e.,

yt=xt+ut+nt︸ ︷︷ ︸
vt

=hxr,t+gur,t+nt, (2)

where the vectors xt, ut, nt and vt are defined similarly as in (1).
Assuming sufficiently large STFT frames, the speaker components xt

and ut are modeled as the multiplication of the STFT coefficient of a
reference microphone (denoted by r) with the respective time-invariant
RTF vectors h and g [23]. Note that the reference entry of both RTF vec-
tors equals 1. Assuming all signal components in (2) to be uncorrelated,
the noisy covariance matrix for each time segment s is given by

Ry,s=hϕx,sh
H︸ ︷︷ ︸

Rx,s

+gϕu,sg
H︸ ︷︷ ︸

Ru,s

+Rn

︸ ︷︷ ︸
Rv,s

, (3)

where {·}H denotes the conjugate transpose operator. The matrices
Ru,s and Rx,s denote the rank-1 covariance matrices of the first
and second speaker, respectively, Rn and Rv,s denote the full-rank
covariance matrices of the noise and undesired component, respectively,
and ϕx,s=E{|xr|2} and ϕu,s=E{|ur|2} denote the PSDs with E{·}
the expectation operator. Note that ϕx,1 = ϕu,1 = ϕx,2 = 0 for the
considered successive speaker scenario.

3. LCMV BEAMFORMER

To extract the second speaker (target speaker) and suppress the first
speaker (interfering speaker) and noise in the dual-speaker segment
(s=3), we will use an LCMV beamformer. The LCMV beamformer
minimizes the noise PSD subject to linear constraints, which aim at
keeping the target speaker distortionless and reducing the interfering
speaker [2,5,6], i.e.,

w=argmin
w̃

(
w̃HRnw̃

)
s.t.

w̃Hxt=xr,t

w̃Hut=δur,t
, (4)

where δ denotes the scaling factor to reduce the interfering speaker. The
widely known solution to the minimization problem in (4) is given by

w=R−1
n C

(
CHR−1

n C
)−1

[
1
δ

]
(5)

where the constraint matrix C contains the RTF vectors of both speakers,
i.e., C=

[
h g

]
. Applying the LCMV beamformer to the microphone

signals yields the enhanced signal

zt=wHyt. (6)

As can be seen in (5), the LCMV beamformer requires an estimate of
the noise covariance matrix Rn, which can be easily obtained in the
noise-only segment, and estimates of the RTF vectors of both speakers.
Section 3.1 discusses a method to estimate the RTF vector g of the first
speaker. The main focus of the paper is on estimating the RTF vector
h of the second speaker, for which several methods will be presented
in Section 4 and Section 5.

3.1. Covariance Whitening (CW)

In the single-speaker segment (s=2) where ϕx,2=0, the RTF vector
g of the first speaker can be estimated using the state-of-the-art CW
method [11, 12, 14]. First, the noisy covariance matrix Ry,2 in (3) is
whitened using a square-root decomposition of the noise covariance
matrix Rn=R

H/2
n R

1/2
n , i.e.,

R−H/2
n Ry,2R

−1/2
n =R−H/2

n gϕu,2g
HR−1/2

n +IM . (7)

This whitening operation spatially decorrelates the noise, transforming
the noise covariance matrix into an identity matrix. From (7), the RTF
vector g can then be estimated as the normalized de-whitened principal
eigenvector of the whitened noisy covariance matrix, i.e.,

ĝ= g̃/eTr g̃ with g̃=R
H/2
n P{R−H/2

n Ry,2R
−1/2
n } (8)

where er =
[
0 ··· 1 ··· 0

]T is an M-dimensional selection
vector of the reference microphone r and P{·} denotes the principal
eigenvector operator.

4. CONVENTIONAL RTF ESTIMATION METHODS

In this section, we describe two conventional methods to estimate the
RTF vector h of the second speaker in the dual-speaker segment, where
both speakers and noise are present, assuming estimates of the noise
covariance matrix Rn, the undesired covariance matrix Rv and the
RTF vector g of the first speaker to be available.

4.1. CW with undesired covariance matrix (CWu)

In Section 3.1 the CW method was discussed to estimate the RTF
vector of the first speaker. Although the CW method typically performs
whitening using the estimated noise covariance matrix Rn, this method
can also be used to estimate the RTF vector of the second speaker in
the dual-speaker segment by performing whitening with the undesired
covariance matrixRv (estimated during the single-speaker segment), i.e.,

ĥ(CW)= h̃/eTr h̃ with h̃=R
H/2
v,2P{R−H/2

v,2 Ry,3R
−1/2
v,2 } (9)

This will be referred to as CW with the undesired covariance matrix
(CWu). It should be noted that since the PSD of the first speaker in the
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single-speaker segment ϕu,2 may not be the same as in the dual-speaker
segment ϕu,3, the undesired covariance matrix Rv,2 used for whitening
may strongly deviate form the undesired covariance matrix Rv,3,
resulting in a biased RTF vector estimate.

4.2. Blind Oblique Projection (BOP)

Avoiding the influence of the time-varying PSD ϕu of the first speaker,
the BOP method proposed in [22] estimates the RTF vector h of the
second speaker by blocking the second speaker as much as possible while
keeping the first speaker distortionless. This can be achieved by the so-
called oblique projection operator [24] with vector variable θ, defined as

P∠
gθ=g

(
gHP⊥

θ g
)−1

gHP⊥
θ , (10)

where P⊥
θ denotes the residual maker matrix

P⊥
θ =IM−θθH

/θHθ. (11)

The oblique projection operator in (10) keeps the RTF vector of the
first speaker, i.e., P∠

gθg=g, but blocks the range of the vector θ, i.e.,
P∠

gθθ=0M×1. Applying the oblique projection operator in (10) to (3)
in the dual-speaker segment and taking the trace yields

Tr{P∠
gθRy,3P

∠H
gθ }=ϕx,3h

HP∠H
gθ P∠

gθh+ϕu,3g
Hg

+Tr{P∠
gθRnP

∠H
gθ }. (12)

In [22] a sufficiently large SNR was assumed, such that the noise term
Tr{P∠

gθRnP
∠H
gθ } in (12) can be neglected. Since the term ϕu,3g

Hg is
a constant, it can be seen that the power of the projected noisy covariance
matrixTr{P∠

gθRy,3P
∠H
gθ } is minimized when the oblique projection op-

erator P∠
gθ blocks the RTF vector h of the second speaker in (12), which

is achieved if the vector θ points in the same direction as h. Therefore
an estimate of the RTF vector of the second speaker can be obtained as

ĥ(BOP)= h̃/eTr h̃ with h̃=argmin
θ

(
Tr{P∠

gθRy,3P
∠H
gθ }

)
(13)

Since no closed-form solution for the optimization problem in (13)
exists, it was proposed in [22] to use a gradient-descent method. For
faster computational speed and higher robustness, in this paper we
provided the analytical gradient of (13) to the sequential-quadratic-
programming method [25], implemented within the MATLAB
optimization toolbox [26].

5. COVARIANCE BLOCKING AND WHITENING

Instead of whitening using the undesired covariance matrix Rv as
in the CWu method, in this section we propose a method that blocks
the known first speaker before noise whitening. This can be seen as
introducing blocking of the first speaker to the conventional CW method,
to enable estimation of the individual RTF vector of the second speaker.
It should be noted that this blocking approach differs fundamentally
from the BOP method, where the unknown second speaker is blocked
instead of the known first speaker. In principle, the RTF vector g of
the first speaker can be blocked by applying the residual maker matrix

P⊥
g =IM−ggH

/(gHg) (14)

with gHP⊥
g =01×M , to (3) from the right in the dual-speaker segment,

yielding

Ry,3P
⊥
g =hϕx,3h

HP⊥
g +RnP

⊥
g . (15)

It should be noted that since the matrix P⊥
g in (15) has rank

(M − 1), the noise term RnP
⊥
g in (15) also has rank (M − 1).

Since full column rank of the noise term is required to whiten the
noise component, we propose to use a dimension-reduced version
P⊥

g,r=P⊥
g

[
IM−1 0(M−1)×1

]T∈CM×M−1 of the residual maker
matrix P⊥

g instead, i.e.,

Ry,3P
⊥
g,r=hϕx,3h

HP⊥
g,r+RnP

⊥
g,r∈CM×M−1. (16)

Whitening the blocked noise term RnP
⊥
g,r in (16) using its pseudo-

inverse denoted by {·}+, i.e., transforming it to an identity matrix
similarly as for the conventional CW method in (7), and subtracting the
resulting identity matrix yields

Rw
y =

(
RnP

⊥
g,r

)+
Ry,3P

⊥
g,r−IM−1=

(
RnP

⊥
g,r

)+
hϕxh

HP⊥
g,r.

(17)

This set of equations has dimensions (M−1)×(M−1) in contrast
to the signal model in (3) having dimensions M ×M . It should be
noted that the right side of (17) is given by the outer product of two
transformed versions of the RTF vectorh of the second speaker, whereby
both transformations only depend on Rn and g. The transformed
versions of the RTF vector can be extracted by means of an SVD, i.e.,

qL=SL{Rw
y}=

(
RnP

⊥
g,r

)+
hαL, (18)

qR=SR{Rw
y}=

(
P⊥

g,r

)H
hαR, (19)

where SL{·} and SR{·} denote the principal left and right singular
vector operator, respectively, and αL and αR are scaling factors. It
should be noted that since qL and qR are (M−1)-dimensional vectors,
neither vector provides a solution for the M-dimensional RTF vector h.

By introducing the scaled RTF vector h̃=αLh and the weighting
factor α=αL/αR and by stacking (18) and (19) into one unified set of
equations, we obtain[

qL

qRα

]
!
=Bh̃ with B=

[(
RnP

⊥
g,r

)+(
P⊥

g,r

)H
]
. (20)

This non-linear set of equations contains 2(M−1) equations and M+1

unknowns (h̃ and α), hence requiring 2(M−1)≥M+1, i.e., M≥3.
Inverting B using its pseudo-inverse and applying it to (20) from the
left yields

h̃=B+

[
qL

qRα

]
, (21)

which depends on the unknown α. Substituting (21) into (20) leads to[
qL

qRα

]
!
=BB+

[
qL

qRα

]
⇒ P⊥

B

[
qL

qRα

]
!
=02(M−1)×1, (22)

where P⊥
B is the residual maker matrix of B defined similarly

to (14). Reformulating (22) using the block decomposition
P⊥

B=
[
P⊥,L

B P⊥,R
B

]
provides a solution for α, i.e.,

−P⊥,L
B qL=P⊥,R

B qRα ⇒ α=−
(
P⊥,R

B qR

)+
P⊥,L

B qL. (23)

Substituting α in (23) into h̃ in (21) and applying normalization
provides an estimate of the RTF vector of the second speaker, i.e.,

ĥ(CBW)= h̃/eTr h̃ with h̃=B+

[
qL

−qR

(
P⊥,R

B qR

)+
P⊥,L

B qL

]
(24)
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Figure 2: Acoustic setup with 9 speaker positions, a linear microphone
array with 4 microphones and background noise.

6. EXPERIMENTAL RESULTS

In this section, we compare the performance of the conventional RTF vec-
tor estimation methods (see Section 4) with the proposed CBW method,
when using the estimated RTF vectors of the target and interfering speak-
ers (second and first speaker, respectively) in an LCMV beamformer.

6.1. Acoustic Scenario

Figure 2 depicts the acoustic setup. We considered a linear array
with 4 microphones with a microphone spacing of 2cm, located
approximately in the center of an acoustic laboratory (7m×6m×2.7m)
with a reverberation time T60 ≈ 500 ms. The acoustic scenario
consists of constantly active background noise, one interfering speaker
active in the interval [1s,7s] and one target speaker active in the
interval [4s,7s]. The target and interfering speech components at the
microphones were generated by convolving clean speech signals with
room impulse responses measured from loudspeakers at 9 different
positions (see Figure 2). Quasi-diffuse noise was generated by playing
back uncorrelated babble noise using 4 loudspeakers facing the corners
of the laboratory. The sampling frequency was equal to 16kHz.

The LCMV beamformer and RTF estimation is performed within an
STFT framework with a frame length of 3200 samples (corresponding
to 200ms), a frame shift of 800 samples (corresponding to 50ms) and
a square-root-Hann window for analysis and synthesis. The scaling
factor of the interfering speaker in (5) was set to δ=−40dB. The noise
covariance matrix Rn and the undesired covariance matrix Rv,2 were
estimated using the sample covariance matrix method in the noise-only
and the single-speaker segment, respectively. The RTF vector g of the
interfering speaker was estimated by CW in the single-speaker segment
as described in Section 3.1.

The performance of the LCMV beamformer is evaluated in terms of
the broadband signal-to-interferer-and-noise ratio (SINR) improvement
for each microphone as reference (r∈{1,...,M}), i.e.,

∆SINRr=10·log10

(∑
n

∣∣xout
r,n

∣∣2∑
n

∣∣voutr,n

∣∣2
)
−10·log10

(∑
n

∣∣xin
r,n

∣∣2∑
n

∣∣vinr,n∣∣2
)
,

(25)

where n denotes the sample index, xin
r,n and vinr,n denote the time-

domain target speaker component and the undesired component (sum of
interfering speaker and noise) in the r-th microphone signal, respectively,
and xout

r,n and voutr,n denote the shadow-filtered versions of xin
r,n and vinr,n

using the LCMV beamformer in (6).

Figure 3: SINR improvement (average and standard deviation) for the
considered RTF vector estimation methods (CWu, BOP, CBW) for
different SNRs.

6.2. Results

For different SNRs, Figure 3 depicts the SINR improvement of the
LCMV beamformer for the considered RTF vector estimation methods
of the target speaker. Results were averaged over 72 non-collocated
combinations of target and interferer position and 5 different broadband
SIRs between [−10dB,10dB] with an increment of 5dB. Results
were also averaged over the choice of the reference microphone
m∈{1,...,M}. For all three methods, the SINR improvement increases
for lower input SNRs, which can be explained by the larger potential
improvement in conditions with more noise. For all considered SNRs,
the CWu method yields an SINR improvement between 3dB and 4dB.
The BOP method outperforms the CWu method at low input SNRs, but
yields a lower performance at high input SNRs. It can be observed that
the proposed CBW method outperforms both conventional methods
for all input SNRs, e.g., achieving an average SINR improvement of
6dB for in the −10dB SNR condition.

7. CONCLUSION

In this paper, we proposed a covariance blocking and whitening (CBW)
method to perform RTF vector estimation of the second speaker in
a dual-speaker scenario with background noise, where the speakers
activate successively. In contrast to the conventional methods (CWu
and BOP), the CBW method uses an estimate of the RTF vector of
the first speaker to block the first speaker before noise whitening.
When using the estimated RTF vectors of both speakers in an LCMV
beamformer, simulation results demonstrate that the proposed CBW
method outperforms the conventional BOP and covariance whitening
methods in terms of SINR improvement. In future work we aim at
investigating different combinations of blocking and noise handling,
e.g., also introduce noise handling to the BOP method.
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