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ABSTRACT

In this paper, we study low-latency speech transmission
over a wireless channel based on deep digital Joint Source-
Channel Coding (JSCC). Inspired by recent advances in quan-
tization techniques in the realm of JSSC problems, we ex-
plore the feasibility of employing constellation-constrained
deep JSCC for speech transmission. Our proposed system
leverages a single DNN to jointly handle source coding, chan-
nel coding, and direct output mapping to specific constella-
tion points. We demonstrate the ability of the joint system
to operate effectively under various latency constraints while
outperforming separate systems, especially in adverse chan-
nel conditions. Simulation results validate the efficacy of our
approach, highlighting its potential for real-world applica-
tions requiring low-latency speech transmission over wireless
channels.

Index Terms— low-latency, joint source-channel coding,
speech transmission, edge communication.

1. INTRODUCTION

In conventional communication systems, particularly those
concerning speech transmission, the prevailing paradigm op-
erates on the basis of separate source and channel coding [1].
Shannon’s foundational work [2] has established the asymp-
totic optimality of separate systems for extended data streams,
yet its efficacy decreases in low-latency communication sce-
narios, necessitating the use of short-length data blocks. Re-
cently, numerous DNN-based joint source-channel image and
audio transmission systems [3, 4] have shown superior per-
formance compared to separate systems, especially in low la-
tency scenarios [5].

In digital communications, the conventional practice in-
volves mapping channel-encoded bits to elements within a
two-dimensional finite constellation diagram, with popular
schemes including quadrature amplitude modulation, phase
shift keying, and amplitude shift keying. In contrast, most
DNN-based joint systems [3–5], directly map input signals
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to complex or real-valued arbitrary symbols, which are sub-
sequently transmitted while adhering to power constraints.
The current infrastructure of commercial communication sys-
tems and hardware is predominantly designed around estab-
lished communication standards, which dictate the use of pre-
defined constellations and specific design orders [6]. Conse-
quently, Deep JSCC-based transmission systems necessitate
customized hardware for implementation due to their depar-
ture from these standardized practices.

Numerous studies have addressed the challenge of embed-
ding quantization within the design of DNNs [7–9]. However,
within the context of wireless transmission, these approaches
often resemble digital image or speech coders [3,7,9], lacking
explicit consideration of channel coding and wireless chan-
nel transmission aspects in their models. A notable investi-
gation into the problem of deep JSCC-based channel output-
constrained image transmission is presented in [10]. Here, the
authors demonstrate that by constraining the output of the en-
coder to a finite number of codewords, they can achieve per-
formance close to the performance of non-constrained sys-
tems. The study encompasses joint source coding, channel
coding, and direct mapping of the output to specific constel-
lation points, effectively addressing the challenges inherent in
deep JSCC-based image transmission.

In this paper, we investigate deep digital JSCC-based low-
latency speech transmission over an Additive White Gaussian
(AWGN) wireless channel, drawing inspiration from the
quantization technique proposed in [10]. To the best of our
knowledge, this represents the first study of constellation-
constrained deep JSCC-based speech transmission. Our anal-
ysis aims to demonstrate that our proposed system, leveraging
a single DNN, can operate effectively under varying latency
constraints. Additionally, we aim to compare the performance
of our proposed system to the separate systems, particularly
under challenging channel conditions. Simulation results will
be presented to validate these claims and provide empirical
evidence supporting the efficacy of our approach.

2. SYSTEM MODEL

This section presents the proposed deep digital JSCC-based
speech transmission system. The system comprises a digi-
tal JSCC encoder, a wireless Gaussian channel, and a dig-

341ISBN: 978-9-4645-9361-7 EUSIPCO 2024



ital JSCC decoder, as illustrated in Fig. 1. The encoder
and decoder utilize DNNs, whose parameters are determined
through training to achieve optimal performance. The archi-
tecture of the encoder and decoder resembles the JSCC-based
analog speech transmission system proposed in [8]. The main
difference lies in the purpose and type of quantizer and the
size of the proposed DNN network. The purpose of the quan-
tizer in the proposed system is to map the analogue embed-
ding at the output of the encoder directly to the transmitted
symbols. In the next subsection, we first introduce the system
architecture.

2.1. System architecture

Fig. 1 depicts the encoder architecture, comprising a convo-
lutional layer, three encoding blocks, another convolutional
layer, and a quantization layer. The encoding blocks include
dilated convolutions with skip connections as in [11]. The
Parametric Rectified Linear Unit (PReLU) activation func-
tion [12] is utilized between all layers, except preceding the
quantization layer, where the Hyperbolic Tangent (Tanh) ac-
tivation function is utilized. This choice is motivated by the
desire to confine the quantization layer’s boundaries, thereby
aiding training convergence. The total downsampling level is
defined as the multiply of each layer’s downsampling level
S = Πd

i=1si, where si denotes layer downsampling level
of the ith layer and d denotes the number of encoder layers
(d = 5 in the proposed system). The quantization scheme in
the propsed system directly maps compressed and channel-
coded analog data to constellation points, in contrast to more
conventional quantization schemes that map data to a string of
bits before assigning constellation points. The output of the
encoder thus consists of constrained modulated data. Further
details regarding the quantizer and its rationale are discussed
in Subsection 2.2.

The subsequent layer in the system model is the wireless
transmission channel, modelled as an AWGN channel in this
paper. The wireless channel receives the modulated quantized
data from the encoder and introduces Gaussian noise. The
final layer is the JSCC decoder, which receives the transmit-
ted data from the wireless channel and reconstructs the input
speech signal to encoder. Notably, the decoder performs joint
demodulation, source decoding, and channel decoding. The
architecture of the decoder mirrors that of the encoder with-
out the quantizer layer. It starts with a convolutional layer,
followed by three decoding blocks and another convolutional
layer as the final layer, as illustrated in Fig. 1. The decoding
and encoding blocks have similar architecture as described
in [11].

The proposed system utilizes a fully convolutional DNN,
accommodating speech inputs of varying dimensions. Owing
to its fully convolutional architecture, the latency of the sys-
tem is determined by the total downsampling level S, and the
dimension of the input signal. The input dimension cannot

𝒙

"𝒙

Quantizer

Conv 1D

Encoder Block

Decoder Block
(kr=4, l=5, s=1)

(kr=4, l=4, s=2)

(kr=8, l=8 s=2)

(kr=16, l=16,  s=2)

(kr=k, l=3,  s=1)

quantizer

(kr=16, l=16 s=2)

(kr=16, l=3, s=1)

(kr=8, l=8 s=2)

(kr=4, l=4, s=2)

(kr=1, l=5, s=1)

AW
GN wireles 
channel𝒏

Digital JSCC
encoder

Digital JSCC
decoder

$𝒛

&𝒛

𝒛

Fig. 1: Overview of the proposed digital deep JSCC-based
speech transmission system. In each block, kr, l, and s are
mean number of kernels, kernel size, and stride level, respec-
tively. The details of the structure of the encoder block and
decoder block are presented in [11].

be shorter than S, representing the minimum latency, while
longer input dimensions determine total latency.

Let us denote the input speech signal as x ∈ Rm and
the encoder output z̄ ∈ Rk, where m and k represent the di-
mension of the input speech and encoder output, respectively.
Consequently, the output of the AWGN channel is ẑ = z̄+n,
where n ∈ Rk denotes Gaussian noise n ∼ N (0, σ2), with
σ2 representing the noise variance. The decoder, in turn, re-
ceives ẑ and estimates the output speech signal x̂ ∈ Rm. We
define the compression ratio as R = k/m, indicating the de-
gree of compression applied to the input speech signal, in-
cluding any redundant information added by channel coding.
The ratio R, in conjunction with the number of quantization
levels, determines the total transmitted bitrate. In the subse-
quent subsection, we provide more details about the quanti-
zation layer.

2.2. Quantizer

In the last layer of the encoder, a quantizer is utilized to con-
vert constrained analog source-channel coded data into a lim-
ited number of constellation points. This design is inspired
by prior work in [10]. Let z ∈ Rk denote the input of the
quantization layer and z̄ = QC(z) the output of the quantizer,
where QC : R → Ck denotes the quantization function map-
ping analog compressed and channel-coded data to the mod-
ulation constellation set C, with constellation points ci ∈ R.
The soft-to-hard quantizer method, as introduced in [13] and
employed in [10], is used. In the forward path, hard quanti-
zation is applied to input data z, mapping each element to its
nearest neighbour in the constellation set C, yielding z̄. Since
the hard quantization operation is non-differentiable, a dif-
ferentiable approximation termed soft quantization is used to
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Fig. 2: Performance of the proposed deep joint source channel system and separate source-channel coding systems in terms of
speech intelligibility (ESTOI), speech quality (PESQ), and NMSE for SNR = 20 dB.

approximate the gradient during the backward pass. The soft
quantization function Q̃C is defined as follows [13].

z̃i = Q̃C(zi) =

M∑
j=1

e−τdij∑M
l=1 e

−τdil

cj , (1)

where the index i indicates the ith element in a vector, M
is the number of constellation points, and dij represents the
squared ℓ2-distance between zi and cj , i.e., ∥zi − cj∥22. The
parameter τ determines the accuracy of the approximation:
for small values of τ , the approximation deviates from the
hard quantization function with a smooth gradient, while for
large values of τ , the approximation is more accurate and
closer to the hard quantizer but with a sharp gradient. In the
backward pass, we approximate ∂z̄

∂z = ∂z̃
∂z . The total bitrate of

the system denoted as B, is a function of M and the sampling
frequency Fs of the input speech signal and given by

B = RFs⌈log2(M)⌉, (2)

where ⌈.⌉ is the ceiling function.
As proposed in VQ-EMA [7], a simple alternative to ad-

dress the non-differentiability issue of the hard quantizer is
to approximate it with an identity function. In this approach,
the hard quantizer is applied in the forward path, while in the
backward path, the quantizer gradient ∂z̄i

∂zi
= 1. Our empiri-

cal observations have shown that utilizing the approximation
in Equation. (1) outperforms the simple identity approxima-
tion of the gradient.

Although vector quantization is more commonly used in
deep learning-based quantization approaches [7, 8], it should
be noted that in the proposed method we opted for one-
dimension modulation, which entails mapping a real number
in the latent space to quantized real constellation points. In-
creasing the dimension of the modulations is equivalent to
employing a vector quantizer. Empirical observations indi-
cate that increasing the dimension of the modulation, thereby
employing a vector quantizer, did not yield performance im-
provements beyond those achieved by using a simple scalar

value quantizer. Another significant advantage of the pro-
posed digital transmission system over the analog counterpart
is its ability to operate effectively across various latencies, as
demonstrated in the simulation section.

The proposed encoder and decoder are trained end-to-end
by minimizing the distortion cost function between the input
signal x and the reconstructed signal x̂. Here, we have chosen
the Mean Square Error (MSE) between x and x̂ as the distor-
tion cost function. Similar to the approach in [10], we do not
include the embedding loss in the cost function. This decision
is made to avoid the need for meticulous tuning of the loss be-
tween embedding and distortion, as highlighted in [10].

3. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed deep digital JSCC-based speech transmission system
and compare it with separate speech transmission systems
using differentiated pulse coded modulation (DPCM) as a
low-latency speech coder. As performance metrics, We con-
sider the perceptual evaluation of speech quality (PESQ)
metric [14], the extended short-time objective intelligibility
(ESTOI) metric [15], and the normalized mean squared error
(NMSE).

3.1. Simulations setup

We used the Librispeech dataset [16] for both training and
evaluating the proposed digital speech transmission system
with a sampling frequency of 16 kHz. For the training phase,
2400 FLAC files with a total duration of 13100 s were used,
of which 90% for training and 10% for the validation. For
the test phase, 200 FLAC files with a duration of 1300 s were
used. The Adam optimizer [17] was employed to optimize the
DNN with a learning rate of 0.001 and β1 = 0.9 and β2 =
0.99. A learning rate scheduler was used that decreases the
learning rate by a factor of 0.8 when the validation loss does
not improve for three consecutive epochs. An early stopping
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Fig. 3: Performance of the proposed deep joint source-channel coding system and a separate source-channel coding system in
terms of speech intelligibility (ESTOI), speech quality (PESQ), and NMSE for SNR = 10 dB.

strategy with an eleven-epoch patience threshold is employed,
the maximum number of epochs is 300, and the batch size was
set to 1028. The encoder of the proposed DNN has a total
downsampling level S = 8, which is the minimum possible
input signal dimension. This input length is equal to 0.5 ms
latency with a sampling frequency of 16 kHz. However, the
performance is poor at this extremely low latency. We trained
the system for latency of 8 ms and tested its performance for
latencies of 8 ms and 2 ms since the system is able to perform
under different latencies. The total number of the parameters
is dependent on R; the maximum number of parameters is
16841 for R = 1. The average constellation power is set
to P = 1

M

∑M
i=1 |ci|2 = 1. Similar to [10], the controlling

parameter τ is first set to 5, and after each 3000 parameter
update step, it is increased with 5 until it reaches 100.

3.2. Performance comparison

In this part, we compare the proposed deep joint source-
channel coding transmission system with a separate source-
channel coding system. We compare the systems at the same
SNR of the wireless channel, the same bitrate, and the same
modulation size. The separate system utilizes DPCM [18] for
the speech coder and Reed-Solomon coding as the channel
coder. We denote the separate system DPCM-RS. DPCM is
an efficient source coder that can run at extremely low laten-
cies. The channel coding rate determines the bitrate allocation
between source coding and channel coding and impacts the
performance of the DPCM-RS system. Therefore, in each
scenario, the channel coding rate is chosen by a grid search
and based on the NMSE performance. Although the latency
of the DPCM-RS system is flexible, we only consider a la-
tency of 8 ms since the performance at the latency of 2 ms is
poor.

For two different SNRs (10 dB and 20 dB), Figures 3 and
2 depict the performance metrics (ESTOI, PESQ, NMSE) for
the proposed system and the DPCM-RS system. As already
mentioned, for the proposed system, we consider two laten-
cies (2 ms and 8 ms), whereas for the DPCM-RS system, we

only consider a latency of 8 ms. For both systems, we con-
sider two different compression ratios: R = 0.5 and R = 1
and M = [4, 8, 16, 32, 64] resulting in different bitrates ( see
2). As expected from 2, for R = 0.5, the bitrates are halved
compared to R = 1. For bitrates between 32 and 48 kbps,
there are two versions of each system which can be compared
at the same bitrate. For example, both R = 1 and M = 4 as
well as R = 0.5 and M = 8 results in a total bitrate B = 32
kbps. However, it should be realized that the systems with
higher M need more bandwidth or a larger symbol transmis-
sion rate.

We can see in Fig 3 at bitrate 32 kbps R = 0.5 yields
better than R = 1 and at bitrate 48 kbps R = 1 yields a better
performance than R = 0.5.

Notably, for both SNRs and compression ratios, the pro-
posed method demonstrates comparable performance for la-
tencies of 2 ms and 8 ms. This observation shows the effec-
tiveness of the proposed system under different latency con-
straints.

For the DPCM-RS system, performance degradation can
be observed with increasing bitrates for both SNRs. This can
be attributed to the design principle of DPCM-RS, namely a
separate source and channel coding system typically tailored
based on channel capacity considerations. Such systems only
perform properly when the total bitrate remains below the
channel capacity threshold, where the transmitted data can
be recovered completely (at least theoretically). However, as
the bitrate surpasses the channel capacity, a significant de-
cline in performance is observed. This decline underscores
the limitations of traditional separate source-channel coding
approaches when faced with bitrate demands exceeding chan-
nel capacity constraints.

Comparing the deep JSCC-based system with the DPCM-
RS system reveals notable insights. While the DPCM-RS
system exhibits superior performance at low bitrates and
favourable channel conditions (SNR = 20 dB), its efficacy di-
minishes as bitrates exceed channel capacity. In contrast, the
proposed deep JSCC-based system demonstrates improved
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performance at high bitrates, outperforming the DPCM-RS
system under adverse channel conditions (SNR = 10 dB) and
for lower bitrates, especially with R = 0.5 even with lower
latency.

4. CONCLUSION

In this paper, we investigated the feasibility of low-latency
digital speech transmission over an AWGN wireless chan-
nel based on deep source-channel coding. By leveraging re-
cent advances in soft quantization techniques and employing
constellation-constrained deep JSCC, we have demonstrated
the ability of the proposed system to effectively handle differ-
ent latency constraints while outperforming separate source-
channel coding system, particularly in challenging wireless
channel conditions. Our findings underscore the potential
of our approach for real-world applications requiring low-
latency speech transmission over wireless channels.
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