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ABSTRACT

Reverberation may severely degrade the quality of speech signals
recorded using microphones in a room. For compact microphone
arrays, the choice of the reference microphone for multi-microphone
dereverberation typically does not have a large influence on the
dereverberation performance. In contrast, when the microphones
are spatially distributed, the choice of the reference microphone
may significantly contribute to the dereverberation performance. In
this paper, we propose to perform reference microphone selection
for the weighted prediction error (WPE) dereverberation algorithm
based on the normalized ℓp-norm of the dereverberated output
signal. Experimental results for different source positions in a
reverberant laboratory show that the proposed method yields a better
dereverberation performance than reference microphone selection
based on the early-to-late reverberation ratio or signal power.

Index Terms— Dereverberation, weighted prediction error,
acoustic sensor networks, reference microphone selection

1. INTRODUCTION

Microphone recordings of a speech source inside a room are
typically degraded by reverberation, i.e. acoustic reflections against
walls and objects in the room. While early reflections may im-
prove speech intelligibility, late reverberation typically reduces
both speech intelligibility as well as automatic speech recognition
performance [1,2]. Therefore, effective speech dereverberation is
required for many applications, including voice-controlled systems,
hearing aids and hands-free telephony [3–8]. A popular blind
multi-channel dereverberation algorithm is the weighted prediction
error (WPE) algorithm [7, 8], which is based on multi-channel
linear prediction (MCLP). WPE performs dereverberation in a
chosen reference microphone by estimating the late reverberant
component using a prediction filter and subtracting this estimate
from the reference microphone signal.

When performing multi-microphone speech enhancement using
compact microphone arrays, the choice of the reference microphone
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typically does not have a large influence on the quality of the
output signal. However, when considering spatially distributed
microphones, there may be large differences in the early-to-late
reverberation ratio (ELR) and signal power in each microphone.
Hence, the choice of the reference microphone may significantly
contribute to the speech enhancement performance [9–11]. In [9]
and [10], the reference microphone selection problem was formu-
lated for different multi-microphone noise reduction algorithms
by maximizing the output signal-to-noise ratio. In [11], different
reference microphone selection methods were proposed for speech
enhancement in meeting recognition scenarios when considering
different microphone sensitivities. However, to the best of the
authors’ knowledge, no work exists on reference microphone
selection for multi-microphone dereverberation.

In this paper, we propose to perform reference microphone se-
lection for the WPE algorithm based on the normalized ℓp-norm of
the dereverberated output signal. From the WPE optimization prob-
lem, it may appear logical to formulate the reference microphone
selection problem as an ℓp-norm minimization problem. However,
since the ℓp-norm depends on the signal power, which may greatly
vary for spatially distributed microphones, we propose to normalize
for the output signal power, leading to a selection based on the ratio
of the ℓp-norm and the ℓ2-norm [12–14]. Experimental results for
several source positions and spatially distributed microphones in
a reverberant laboratory show that the dereverberation performance
using the proposed reference microphone selection method is larger
than the performance when selecting the reference microphone
based on the estimated ELR [15] or signal power [9] [11]. Fur-
thermore, similar performance can be achieved for the proposed
method using only a small number of WPE iterations.

2. SIGNAL MODEL

We consider a scenario where a single speech source is captured in a
room by M spatially distributed microphones. Similarly as in [7,8],
we consider a static scenario without additive noise. In the short-
time Fourier transform (STFT) domain, let s(f,n) denote the clean
speech signal with f ∈ {1, ..., F} the frequency bin index and n ∈
{1, ...,N} the time frame index, whereF andN denote the number
of frequency bins and time frames, respectively. The reverberant
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signal at the m-th microphone xm(f,n) can be written as

xm(f,n) =

Lh−1∑
l=0

hm(f, l)s(f,n− l) + em(f,n), (1)

where hm(f, l) denotes the subband convolutive transfer function
with lengthLh between the speech source and them-th microphone,
and em(f,n) denotes the subband modelling error [16]. In the
remainder of the paper, the frequency bin index f will be omitted
where possible. Assuming the subband modelling error to be 0,
the dereverberation problem in microphone r (referred to as the
reference microphone) can be formulated as (see Fig. 1)

dr(n) = xr(n)− ur(n). (2)

The desired component dr(n) =
∑Ld−1

l=0 hr(l)s(n− l) consists
of the direct path and early reflections in the reference micro-
phone signal xr(n), where Ld denotes the temporal cut-off be-
tween early and late reflections. The undesired component ur(n) =∑Lh−1

l=Ld
hr(l)s(n−l), which we aim to estimate, is the late reverber-

ant component in the reference microphone signal xr(n). It should
be noted that for spatially distributed microphones, the power of the
desired component dr(n) and the power of the undesired component
ur(n) may greatly depend on the choice of reference microphone r.

Using the MCLP model [7], the late reverberant component
ur(n) can be written as the sum of filtered delayed versions of all re-
verberant microphone signals. Whereas for compact microphone ar-
rays the same prediction delay is typically used for each microphone,
it has been shown in [17] that for spatially distributed microphones
it is beneficial to use a microphone-dependent prediction delay, i.e.

ur(n) =

M∑
m=1

Lg−1∑
l=0

gm,r(l)xm(n− τm,r − l), (3)

where gm,r(l) denotes the m-th prediction filter of length Lg and
τm,r denotes the prediction delay for the m-th microphone. Using
(3), the signal model in (2) can be rewritten in vector notation as

dr = xr −Xτ ,rgr, (4)

with
dr =

[
dr(1) · · · dr(N)

]T ∈ CN , (5)

xr =
[
xr(1) · · · xr(N)

]T ∈ CN . (6)

The multi-channel delayed convolution matrix Xτ ,r in (4) is
defined as

Xτ ,r =
[
Xτ1,r · · · XτM,r

]
∈ CN×MLg , (7)

where Xτm,r
∈ CN×Lg is the convolution matrix of xm delayed

by τm,r frames with τ the prediction delay in the reference micro-
phone and gr ∈ CMLg is the stacked vector of all prediction filter
coefficients gm,r(l). The dereverberation problem, i.e. estimation
of the desired component dr, is now reduced to estimating the filter
gr predicting the undesired late reverberant component.

Fig. 1: WPE with microphone-dependent prediction delays [17]
3. WPE ALGORITHM

Since the desired speech component dr can be assumed to be
sparser than the reverberant microphone signal xr, it has been
proposed in [8] to compute the prediction filter gr by minimizing
the sparsity-promoting ℓp-norm of the output in (4), i.e.

min
gr

J(gr) = ∥dr∥pp = ∥xr −Xτ ,rgr∥pp , (8)

where the ℓp-norm is defined as ∥dr∥p = (
∑N

n=1|dr(n)|p)1/p.
For effective dereverberation, the sparsity-promoting parameter
p is typically chosen in the range 0 < p < 1 [8], leading to a
non-convex optimization problem in (8).

A popular method for solving non-convex optimization prob-
lems such as (8) is the iteratively reweighted least-squares (IRLS)
algorithm [18], where the original problem is replaced with a series
of convex quadratic problems. Namely, in the i-th iteration the
ℓp-norm in (8) is approximated by a weighted ℓ2-norm, i.e.

∥dr∥pp ≈ ∥dr∥2W(i)
r

= dH
r W(i)

r dr, (9)

where W
(i)
r = diag

(
w

(i)
r

)
is a diagonal matrix of the weight

vector in the i-th iteration w
(i)
r . Given a previous estimate ŵ(i−1)

r

of the weights w(i)
r , the minimization problem in the i-th iteration

can be written as

min
gr

∥xr −Xτ ,rgr∥2Ŵ(i−1)
r

, (10)

yielding a closed-form solution for the prediction filter

ĝ(i)
r =

(
XH

τ ,r(Ŵ
(i−1)
r )−1Xτ ,r

)−1

XH
τ ,r(Ŵ

(i−1)
r )−1xr. (11)

The estimated weights ŵ(i−1)
r are subsequently updated such that

the approximation in (8) is a first-order approximation [8], i.e.

ŵ(i)
r = |d̂(i)

r |2−p, (12)

where the dereverberated output in the i-th iteration d̂
(i)
r =

xr −Xτ ,rĝ
(i)
r with the |.| and (.)2−p operators applied element-

wise. To prevent division by zero, a small positive constant ϵ is
typically included in the weight update in (12). The initial weights
ŵ

(0)
r are computed by defining an initial prediction filter ĝ(0)

r = 0.
In total, IWPE iterations are performed.

4. REFERENCE MICROPHONE SELECTION

When considering spatially distributed microphones, the power of
the desired component dr and the power of the undesired compo-
nent ur may greatly vary depending on the reference microphone r.
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Hence, the quality of the dereverberated output d̂r may also depend
significantly on the choice of reference microphone. Based on the
WPE cost function, in Section 4.1 we first define the reference
microphone selection problem as an ℓp-norm minimization problem.
However, since the differences in signal power between the mi-
crophones may be large, the ℓp-norm-based reference microphone
selection problem may not yield the dereverberated output d̂r with
the highest signal quality. Hence, in Section 4.2 we propose to
normalize for the power in the dereverberated output, leading to
reference microphone selection based on the normalized ℓp-norm.

4.1. Reference microphone selection using ℓp-norm

By considering the WPE cost function in (8), it may appear logical
to select the reference microphone as the one minimizing the cost
function

min
r

∥∥∥d̂(I)
r

∥∥∥
p
=

∥∥∥xr −Xτ ,rĝ
(I)
r

∥∥∥
p
, (13)

where d̂(I)
r and ĝ(I)

r correspond to the dereverberated output and the
prediction filter for reference microphone r after I WPE iterations.
Since WPE is run independently per frequency, a different reference
microphone may be selected for each frequency when using (13).
In order to select a single reference microphone over all frequencies,
we propose to minimize the sum over all frequencies, i.e.

r̂
(I)
ℓp

= argmin
r

F∑
f=1

∥∥∥xr(f)−Xτ ,r(f)ĝ
(I)
r (f)

∥∥∥
p
, (14)

where r̂(I)ℓp
denotes the selected reference microphone based on the

ℓp-norm.

4.2. Reference microphone selection using normalized ℓp-norm

When the differences in signal power are large between the micro-
phones, selecting the reference microphone based on the ℓp-norm
of the output may not yield the best dereverberated output, but
possibly the output with the smallest power (irrespective of the
amount of reverberation reduction). In order to normalize for the
signal power in the different microphones, we propose to normalize
the dereverberated output using the ℓ2-norm, i.e.

¯
d̂(I)
r =

d̂
(I)
r

∥d̂(I)
r ∥2

. (15)

When inserting the normalized dereverberated output
¯
d̂
(I)
r into

the problem in (14), the modified reference microphone selection
problem can be reformulated as a normalized ℓp-norm minimization
problem, i.e.

r̂
(I)
ℓp/ℓ2

= argmin
r

F∑
f=1

∥∥∥xr(f)−Xτ ,r(f)ĝ
(I)
r (f)

∥∥∥
p∥∥∥xr(f)−Xτ ,r(f)ĝ

(I)
r (f)

∥∥∥
2

, (16)

where ∥.∥p/∥.∥2 and r̂(I)ℓp/ℓ2
denote the normalized ℓp-norm [12–14]

and the selected reference microphone based on the normalized
ℓp-norm, respectively. The normalized ℓp-norm, also known as the
ℓp/ℓq-norm, is a popular alternative to the ℓp-norm due to its scale-
invariance [14]. Typically, q is chosen such that q > 1, with q = 2
being a common choice due to its relation to signal power [12].

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed WPE
reference microphone selection method for spatially distributed
microphones in a reverberant room. In Section 5.1, we discuss the
considered acoustic scenario and algorithm parameters. In Section
5.2, we present the simulation results and evaluate the performance
of the proposed method against a selection based on the ELR and
signal power.

5.1. Acoustic setup and algorithm parameters

We consider M = 8 spatially distributed microphones and a single
static (directional) speech source in a laboratory with dimensions of
about 6m×7m×2.7m and reverberation time T60 ≈ 1300 ms. Fig.
2 depicts the position of the microphones and the 12 considered
positions of the speech source.

The reverberant microphone signals were generated at a sampling
rate of 16 kHz by convolving anechoic speech signals from the
TIMIT database [19] with measured room impulse responses from
the BRUDEX database [20]. The signals were processed using an
STFT framework with frame size of 1024 samples, a frame shift
Lshift = 256 samples and square-root Hann analysis and synthesis
windows.

The WPE algorithm was run using the entire speech utterance
(batch processing) and implemented with prediction filter length
Lg = 15, number of reweighting iterations IWPE = 10, weight reg-
ularization parameter ϵ = 10−7 and sparsity-promoting parameter
p ∈ {0.05,0.5,0.9}. The microphone-dependent prediction delays
were computed with a prediction delay of τ = 2 for the reference
microphone, estimated time-differences-of-arrival using the gen-
eralised cross-correlation with phase transform (GCC-PHAT) [21]
method and implemented using cross-band filtering [17].

5.2. Simulation results

For the WPE algorithm, we consider the following reference
microphone selection methods:

• ℓp: reference microphone selection using (14) based on the
ℓp-norm of the dereverberated output with I = IWPE WPE
iterations

• ℓp/ℓ2: reference microphone selection using (16) based
on the ℓp/ℓ2-norm of the dereverberated output with
I = {0,1, IWPE} WPE iterations

• Max- ˆELR: reference microphone selection by choosing the
reverberant microphone signal with the largest estimated
ELR using the method proposed in [15]

127



0 2 4 6
x-axis [m]

0

1

2

3

4

5

6

7

y-
ax

is 
[m

]

Fig. 2: Positions of M = 8 spatially distributed microphones ( )
and 12 considered speech source positions ( )

• Max-Power: reference microphone selection by choosing
the reverberant microphone signal with the largest average
signal power [9] [11]

It should be noted that the (normalized) ℓp-norm-based reference
microphone selection methods with I > 0 require running WPE
in each reference microphone, whereas the reference microphone
selection methods based on the normalized ℓp-norm with I = 0
and based on the estimated ELR and signal power do not require
any WPE iterations.

In order to compute the performance improvement of the consid-
ered reference microphone selection methods, the dereverberation
performance, i.e. the quality of the dereverberated output, using the
selected reference microphone is evaluated against the average dere-
verberation performance of all possible reference microphones, i.e.

∆PESQ = PESQ
(
d̂r̂(t), sr̂(t)

)
− PESQavg, (17)

where ∆PESQ denotes the perceptual evaluation of speech
quality (PESQ) improvement with PESQ

(
d̂r̂(t), sr̂(t)

)
and

PESQavg =
1
M

∑M
r=1 PESQ

(
d̂r(t), sr(t)

)
denoting the PESQ of

the (time-domain) dereverberated output d̂r̂(t) with time index t
in selected reference microphone r̂ and the average PESQ using
all possible reference microphones, respectively. The target signal
is the (time-domain) direct speech received at the reference micro-
phone position sr(t). The improvement in the frequency-weighted
segmental signal-to-noise ratio (∆FWSSNR) is defined similarly
as in (17). The above measures [22] are averaged across the 12
considered positions of the speech source.

For the considered reference microphone selection methods1, Fig.
3 depicts the average performance improvement over all consid-
ered source positions in terms of ∆FWSSNR and ∆PESQ using a
sparsity-promoting parameter p = 0.05, p = 0.5 and p = 0.9. For
all considered values of the sparsity-promoting parameter p, the per-
formance of the proposed method using I = IWPE WPE iterations is
larger than the performance using a selection based on the estimated
ELR or signal power. Furthermore, a similar performance can be
achieved using the proposed method with only I = 1WPE iteration.
Even when I = 0, the performance using the proposed method is
similar to the performance of the considered estimated ELR and sig-
nal power-based reference microphone selection methods. Finally, it
can be seen that the normalization of the dereverberated output is re-
quired for WPE reference microphone selection as the performance

1Audio examples available on
uol.de/f/6/dept/mediphysik/ag/sigproc/audio/dereverb/wpe-refmic-selection.html

using the ℓp-norm-based reference microphone selection method is
significantly lower than the performance using the proposed method.
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Fig. 3: Average performance improvement in terms of FWSSNR
improvement and PESQ improvement for all considered reference
microphone selection methods using a sparsity-promoting
parameter (a) p = 0.05, (b) p = 0.5 and (c) p = 0.9

6. CONCLUSION

In this paper we have presented a reference microphone selection
method for the WPE algorithm. Based on the WPE cost function,
we first defined the reference microphone selection as an ℓp-norm
minimization problem. However, when considering spatially
distributed microphones, the differences in signal power between
the microphones may be large and the ℓp-norm-based reference
microphone selection problem may not yield the dereverberated
output with the highest signal quality. Hence, we proposed to
normalize for the power in the dereverberated output, leading to
reference microphone selection based on the normalized ℓp-norm.
The experimental results showed that the performance of the
proposed method is larger than the performance using a selection
based on the estimated ELR or signal power. Furthermore, similar
performance can be achieved for the proposed method using only
a small number of WPE iterations. Investigating the performance
of the considered reference microphone selection methods for
acoustic scenarios with additive noise, a moving source or different
microphone sensitivities are directions for future research.
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