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ABSTRACT

This paper focuses on two key aspects: region-of-interest beamform-
ing and optimal sparse circular sector array design. The aim is to ad-
dress the problem of the unknown direction of arrival within a given
region of interest while optimizing the array geometry layout and
beamformer taps. This is done while meeting the maximum broad-
band array directivity criterion. To ensure that the desired signal is
not distorted, we apply appropriate optimization constraints while
maintaining a sufficiently high white noise gain. Our proposed ap-
proach outperforms a recently suggested approach in terms of the
directivity factor, especially when the direction of arrival of the de-
sired source significantly deviates from its nominal value.

Index Terms— Microphone arrays, optimal beamforming,
region-of-interest beamforming, joint optimization, sparse arrays.

1. INTRODUCTION

Beamforming has been a widespread technique over the last few
decades to estimate desired signals from noisy sensor observations
[1–5]. Beamformers use signals from different locations in space
and can be used, e.g., to attenuate undesired background noise, in-
terferences, and reverberations, while preserving the desired source
free of distortion [6–9]. When designing a beamformer, two princi-
pal matters should be considered: its taps and the underlying array
geometry. While the former has been given much attention, the lat-
ter has been investigated to a lesser extent, even though its impact on
the performance of the beamformer may be significant [10, 11].

Uniform linear arrays (ULAs) are a commonly used array lay-
out that can achieve high array directivity or white noise robustness,
but not both [12–14]. In addition, ULAs are heavily influenced by
the direction of arrival (DOA) of the desired source [15, 16] and are
sensitive to microphone imperfections [17]. Other array configura-
tions have been considered to reduce susceptibility to the DOA of
the desired source. For example, rectangular arrays (RAs) and cube
arrays have been shown to perform well when the DOA is parallel
to one of the array axes, but their performance tends to decline when
the DOA is not parallel [18–20]. Circular (and concentric circular)
arrays have the potential to exhibit DOA-independent performance
(considering only the azimuth angle) [21–24]. However, this implies
limited array directivity or requires accurate knowledge of the true
DOA, which is impractical in most real-world scenarios.

Recent studies suggest using the concept of a region of interest
(ROI) to handle DOA mismatches and adapt to changing settings.
An ROI is a continuous space region from which the desired source
is assumed to originate. The arrangement of the microphone array
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is then optimized for a certain ROI. In a recent study by Konforti et
al. [25], a linear layout was proposed to maximize the array’s broad-
band directivity while keeping the white noise gain above a specified
level. This approach outperformed traditional methods, but was lim-
ited to narrow ROIs and required knowledge of the true DOA. Itzhak
and Cohen [26] suggested optimizing a rectangular array with a uni-
form structure along one axis and a non-uniform structure along the
other. This method was more flexible and ensured a constant main-
lobe beamwidth above a particular threshold frequency. However, it
was only suitable for relatively small ROIs and required many array
microphones and a large aperture along one of its axes. Another
study by Itzhak and Cohen [27] introduced a beamforming tech-
nique based on optimizing a sparse concentric circular array. This
approach improved performance for wider ROIs, even with a limited
number of microphones. However, the sequential optimization pro-
cedure of the array geometry followed by the derivation of the taps
of the underlying beamformer yielded a sub-optimal solution. Addi-
tionally, the derivation method of the taps did not directly consider
the desired ROI.

This paper introduces an ROI beamforming method that uses a
sparse circular sector array (SCSA) layout to address significant de-
viations in the DOA of the desired source. We assume that the true
DOA is unknown and formulate the problem accordingly. We then
use this formulation to maximize the broadband directivity while di-
rectly accounting for the desired ROI. The optimization is performed
simultaneously over the array geometry and the beamformer taps.
Additionally, design constraints control the white noise gain and sig-
nal distortion. Compared to a recently proposed approach [27], our
approach is preferred in terms of the directivity factor, especially
when substantial DOA deviations are present.

The remainder of the paper is organized as follows. In Section
2, we present the signal model. In Section 3, we address the prob-
lem of DOA uncertainty and define the appropriate measures for ROI
beamforming. In Section 4, we present our approach to jointly op-
timize the array geometry and the beamformer taps. In Section 5,
we analyze and compare the performance of the proposed approach
through simulations.

2. SIGNAL MODEL

Consider a far-field desired source propagating from an azimuth an-
gle ϕ and a polar angle θ in an anechoic acoustic environment at
the speed of sound, i.e., c = 340 m/s. The plane wave impinges
on a two-dimensional (2-D) uniform circular sector array (UCSA)
located on the x-y plane. The UCSA is composed of M uniformly-
spaced omnidirectional microphones along the radial direction with
an interelement spacing δr and P uniformly-spaced omnidirectional
microphones along the angular direction. The locations of the latter
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are lower and upper bounded by ψL and ψH , respectively, and are
given by

ψp = p× ψH − ψL
P − 1

+ ψL, (1)

with p = 0, . . . , P − 1. An illustration of the UCSA layout is de-
picted in Fig. 1 by considering all empty and solid circles therein.
In addition, the microphone located at the center of the circle (the
origin of the Cartesian coordinate system) is considered the refer-
ence microphone. The array steering vector associated with ψp of
lengthM−1 (excluding the common reference microphone) is given
by [28]

aθ,ϕ,ψp (f) =
[
eȷ2πfδr sin θ cos(ϕ−ψp)/c eȷ4πfδr sin θ cos(ϕ−ψp)/c

(2)

· · · eȷ2πfδr(M−1) sin θ cos(ϕ−ψp)/c
]T
,

where the superscript T denotes the transpose operator, ȷ =
√
−1 is

the imaginary unit, and f > 0 is the temporal frequency. Stacking
together all steering vectors {aθ,ϕ,ψp (f)}P−1

p=0 we obtain the array
steering vector dθ,ϕ (f) of length P (M − 1) + 1 by:

dθ,ϕ (f) =
[
1 aTθ,ϕ,ψ0

(f) · · · aTθ,ϕ,ψP−1
(f)

]T
, (3)

in which the first element corresponds to the reference microphone.
Denoting the desired source incident angle by (θ0, ϕ0), the ob-

served noisy signal vector of length P (M −1)+1 can be expressed
in the frequency domain as [8]:

y (f) = x (f) + v (f) (4)
= dθ0,ϕ0 (f)X (f) + v (f) ,

where X (f) and v (f) are the zero-mean desired source and addi-
tive noise signal vectors, respectively, as received by the reference
microphone. Dropping the dependence on f , the correlation matrix
of y is given by

Φy = E
(
yyH

)
= pXdθ0,ϕ0d

H
θ0,ϕ0

+Φv, (5)

where E(·) denotes mathematical expectation, the superscript H is
the conjugate-transpose operator, pX = E

(
|X|2

)
is the power spec-

tral density of the desired source at the reference microphone, and
Φv = E

(
vvH

)
is the correlation matrix of v. Note that equation

(5) assumes x and v to be uncorrelated. Assuming the noise vari-
ance is approximately uniform across all sensors, equation (5) may
be expressed as

Φy = pXdθ0,ϕ0d
H
θ0,ϕ0

+ pV Γv, (6)

where pV is the power spectral density of the noise at the reference
microphone and Γv = Φv/pV is the pseudo-coherence matrix of
the noise. From (6), we deduce that the input signal-to-noise ratio
(SNR) is

iSNR =
tr
(
pXdθ0,ϕ0d

H
θ0,ϕ0

)
tr (pV Γv)

=
pX
pV

, (7)

where tr(·) denotes the trace of a square matrix.

3. REGION-OF-INTEREST BEAMFORMING

To generate an estimate of the desired sourceX , a linear beamformer
f =

[
F1 · · · FP (M−1)+1

]T is applied to the observed signal
vector y, yielding the output signal [29]

X̂ = fHy = XfHdθ0,ϕ0 + fHv. (8)

If dθ0,ϕ0 is known, a distortionless response constraint for the de-
sired source is given by fHdθ0,ϕ0 = 1, which may directly be used
in the derivation of the beamformer f .

The most common performance measures for beamformers are
the SNR gain, the white noise gain (WNG), and the directivity factor
(DF). From (8), the output SNR can be defined as

oSNR (f) =
pX
pV

× |fHdθ0,ϕ0 |2

fHΓvf
, (9)

which implies that the SNR gain is given by

G (f) =
oSNR (f)

iSNR
=

|fHdθ0,ϕ0 |2

fHΓvf
. (10)

Consequently, the WNG and DF are given by

W (f) =
|fHdθ0,ϕ0 |2

fHf
, (11)

D (f) =
|fHdθ0,ϕ0 |2

fHΓdf
, (12)

where Γd is the pseudo-coherence matrix of a spherically isotropic
(diffuse) noise field [29], defined by [Γd]i1,i2 = sinc(2πf∆i1,i2/c),
where i1 and i2 denote microphone indices, ∆i1,i2 is the Euclidean
distance between microphone i1 and i2, and sinc(x) = sin(x)/x.

In many real-world scenarios, involving multiple and possibly
moving speakers of interest, the DOA of the desired source is un-
known. Hence, the performance measures in (9)-(12) are inappropri-
ate to properly derive f , implying that other measures should be em-
ployed instead. Let us consider the steering vector associated with
the unknown DOA, dθROI,ϕROI , to be a random variable character-
ized by the probability density function pd(θ, ϕ). Then, we may
define

x̄ = XE[dθROI,ϕROI ] (13)

= X

∫
θ∈ΘROI

∫
ϕ∈ΦROI

pd(θ, ϕ)dθ,ϕ sin θdϕdθ,

which constitutes a weighted sum over all possible DOAs within the
ROI: θ ∈ ΘROI, ϕ ∈ ΦROI.

Substituting (13) into (9), we may define the output SNR over
the entire ROI as

oSNRROI (f) =
1

pV
×
E
[
|fH x̄|2

]
fHΓvf

(14)

=
pX
pV

× 1

fHΓvf

×
|fH

∫
θ∈ΘROI

∫
ϕ∈ΦROI

dθ,ϕ sin θdϕdθ|2

|
∫
θ∈ΘROI

∫
ϕ∈ΦROI

sin θdϕdθ|2

=
pX
pV

× 1

Ω2
ROI

× |fHbROI|2

fHΓvf
,

where bROI =
∫
θ∈ΘROI

∫
ϕ∈ΦROI

dθ,ϕ sin θdϕdθ may be regarded
as the ROI steering vector whose integration bounds are set by the
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(a) (b)

Fig. 1: Optimal layout for different ROIs. (a) ΦROI = [−10o, 10o]
and (b) ΦROI = [−40o, 40o]. Empty and solid circles indicate un-
occupied and occupied microphone locations, respectively.

desired ROI, and ΩROI =
∫
θ∈ΘROI

∫
ϕ∈ΦROI

sin θdϕdθ is the spa-
tial angle associated with that region.

It is evident that if the vector dθROI,ϕROI is known, (14) sim-
plifies to the form presented in (9). It is important to note that the
assumption of a uniform distribution pd(θ, ϕ) for dθROI,ϕROI across
the ROI is made in the second equality of (14). This assumption is
useful in scenarios where obtaining a reliable estimation of pd(θ, ϕ)
is practically unattainable. Nevertheless, generalization to other dis-
tributions is straightforward.

In the proposed approach, as the ROI may potentially be wide,
we do not require a distortionless response. Such a response could
result in degradation inflicted by undesirable interferences and re-
verberations, particularly in silent periods. Instead, we employ the
following distortion-controlled constraint

fHbROI = 1. (15)

Consequently, the SNR gain over the entire ROI is given by

GROI (f) =
oSNRROI (f)

iSNR
(16)

=
1

Ω2
ROI

× |fHbROI|2

fHΓvf
=

1

Ω2
ROI

× 1

fHΓvf
,

which implies that the WNG over the entire ROI is obtained by

WROI (f) =
1

Ω2
ROI

×
∣∣fHbROI

∣∣2
fHf

, (17)

and the DF over the entire ROI is

DROI (f) =
1

Ω2
ROI

×
∣∣fHbROI

∣∣2
fHΓdf

. (18)

4. JOINT OPTIMIZATION OF ARRAY GEOMETRY AND
BEAMFORMING

Our study aims to propose a practical approach to beamforming that
utilizes physically small arrays with a small number of microphones.
To achieve this, we aim to reduce the number of microphones dis-
cussed in the previous parts associated with the UCSA structure. In-
stead, we will settle for a sparse circular sector array (SCSA) struc-
ture comprising a subset of the UCSA microphones. In particular,

we aim to leverage the ROI formulation and present a method to
jointly optimize the sparse array geometry and derive the taps of a
high-directivity beamformer.

Let us dive into the technical details of the optimization func-
tion and the design constraints. To begin with, we define the ROI-
oriented broadband directivity index as

DI [fL,fH ] [f ] =

∫ fH
fL

∣∣fHbROI

∣∣2 df
Ω2

ROI

∫ fH
fL

fHΓdfdf
(19)

=
fH − fL

Ω2
ROI

∫ fH
fL

fHΓdfdf
,

where fL and fH are the minimal and maximal frequencies of in-
terest, respectively, and the distortion-controlled constraint of (15) is
assumed to hold. We aim to find the optimal sparse set of occupied
microphone locations and their corresponding beamformer’s taps to
maximize (19). This is equivalent to solving

f∗ = argmax
f

DI [fL,fH ] [f ] (20)

= argmin
f

∫ fH

fL

fHΓdfdf,

where the optimal solution f∗ is a K-sparse beamformer.
Next, we formulate the design constraints. First and foremost,

we should satisfy the distortion-controlled constraint for every fre-
quency of interest, that is,

C1 [f ] : f
HbROI = 1, ∀f ∈ [fL, fH ] . (21)

Then, to guarantee robustness to practical microphone imperfec-
tions, we would like to set a minimal accepted value of WROI (f),
denoted by ϵ, and being an application-tailored parameter. Leverag-
ing equation (17), this implies that

C2 [f ] : f
Hf ≤ 1

Ω2
ROI ϵ

, ∀f ∈ [fL, fH ] . (22)

Finally, we would like to ensure the K sparsity of the obtained solu-
tion. To attain that, we employ the approach taken in [25]. First, we
define a binary vector s =

[
S1 · · · SP (M−1)+1

]T in which
every element corresponds to a microphone location in the complete
UCSA. Then, we define the following two constraints:

C3 [s] :

P (M−1)+1∑
i=1

Si = K (23)

which guarantees the K-sparsity attribute of s, and

C4 [f , s] : |Fi|2 ≤ Si
Ω2

ROI ϵ
, (24)

∀f ∈ [fL, fH ] , ∀i = 1, . . . , P (M − 1) + 1,

which guarantees theK-sparsity attribute of f without imposing fur-
ther constraints on its non-zero values on top of C2 [f ]. Grouping
(20)-(24) together, our mixed-integer convex optimization problem
is obtained as

fSCSA = argmin
f

∫ fH

fL

fHΓdfdf (25)

s.t. C1 [f ] , C2 [f ] , C3 [s] , C4 [f , s] ,
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(a) (b)

Fig. 2: DF and WNG over the entire ROI with the proposed approach
fSCSA and fSCCA [27] for two values of ϵ. (a) DROI and (b) WROI.

which may be solved using an off-the-shelf convex optimization
solver as MOSEK [30]. The latter can handle binary variables using
the branch-and-bound method and convex relaxation. It is important
to note that this formulation exhibits fundamental advantages over
previous approaches as [25–27]. Previous approaches comprised
two independent procedures: optimizing the occupied microphone
locations by the desired ROI and deriving a point-source-oriented
beamformer accordingly. In contrast, in the proposed approach, we
globally optimize over both and obtain the occupied microphone
locations and their corresponding beamformer’s taps simultaneously
while directly accounting for the desired ROI. Additionally, due to
the ROI formulation, the optimization problem we consider here is
significantly reduced compared to the previous approaches, as the
optimization avoids iterating over all DOAs within the ROI. This
entails considerably lower computational complexity and runtime.

5. SIMULATIONS

Let us now demonstrate the performance of our proposed ap-
proach. Specifically, we set M = 4, P = 9, {ψ0, ψ1, . . . , ψ8} =
{−40o,−30o, . . . , 40o}, δr = 1 cm, focus on desired sources
originating from the x-y plane, that is, θ0 = π/2, and assume the
nominal DOA of the desired source concerning the azimuth angle
is 0o. As elaborated above, this setting implies a total of 28 pos-
sible microphone locations, out of which we would like to utilize
only K = 8. To begin with, we investigate the influence of the
desired ROI on the optimal array geometry. We set ϵ = −50 dB
and design the proposed SCSA with ΦROI = [−10o, 10o] and
ΦROI = [−40o, 40o] while considering a discrete set of frequencies
in the [1 kHz, 4 kHz] range. The results are depicted in Fig. 1 and
clearly distinguish between the two ROIs. We observe that while
a symmetric geometry is exhibited with the narrower ROI, having
a superdirective-like structure formed on the x-axis and pointing
towards the endfire direction, with the wider ROI the geometry is
shaped differently. In this case, the array geometry turns asymmetric
and comprises unintuitive occupied microphone locations. This may
be an artifact of a relatively low number of microphones concerning
the ROI and does not necessarily imply asymmetric performance.

Next, we focus on the more challenging case of ΦROI =
[−40o, 40o] and compare the proposed approach to the sparse con-
centric circular array (SCCA) suggested in [27] and denoted by
fSCCA. Specifically, the latter is designed with a two-ring 8-sparse
circular array (out of 16 uniformly-spaced possible microphone
locations) and an inner-circle radius of 1 cm. We evaluate the DF

(a) (b)

(c) (d)

Fig. 3: DF and WNG measures with the proposed approach fSCSA

and fSCCA [27]. (a) D (fSCSA), (b) D (fSCCA), (c) W (fSCSA), and
(d) W (fSCCA). White vertical dashed lines indicate the boundaries
of the desired ROI.

and WNG over the entire ROI, which are depicted in Fig. 2 for
ϵ = −50 dB and ϵ = −30 dB. Our proposed approach is superior
in terms of DROI for the entire frequency range considering both
values of ϵ. In addition, we observe that although the proposed
approach exhibits a lower value of WROI, it strictly adheres to
the desired minimal value set by ϵ while globally optimizing the
broadband array directivity.

Finally, in Fig. 3, we focus on the traditional DF and WNG mea-
sures, which are a function of both the frequency and the DOA. Com-
pared to the approach taken in [27], it is clear that our approach en-
ables tolerance to more significant DOA deviations. That is, the DF
performance gap for |ϕ0| ∈ [20o, 40o] is substantial and is highly re-
lated to the performance gap in DROI discussed above. In contrast,
our approach exhibits a slightly inferior WNG level, particularly in
high frequencies, provided that the DOA deviation is mild. We in-
fer the proposed approach is preferable when the DOA deviation is
significant, exhibiting a comparable WNG but a higher DF.

6. CONCLUSIONS

We have developed a new ROI beamforming approach, which op-
timizes the microphone array layout and the corresponding beam-
former. Our approach considers a range of potential desired source
directions rather than just one specific direction. We have solved a
convex optimization problem to maximize the broadband array di-
rectivity across the entire ROI while ensuring a controlled level of
desired signal distortion and sufficient WNG. Our approach is com-
putationally efficient compared to previous methods and provides a
globally optimal solution. The optimal geometry of the array lay-
out follows the superdirective beamformer for a narrow ROI, while
an asymmetric geometry is shown optimal for a wide ROI. We have
compared our approach to the recent sparse concentric circular array
method. We showed that our approach is superior in terms of DROI

and has notably higher directivity for significant DOA deviations.
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