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ABSTRACT

Recently a signal enhancement technique, based on a
generalized singular value decomposition (GSVD), has
been proposed for acoustic noise reduction in multi-
microphone speech signals. In this paper a postprocess-
ing stage for this GSVD-based signal enhancement tech-
nique is discussed. Using the GSVD-based optimal fil-
tering technique it is possible to create a ‘speech ref-
erence’ and a ‘noise reference’. These references can
then be used in an adaptive noise cancellation (ANC)
algorithm.
It is shown that this ANC postprocessing stage gives
rise to an additional SNR-improvement. Simulations
show that the GSVD-based optimal filtering technique
with ANC postprocessing stage has a better noise re-
duction performance than standard adaptive beamform-
ing algorithms for all reverberation times.

1. INTRODUCTION

In many speech communication applications, like hands-
free mobile telephony and audio-conferencing, the recor-
ded speech signals are corrupted by acoustic background
noise and echo signals (see figure 4). This causes a sig-
nal degradation which can lead to total unintelligibility
of the speech and which decreases the performance of
speech coding and speech recognition devices. There-
fore efficient noise and echo reduction techniques are
called for.
Recently a signal enhancement technique, based on a
generalized singular value decomposition (GSVD), has
been proposed, which amounts to a specific optimal
filtering technique for the case where the so-called ‘de-
sired response’ signal cannot be observed. The optimal
filter can be written as a function of the generalized sin-
gular vectors and singular values of a speech and noise
data matrix [1][2][3]. In [4] it has been shown that
the computational complexity of this technique can be
reduced by using recursive and approximate GSVD-
updating algorithms and by using downsampling tech-

niques. The GSVD-based optimal filtering technique is
briefly reviewed in section 2.
Although this GSVD-based optimal filtering technique
reduces a considerable amount of noise, its noise reduc-
tion performance can be improved by adding a post-
processing stage. The postprocessing stage closely re-
sembles the structure of a generalized sidelobe can-
celler, using a ‘speech reference’ and a ‘noise refer-
ence’ in an adaptive noise cancellation (ANC) algo-
rithm. The output of the GSVD-based optimal filtering
technique is used as ‘speech reference’, whereas differ-
ent possibilities exist for creating a ‘noise reference’.
This ANC postprocessing stage is discussed in section
3.
Section 4 describes the used simulation environment
and in section 5 the noise reduction performance of the
ANC postprocessing stage is analyzed for different pa-
rameters of the algorithm. In section 6 the performance
of the GSVD-based optimal filtering technique with the
ANC postprocessing stage is compared with standard
beamforming algorithms (delay-and-sum beamformer,
generalized sidelobe canceller), showing that the SNR-
improvement is better for all reverberation times.

2. GSVD-BASED OPTIMAL FILTERING

2.1. General case

The GSVD-based optimal filtering technique [2] consid-
ers problems where the observed signal vector uk ∈ R

N

contains a signal-of-interest sk ∈ R
N (e.g. a speech

signal) and an additive noise term nk ∈ R
N , such that

uk = sk + nk.
If we consider speech applications and use a robust
speech-noise detection algorithm [5], noise-only obser-
vations nk′ can be made during speech pauses. Our
goal is to reconstruct the signal-of-interest sk from uk

by means of a linear filter W ∈ R
N×N , using ŝk = uT

k W.
It can be shown that when optimizing a MMSE-criterion
and making some statistical assumptions, the optimal

1



DSP Workshop October 15–18, 2000

filter W
[k]
WF at time k is equal to

W
[k]
WF =E

{

uk · uT
k

}−1 (

E
{

uk · uT
k

}

−E
{

nk · nT
k

})

.

(1)
In practice this filter is computed by means of a gener-
alized singular value decomposition (GSVD) [6][7] of a
speech data matrix A[k] ∈ R

p×N , containing p speech
vectors, and a noise data matrix B[k] ∈ R

q×N , contain-
ing q noise vectors,
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
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. (2)

At time k, the GSVD of the two matrices A[k] and B[k]

is defined as
{

A[k] = UA[k] · ΣA[k] · X
T
[k]

B[k] = UB[k] · ΣB[k] · X
T
[k],

(3)

with ΣA[k] = diag{σi[k]}, ΣB[k] = diag{ηi[k]}, UA[k] and
UB[k] orthogonal matrices, X[k] an invertible (but not

necessarily orthogonal) matrix and
σi[k]

ηi[k]
the generalized

singular values. Substituting these formulas into (1)
gives

W
[k]
WF =X−T

[k] · diag{1 −
p

q

η2
i[k]

σ2
i[k]

} · XT
[k] (4)

In fact the filter W
[k]
WF belongs to a more general class

of estimators, which can be described by

W[k] = X−T
[k] · diag{f(σ2

i[k], η
2
i[k])} · X

T
[k]. (5)

In this paper we will use the following gain function

f(σ2
i[k], η

2
i[k]) = 1 − α ·

p

q

η2
i[k]

σ2
i[k]

, (6)

where the factor α is a noise overestimation factor (when
α = 1 we obtain the MMSE estimator). By increasing
the factor α the SNR of the enhanced signal increases,
but some signal distortion is introduced. Therefore the
factor α will have to be limited.

2.2. Multi-channel time series filtering

Consider M microphones where each microphone signal
mj(k), j = 1 . . .M , consists of a filtered version of the
speech signal and an additive noise term,

mj(k) = sj(k) + nj(k) = hs
j(k) ⊗ s(k) + nj(k). (7)

The vector uk ∈ R
N with N = LM now takes the form

uk =
[

m1k m2k . . . mMk

]T
(8)

mjk =
[

mj(k) mj(k − 1) . . . mj(k − L + 1)
]

.(9)

The enhanced speech signal ŝ(k) is then computed as

ŝk =
[

ŝ(k − p + 1) . . . ŝ(k − 1) ŝ(k)
]T

= A[k]·w
i
WF [k],

with wi
WF [k] the ith column of W

[k]
WF . This can be

considered a multi-channel filtering operation, where
each of the M microphone signals is filtered with an
L-taps FIR-filter (figure 1).
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Figure 1: GSVD-based optimal filtering technique

When filtering with wi
WF [k], the enhanced signal ŝ(k)

is in fact an optimal estimate for the speech component
sl(k − ∆) in the lth microphone signal, with

l = mod(i − 1, L) + 1 (10)

∆ = rem(i − 1, L) (11)

The elements on the diagonal of the error covariance

matrix {E
{

ek · eT
k

}

}ii, with ek = sk − uT
k W

[k]
WF , in-

dicate how well the ith component of sk is estimated.
The smallest element on the diagonal of this matrix
therefore corresponds to the best estimator, which is

the corresponding column of W
[k]
WF . However simula-

tions indicate that e.g. taking i = L
2 instead of the best

value does not decrease the performance considerably.

2.3. Computational complexity

Since in each time step new data vectors uk or nk are
appended to the speech or noise matrix, the GSVD of

A[k] and B[k] and the optimal filter W
[k]
WF need to be

recomputed. Instead of recomputing the GSVD from
scratch at each time step, recursive GSVD-updating
algorithms can be used which compute the GSVD at
time k using the decomposition at time k−1 [8][9]. The
total computational complexity of the algorithm can
be further reduced by using a square root-free imple-
mentation for the GSVD-updates and by using down-
sampling techniques [4]. In this context downsampling
means that the GSVD of A[k] and B[k] and the optimal

filter W
[k]
WF are not updated for every sample, but only

every d samples (d typically 10 . . . 20).
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3. ANC POSTPROCESSING STAGE

Although the GSVD-based optimal filtering technique
reduces a considerable amount of noise, its noise reduc-
tion performance can be improved by adding a post-
processing stage (see figure 2). The postprocessing
stage is a structure widely used in adaptive beamform-
ers, using a ‘speech reference’ and a ‘noise reference’ in
an adaptive noise cancellation (ANC) algorithm. The
adaptive filter will remove the correlation between the
noise reference and the speech reference. For this al-
gorithm to work properly, the noise reference therefore
should be (highly) correlated with the noise still present
in the speech reference. In order to avoid signal can-
cellation, signal leakage into the noise reference also
has to be limited. Since in most cases this signal leak-
age cannot be completely avoided, the adaptive filter is
only allowed to adapt during periods when no speech
is present [10][11].
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Figure 2: GSVD-based optimal filtering technique with
ANC postprocessing stage

A well known adaptive beamformer, depicted in figure
3, is the generalized sidelobe canceller (GSC) [12][13][14].
A GSC uses the output of a fixed delay-and-sum beam-
former as speech reference and creates noise references
by combining the delayed microphone signals using a
blocking matrix. A multi-channel adaptive filter (NLMS,
APA, RLS) then removes the correlation between the
noise references and the speech reference.

m1

Noise

F1

4

Speech
reference

references

-

m

--
3m

2

+

MF

F

2m

+
+
+

+

∆4

3∆
Σ Σ

1∆

2∆

MicrophoneBlocking

Delay

Fixed

Multi-channel

matrix beamformer array

adaptive filter

Figure 3: Generalized Sidelobe Canceller

In the ANC postprocessing stage of the GSVD-based
optimal filtering technique (figure 2), the output of the
GSVD-based optimal filter is used as speech reference.
For the creation of a noise reference different possibili-
ties exist. Define the speech reference r

l,∆
speech(k) as the

optimal estimate of the speech component in the lth

microphone signal (delayed with ∆), such that

r
l,∆
speech(k) = ŝl(k − ∆). (12)

This speech reference is created by using wi
WF [k], with

i = (l − 1)L + ∆. An obvious choice for creating a
noise reference is simply subtracting the speech refer-
ence r

l,∆
speech(k) from the delayed lth microphone signal,

r1
noise(k) = ml(k − ∆) − r

l,∆
speech(k). (13)

Indeed, if W
[k]
WF is the optimal filter matrix for esti-

mating the signal component sk, then (I − W
[k]
WF ) is

the optimal filter matrix for estimating the noise com-
ponent nk. This noise reference is depicted in figure 2.
In the rest of the paper we will use this kind of noise
reference and we will take i = L

2 (such that l = 1 and

∆ = L
2 − 1)

However different possibilities for creating noise refer-
ences exist. Instead of only calculating a ‘noise refer-
ence’ for the lth microphone signal, one can calculate
and use the ‘noise references’ for all the microphone
signals, i.e.

r2
noise(k) =













m1(k − ∆) − r
1,∆
speech(k)

m2(k − ∆) − r
2,∆
speech(k)

...

mM (k − ∆) − r
M,∆
speech(k)













(14)

However since different ‘speech references’ are needed
for the calculation of r2

noise(k) (only r
l,∆
speech(k) is read-

ily available), the microphone signals have to be filtered
with different filters wi

WF [k], implying increased com-
putational complexity.
Another possibility for creating a noise reference would
consist of using a blocking matrix on the filtered mi-
crophone signals (analogous to the generalized sidelobe
canceller).

4. SIMULATION ENVIRONMENT

The used simulation environment is depicted in figure
4. It consists of a microphone array, a speech source
s(k) and background noise source n(k). In our simu-
lations the linear equi-spaced microphone array has a
maximum number of M = 6 microphones and the dis-
tance between two adjacent microphones is 5 cm. The
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Figure 4: Simulation environment

speech source is located in front of the microphone ar-
ray. The signals used are an 8 kHz clean speech signal
and a temporally white noise source. In these simula-
tions no far-end echo source is present, but in [15] it is
shown how a far-end echo source can be easily incor-
porated into the algorithms.
Each microphone signal mj(k), j = 1 . . . M , consists of
a filtered version of the speech and noise signal,

mj(k) = hs
j(k) ⊗ s(k) + hn

j (k) ⊗ n(k), (15)

with hs
j(k) the impulse response between the speech

source and the jth microphone and hn
j (k) similarly de-

fined for the noise source. The room impulse responses
are obtained using the image method [16], with a filter-
length of 1500 taps and for different reverberation times
T60. The reverberation time T60 can be expressed as
a function of the reflection coefficient γ of the walls,
according to Eyring’s formula,

T60 =
0.163V

−S log(1 − γ)
, (16)

with V the volume of the room and S the total surface
of the room. Simulations have been performed for a
different number of microphones at different signal-to-
noise ratios.
Since we are using simulations (and hence know the
speech and noise components at each stage of the al-
gorithm), the unbiased signal-to-noise ratio (SNR) and
noise reduction (NR) can be computed as

SNR = 10 log10

∑

s̃2(k)
∑

ñ2(k)
, NR = 10 log10

∑

ñ2(k)
∑

n2
1(k)

,

(17)
where s̃(k) and ñ(k) correspond to the speech and noise
component of the considered signal and n1(k) is the
noise component of the first microphone signal.
The performance of the following algorithms is com-
pared: delay-and-sum beamformer, generalized side-

lobe canceller (GSC) and recursive GSVD-based op-
timal filtering technique (with and without ANC post-
processing stage). The adaptive filter used in the GSC
as well as in the ANC postprocessing stage of the GSVD-
based optimal filtering technique is a time-domain NLMS
algorithm. The filterlength of the adaptive filter is de-
noted by LNLMS and the step size is µ = 0.1. The de-
sired signal of the adaptive filter is delayed with LNLMS

2
in order for the adaptive filter to model some acausal
taps. The noise reference for the GSC is calculated as

rGSC
noise(k) = (M−1)·m1(k−∆1)−

M
∑

j=2

mj(k−∆j). (18)

The filterlength for the GSVD-based optimal filtering
technique is denoted by LGSV D.

5. NOISE REDUCTION PERFORMANCE

OF THE ANC POSTPROCESSING STAGE

In figure 5 the unbiased SNR of the enhanced signal
(output of the ANC postprocessing stage) is plotted
in function of LGSV D and LNLMS for 2 values of the
factor α (see equation 6). This figure shows that the
SNR of the enhanced signal improves with increasing
LGSV D and LNLMS . Since the total computational
complexity is O(L2

GSV D)+O(LNLMS), it is sometimes
better to use relatively small filterlengths LGSV D for
the GSVD-based optimal filter technique and relatively
large filterlengths LNLMS for the adaptive filter in the
ANC postprocessing stage.
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This figure also shows that the SNR of the enhanced
signal improves with increasing factor α. This factor
α can be considered a noise overestimation factor. For
higher values of the factor α the SNR of the enhanced
signal improves, but also signal distortion is introduced
since the MMSE-criterion is not optimized any more.
Therefore the factor α has to be limited (value depends
on the number of channels M and on the filterlength
LGSV D), otherwise the speech intelligibility drops.

6. COMPARISON WITH STANDARD

BEAMFORMING TECHNIQUES

Figure 6 compares the performance (unbiased SNR of
the enhanced signal) for the GSVD-based optimal fil-
tering technique (with and without ANC postprocess-
ing stage) and standard beamforming algorithms (delay-
and-sum beamformer and GSC). We use M = 4 micro-
phones, the SNR of the noisy microphone signals is
0 dB, the filterlength LNLMS of the adaptive NLMS-
filter is 800 (for the GSC as well as for the ANC post-
processing stage), and for the GSVD-based optimal
filtering technique the filterlength LGSV D = 20 and
α = 1. The comparison is performed for different re-
verberation times T60 of the room. Low reverberation
times correspond to highly correlated noise, while high
reverberation times correspond to highly uncorrelated
(diffuse) noise.
Figure 6 shows that for low T60 the GSC performs bet-
ter than the GSVD-based optimal filtering technique
(without ANC postprocessing stage), while for high T60

the GSVD-based optimal filtering technique performs
better than than the GSC. However, when adding the
ANC postprocessing stage, the GSVD-based optimal
filtering technique clearly outperforms the GSC for all
reverberation times.
Figure 7 shows the same comparison for different signal-
to-noise ratios of the noisy microphone signals. One
can observe that for higher SNRs, the difference in
performance between the GSC and the GSVD-based
optimal filtering technique with ANC postprocessing
stage becomes smaller. However the same conclusion
still holds that GSVD-based optimal filtering technique
with ANC postprocessing stage outperforms the GSC
for all reverberation times.

7. CONCLUSION

In this paper we have described how a GSVD-based
optimal filtering technique can create a ‘speech refer-
ence’ and ‘noise reference’, which can then be used in
an adaptive noise cancellation (ANC) algorithm. This
ANC postprocessing stage gives rise to an additional

SNR-improvement for the GSVD-based optimal filter-
ing technique. We have also shown that this GSVD-
based optimal filtering technique with ANC postprocess-
ing stage outperforms the standard generalized sidelobe
canceller for all reverberation times and signal-to-noise
ratios.
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