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ABSTRACT

In this paper two eigenfilter techniques are described for designing
far-field broadband beamformers with an arbitrary spatial directiv-
ity pattern. For both techniques the resulting filter is the generalised
eigenvector corresponding to the minimum generalised eigenvalue
of two real, symmetric and positive definite matrices. In the con-
ventional eigenfilter technique a reference point is needed, while in
the eigenfilter technique based on a TLS (Total Least Squares) error
criterion, this reference point is not needed. It is shown that linear
constraints are easily incorporated into the design procedure. Both
eigenfilter techniques are compared to the weighted least-squares
filter design technique.

1 INTRODUCTION

In many speech communication applications, the recorded micro-
phone signals are corrupted by acoustic background noise and re-
verberation. Both fixed and adaptive beamforming techniques are
used for acoustic noise reduction and dereverberation [1]. Fixed
beamforming is mainly used in highly reverberating acoustic envi-
ronments and for creating a speech reference signal in an adaptive
‘Generalised Sidelobe Canceller’ (GSC) beamformer.
Several methods exist for the design of fixed broadband beamform-
ers and are e.g. based on weighted least-squares (LS) filter design
[2], non-linear optimisation techniques [3], a broadband maximum
energy array [4] or frequency-invariant beamforming [5].
This paper describes two eigenfilter techniques for the design of a
fixed broadband beamformer having a desired spatial and frequency
pattern D(!; �). Eigenfilters have been introduced for designing
1-D linear phase FIR filters [6]. Their main advantage is the fact
that no matrix inversion is required (as in LS filter design) and that
time-domain and frequency-domain constraints are easily incorpo-
rated. Eigenfilters have also been used for designing 2-D and spatial
filters [7][8]. Recently a new eigenfilter has been proposed which
is based on a TLS (Total Least Squares) error criterion [9].
In section 2 the general broadband beamforming setup is discussed
and some notational conventions are given. This section also defines
the stopband and passband errors and discusses different linear con-
straints which can be imposed on the filters.
Section 3 describes the design of broadband beamformers using the
weighted least-squares filter design technique and it is shown how
linear constraints can be incorporated into the design.
Section 4 describes the design of broadband beamformers using two
eigenfilter techniques: the conventional eigenfilter, which requires a
reference frequency-angle point, and the TLS eigenfilter, which has
no need for a reference point. It is also shown that linear constraints
can be easily incorporated into these design procedures.
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In section 5 the simulation results are discussed, in which the
eigenfilter-based techniques are compared with the conventional
weighted least-squares technique.

2 BROADBAND BEAMFORMING

2.1 Configuration and notation
Consider the linear microphone array depicted in figure 1, with N
microphones and dn the distance between the nth and the 0th mi-
crophone. The spatial directivity pattern H(!; �) for a source S(!)
at an angle � from the microphone array, is defined as
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S(!)
=

P
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In the far-field assumption the microphone signals Yn(!; �); n =
0 : : : N � 1, are delayed versions of the signal S(!),

Yn(!; �) = S(!)e�j!�n(�); �� � ! � �; �� � � � � ; (3)

with the delay
�n(�) =

dn cos �

c
fs ; (4)

with c the speed of sound (c ' 340m
s

) and fs the sampling fre-
quency. For a uniform linear array the distances between two adja-
cent microphones are equal, such that dn = n �d; n = 0 : : : N �1.
Using (3) the spatial directivity pattern H(!; �) can be written as
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with the M -dimensional (M = LN ) vectors w and g(!; �)
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Figure 1: Microphone array configuration



The design of a broadband beamformer consists of the calculation
of the filter w, such that H(!; �) fits the desired spatial directivity
patternD(!; �) as well as possible. Several design techniques exist,
depending on the specific cost function being optimised.
For all techniques we will discuss the general case of an arbitrary
D(!; �) and then focus on the specific design case of a broadband
beamformer having a desired response D(!; �) = 0 in the stopband
region (
s;�s) and D(!; �) = 1 in the passband region (
p;�p).

2.2 Error criteria

In this section two error criteria are discussed, which will be used
in the design procedures of sections 3 and 4. The first criterion is
the stopband error, defined as

J
s

e =

Z
�s

Z

s

jH(!; �)j2d!d�; 0 � �s;
s � �; (7)

which specifies the energy in the stopband frequency-angle region
(
s;�s). The integrand jH(!; �)j2 can be written as

jH(!; �)j2 = H(!; �)H�(!; �) = w
T
G(!; �)w ; (8)

withG(!; �)=g(!; �)gH(!; �). The (i; j)-element of G(!; �) is
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G(!; �) can be decomposed in a real and imaginary part,
GR(!; �)+jGI (!; �). SinceGI(!; �) is anti-symmetric, the spa-
tial directivity spectrum jH(!; �)j2 is equal to

jH(!; �)j2 = w
T
G(!; �)w = w

T
GR(!; �)w ; (12)

with GR(!; �) a real, symmetric and positive definite matrix. The
stopband error can now be written as
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In a similar way the energy in the passband region (
p;�p) can be
computed and is represented by Jpe = w

T
Q
p

ew.
The second criterion, the passband error, is defined as
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which specifies the error in the passband region (
p;�p) between
the actual response H(!; �) and the response at a reference point
H(!c; �c). Note that we do not define the value of H(!c; �c). The
integrand jH(!; �)�H(!c; �c)j

2 is equal to
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Ĝ(!c; �c; !; �) can be decomposed in a real and imaginary part,
ĜR(!c; �c; !; �) + jĜI(!c; �c; !; �). Since ĜI(!c; �c; !; �) is
anti-symmetric, jH(!; �)�H(!c; �c)j

2 can be written as
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with ĜR(!c; �c; !; �) a real, symmetric and positive definite ma-
trix. The passband error can now be written as
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2.3 Linear constraints

Linear constraints (e.g. point, derivative, line constraints) are fre-
quently imposed on the filterw. These constraints can be written as

Cw = b ; (18)

with C a K � M -dimensional matrix (K � M ) and b a K-
dimensional vector.
A point constraint, constraining the response at a point H(!c; �c)
to be equal to a complex scalar b = bR + jbI , corresponds to 2
constraints (a real one and an imaginary one),"
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A line constraint constrains H(!; �) to be equal to a predefined
frequency response F (!) =

P
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This equation has to hold for all !. However, because K � M , in
general these constraints can only be satisfied for N=2 frequencies.
An exception is the angle �c = �=2 (broadside direction), since in
this case �n(�c) = 0; n = 0 : : : N � 1, such that (21) reduces to�

IL IL : : : IL
�
w = f : (22)

3 WEIGHTED LEAST-SQUARES FILTER DESIGN

In this technique the least-squares (LS) error

e(!; �) = jD(!; �)�H(!; �)j (23)

is minimised. This corresponds to minimising the cost function

JLS =
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with W (!; �) a positive weighting function [2]. For the specific
design case we will use a weighting constant � for the passband
and � for the stopband. The matrix QLS , vector a and scalar d are
equal to
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The filterwLS minimising JLS is given by

wLS = Q
�1
LS
a : (26)

If we incorporate K linear constraints Cw = b, it can be easily
proven that the constrained LS solution is given by
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with Ca the (M �K) �M -dimensional null space of C. As can
be seen, the (numerically unstable) inverse of QLS is required.

4 EIGENFILTER TECHNIQUES

Eigenfilters have been used to design 1-D filters [6], 2-D filters [7]
and spatial filters [8]. In this section two eigenfilter techniques are
discussed for designing broadband beamformers: the conventional
eigenfilter, requiring a reference point and the TLS eigenfilter [9].

4.1 Conventional eigenfilter technique

In the conventional eigenfilter technique a reference point (!c; �c)
is chosen and the filter w is calculated such that the relative re-
sponse H(!; �)=H(!c; �c) fits D(!; �)=D(!c; �c) as well as pos-
sible. This can be achieved by minimising the cost function

Jeig =
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�

Z
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For the general and the specific design case, the matrix Qeig is
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because D(!; �) = D(!c; �c) in the passband (assuming (!c; �c)
lies in the passband) and D(!; �) = 0 in the stopband.
In order to avoid the trivial solution w = 0, a constraint is added.
Usually the unit-norm constraint wT

w = 1 is added [6][7], such
that the solution is the eigenvector of Qeig , corresponding to the
smallest eigenvalue (hence the name eigenfilters). In the 1-D FIR
filter case, this constraint corresponds to the total energy under the
amplitude response being 1, while for the broadband beamformer,
this constraint apparently does not have a physical meaning. We
will therefore use the constraint Jtote = w

T
Q
tot

e w = 1, constrain-
ing the energy under the amplitude response in the total frequency-
angle plane. The filter minimising Jeig under this constraint is the
generalised eigenvector of Qeig and Qtot

e , corresponding to the
smallest generalised eigenvalue. This eigenvector still has to be
scaled such that wT

g(!c; �c) = D(!c; �c).

4.2 Eigenfilter based on TLS error criterion

Recently an eigenfilter, based on a TLS error criterion, has been
described [9]. The advantage of this eigenfilter is that no reference
point is required. Instead of minimising the weighted LS error (see
section 3), the weighted TLS error is used and the cost functionZ

�

Z
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has to be minimised. As in the conventional eigenfilter technique
we replace wT

w with wT
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The filter ŵTLS minimising JTLS is the generalised eigenvalue of
Q̂TLS and Q̂tot

e , corresponding to the smallest generalised eigen-
value. After scaling the last element of ŵTLS to �1, the actual
solution wTLS is obtained as the first M elements of ŵTLS .
In [9] it is shown that linear constraints Cw = b can be rewritten
as

Ĉŵ = 0; Ĉ =
�
C b

�
; (32)

such that the constrained problem can be transformed to the uncon-
strained problem

min
h

h
T
B
T
Q̂TLSBh

hTBT Q̂tot
e Bh

; (33)

with ŵ = Bh andB the null space of Ĉ. The solution hTLS of the
unconstrained minimisation problem is the generalised eigenvector
ofBT

Q̂TLSB andBT
Q̂
tot

e B, corresponding to the minimum gen-
eralised eigenvalue, such that the solution ŵc

TLS of the constrained
minimisation problem is equal to ŵc

TLS = BhTLS .

5 SIMULATION RESULTS

In our simulations we have used a linear uniform microphone ar-
ray with N = 5 microphones and microphone distance d = 4 cm.
The filter length L = 20 and the sampling frequency fs = 8 kHz.
The passband area (
p;�p) = (300–4000 Hz; 70Æ–110Æ) and the
stopband area (
s;�s) = (300–4000Hz; 0Æ–60Æ + 120Æ–180Æ).
We have designed a broadband beamformer using the LS, eigen-
filter and TLS design procedure, with and without linear con-
straints. The reference point (!c; �c) for the eigenfilter technique is
(1500Hz; 90Æ). The linear constraint is a line constraint at 90Æ with
unit frequency response, such that C =

�
IL IL : : : IL

�
and b =

�
1 0 : : : 0

�
T

. The weighting constants for the
passband and the stopband are � = 1, � = 2 and � = 0:01.
Table 1 shows the stopband and passband errors for the different de-
sign techniques. The differences for the stopband and the passband
errors between the LS, eigenfilter and TLS techniques are small and
depend on the value of �. For � = 2 the stopband errors are smaller
than for � = 0:01. Constrained design gives rise to larger stopband
errors and smaller passband errors than unconstrained design.
Figures 2-4 show the spatial directivity pattern of the LS, eigen-
filter and TLS design techniques without linear constraints and
� = 2. The LS and TLS design give rise to similar results, while
in the eigenfilter design the high frequencies are amplified. Fig-
ure 5 shows the result of the TLS technique with a line constraint
for � = 2. Figure 6 shows the result of the TLS technique for
� = 0:01, giving rise to a better passband behaviour.

6 CONCLUSION

In this paper different techniques have been discussed for the de-
sign of fixed broadband beamformers. Two eigenfilter techniques
have been introduced and compared with the conventional weighted
least-squares design technique.

Algo Jse Jp Jse Jp
(� = 2) (� = 2) (� = 0:01) (� = 0:01)

LS 0.1320 0.0662 0.9990 0.0033
LS + constr 0.3904 0.0674 1.0921 0.0018
EIG 0.1491 0.1576 1.1160 0.0010
TLS 0.1886 0.0998 1.0862 0.0020
TLS + constr 0.3989 0.0584 1.1897 0.0010

Table 1: Stopband and passband error for different techniques
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Figure 2: LS design without constraints (� = 2)
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Figure 3: Eigenfilter design without constraints (� = 2)
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Figure 4: TLS design without constraints (� = 2)
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