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Abstract

This paper presents an iterative signal enhancement al-
gorithm for noise reduction in speech. The algorithm is
based on a truncated singular value decomposition (SVD)
procedure, which has already been used as a tool for signal
enhancement [1][2]. Compared to the classical algorithms,
the novel algorithm gives rise to comparable improvements
in signal-to-noise ratio (SNR). Moreover the algorithm has
an improved frequency selectivity for filtering out the noise
and performs better with respect to the higher formants
of the speech. It can also be extended easily to multiple
channels.

1 INTRODUCTION

In many speech communication applications, like audio-
conferencing and hands-free mobile telephony, the
recorded and transmitted speech signals contain a con-
siderable amount of acoustic background noise. This is
mainly due to the fact that the speaker is located at a
certain distance from the recording microphones. Back-
ground noise can stem from stationary noise sources, but
most of the time the background noise is non-stationary
and broadband, with a spectral density depending upon
the environment. Background noise causes a signal degra-
dation which can lead to total unintelligibility and which
decreases the performance of speech coding and speech
recognition systems.
Some approaches for noise reduction are based on the sin-
gular value decomposition (SVD) [1][2]. The idea is to
consider the signal as a vector in an N -dimensional space
and to separate the noisy signal into a clean signal and a
noise signal, lying in orthogonal subspaces. This is done
by constructing a Hankel matrix containing the given sig-
nal, reducing this matrix to a lower rank and restoring the
Hankel structure (see section 2). A FIR filter interpreta-
tion of this approach has been given which provides some
insight into the frequency domain properties [3]. The clas-
sical algorithm, which consists of repeating this approach
a number of times, is covered in section 3.
In section 4 the iterative signal enhancement (ISE) algo-
rithm is presented, which consists of two loops. In the
inner loop an enhanced signal is computed based on the
largest singular value (most energetic spectral region) and
its residual signal. The outer loop consists of the repeti-

tion of the inner loop for a number of times, depending of
the noise level. In section 5 some simulations and results
are discussed, comparing the SNR improvement and the
frequency behaviour of both algorithms.

2 TRUNCATED SVD PROCEDURE

2.1 Outline of procedure
Consider the clean speech signal x[k] and the noise sig-
nal n[k] (both unknown). If we assume the noise to be
additive, we can write

y[k] = x[k] + n[k], (1)

where y[k] corresponds to the recorded noisy signal. From
the vector y = [y[0], y[1], . . . , y[N − 1]]T we can construct
the Hankel matrix Y ∈ R

L×M ,

Y =

⎡⎢⎢⎢⎣
y[0] y[1] . . . y[M − 1]
y[1] y[2] . . . y[M ]
...

...
...

y[L − 1] y[L] . . . y[N − 1]

⎤⎥⎥⎥⎦ , (2)

with L ≥ M and M + L = N + 1.
If we assume that the clean signal x[k] consists of a sum of p
complex exponentials, then the Hankel matrix containing
the clean signal is rank-deficient and has rank p ≤ M .
This is a model that is often attributed to clean speech
[4]. If n[k] consists of broadband noise, the matrix Y will
in general not be rank-deficient and will have rank M .
From the SVD of Y it is possible to construct a least-
squares estimate of the Hankel matrix containing the clean
signal. When we set the M − p smallest singular values,
corresponding to the noise, to zero and we only retain the
p largest singular values, corresponding to the signal, we
are able to construct the matrix Yp,

Yp =
[

U1 U2

] [ Σ1 0
0 0

] [
VT

1

VT
2

]
= U1Σ1V

T
1 ,

(3)

which is the best rank-p approximation of the original ma-
trix Y.
In general, the matrix Yp does not have a Hankel struc-
ture. A simple procedure for restoring the Hankel struc-
ture is to average along the anti-diagonals of the matrix



and to construct a Hankel matrix X̂,

X̂ =

⎡⎢⎢⎢⎣
x̂[0] x̂[1] . . . x̂[M − 1]
x̂[1] x̂[2] . . . x̂[M ]

...
...

...
x̂[L − 1] x̂[L] . . . x̂[N − 1]

⎤⎥⎥⎥⎦ (4)

x̂[k] =
1

β − α + 1

β∑
i=α

Yp(k − i + 2, i) (5)

α = max(1, k − L + 2), β = min(M, k + 1) (6)

Because of the averaging, the matrix X̂ in general does
not have rank p any more. Still, because X̂ is closer
to Yp than the original matrix Y, the signal x̂ =
[x̂[0], x̂[1], . . . , x̂[N − 1]]T will be more compatible with the
p-th order model than the signal y. It has been shown that
for speech applications this simple procedure is indeed able
to reduce additive noise [5].

2.2 FIR filter representation
In [3][6] a complete FIR filter representation of this algo-
rithm in terms of the SVD of Y is described. The signal
x̂[k], extracted from X̂, essentially consists of the sum of p
zero-phase filtered versions of the original signal y[k]. The
zero-phase filters used are constructed from the right sin-
gular vectors vi of the matrix Y. The whole procedure can
be considered a signal-dependent filtering operation of the
signal y[k] with a length-(2M -1) FIR filter. Figure 1 gives
a schematic overview of this FIR filter representation. In
this figure J is the reverse identity matrix. Multiplication
with a length-N sequence d[k] is necessary because of the
different lengths of the anti-diagonals,

d[k] :

[
1,

1

2
,
1

3
, . . . ,

1

M
,

1

M
, . . . ,

1

M
, . . . ,

1

3
,
1

2
, 1

]
. (7)

Because the SVD can be considered a decomposition based
on an energy criterion, the zero-phase filtered versions
corresponding to the large singular values correspond to
frequency components with large amplitudes. For speech
this means that the zero-phase filters corresponding to the
large singular values capture the formants of the speech,
while the other zero-phase filtered versions mainly contain
noise. Although this procedure provides some noise re-
duction, the obtained signal enhancement is generally not
sufficient. However this procedure will be used as a tool
in the algorithms described in sections 3 and 4.

3 CLASSICAL ALGORITHM

The classical algorithm for noise reduction repeats the pre-
vious procedure a number of times, using the output of one
stage as the input to the following stage. This algorithm
is described in table 1.
If we keep the order M and the rank p fixed, we obtain an
‘enhanced’ signal x̂[k] that is exactly represented by a p-th
order model [7]. However, these iterations turn out not to
be very good in terms of the resulting speech quality. If the
order p is too low, the speech will sound low-pass filtered
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Figure 1: FIR filter representation

and the high frequency components of the speech will be
lost. If the order p is higher, annoying ‘musical tones’ will
be introduced. Therefore we propose an alternative pro-
cedure, referred to as the Iterative Signal Enhancement
(ISE) algorithm.

1. Initialisation : y0[k] = y[k]

2. for i = 0 . . . l − 1,

• construct Hankel matrix Yi from yi[k]

• compute SVD of Yi

• truncate Yi to rank p

• average and extract output signal x̂i[k]

• yi+1[k] = x̂i[k]

end

3. Enhanced signal : x̂[k] = yl[k]

Table 1: Classical algorithm

4 ITERATIVE SIGNAL
ENHANCEMENT ALGORITHM

4.1 Algorithm
The algorithm consists of two loops. The inner loop is
an iterative procedure which computes an enhanced signal
x̂[k] from a noisy input signal y[k]. Since the enhanced sig-
nal coming out of the inner loop still contains some noise,
the outer loop consists of repeating the inner loop a num-
ber of times, depending on the noise level.
The iterative procedure (inner loop) proceeds as follows :
from the noisy input signal y[k] the rank-1 signal decompo-
sition s[k] is calculated by truncating the Hankel matrix
to rank 1 and averaging along its anti-diagonals. In the
frequency domain this signal decomposition will cover the
most energetic spectral band of the input signal. Then the
residual signal r[k] is calculated by subtracting the signal
decomposition s[k] from the input signal y[k] and the pro-
cedure is started over again using the residual signal as
input signal for the next iteration. The enhanced signal
x̂[k] is obtained by summing the signal decompositions s[k]
over all iterations. We stop iterating when the residual sig-
nal r[k] contains ‘only noise’-components.
The inner loop is represented in figure 2, keeping in mind
that the superscript i represents the number of times the
inner loop has been repeated. The complete ISE algorithm
is described in table 2. The ISE algorithm can be viewed
as a filtering operation of the signal y[k] with a length-
(2p(M -1)+1) FIR filter.



The advantage of the ISE algorithm is that it has a better
frequency selectivity for filtering out the noise than the
classical algorithm. The ISE algorithm performs system-
atically better with respect to the higher formants of the
speech (see section 5). This algorithm can also be imple-
mented efficiently because it requires only the computation
of the largest singular value and its corresponding singular
vector [8].
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Figure 2: ISE algorithm (inner loop)

1. Initialisation : y0
0 [k] = y[k]

2. for i = 0 . . . l − 1, (outer loop)

3. • for j = 0 . . . p − 1, (inner loop)

− construct Hankel matrix Yi
j from yi

j [k]

− compute rank-1 decomposition si
j [k]

− compute residual ri
j [k] = yi

j [k] − si
j [k]

− yi
j+1[k] = ri

j [k]

end

• enhanced signal : x̂i[k] =
∑p−1

n=0 si
n[k]

• yi+1
0 [k] = x̂i[k]

end

4. Enhanced signal : x̂[k] = yl
0[k]

Table 2: ISE algorithm

4.2 Extension to multiple channels
The SVD-based algorithm can be extended to multiple
channels, by considering block-Hankel matrices instead of
Hankel matrices [9]. Consider the K-dimensional vector
m[k] = [m1[k], m2[k], . . . , mK [k]]T , consisting of the K
microphone signals at time k.
The ISE algorithm can be extended to multiple channels
by replacing the Hankel matrix Y by the following block-
Hankel matrix H ∈ R

L×KM

H = [H1H2 . . .HK ] (8)

Hi =

⎡⎢⎢⎢⎣
mi[0] mi[1] . . . mi[M − 1]
mi[1] mi[2] . . . mi[M ]

...
...

...
mi[L − 1] mi[L] . . . mi[N − 1]

⎤⎥⎥⎥⎦ . (9)

This way the correlation between the different channels is
exploited, assuming that the noise is less correlated than
the speech.

5 SIMULATIONS AND RESULTS

Several experiments have been carried out, where we pro-
cessed a speech signal, corrupted by noise, with both al-
gorithms. Figure 3 shows the maximum attainable SNR-
improvement for the inner loop of both algorithms, when
the speech signal is corrupted by white noise (SNR ranging
from 0 to 30 dB). The SNR improvement is defined as

SNR(x, x̂) = 10 log10

(
‖x‖2

2

‖x − x̂‖2
2

)
, (10)

where x = [x[0], x[1], . . . , x[N − 1]]T is the clean speech
signal vector and x̂ = [x̂[0], x̂[1], . . . , x̂[N − 1]]T is the en-
hanced signal vector. As shown in the figure, the SNR
improvements for both algorithms are comparable.
However, the frequency behaviour of the ISE algorithm is
better than the classical algorithm. We have processed a
speech signal (8 kHz, frames of 1000 samples), corrupted
with white noise (SNR = 10 dB). Figure 4 shows the fre-
quency spectrum of one frame of the clean and the noisy
speech signal.
We have processed the noisy signal with both algorithms.
Figure 5 shows the frequency spectrum of the enhanced
signal for both algorithms. As can be seen, the ISE al-
gorithm has a better frequency selectivity for filtering out
the noise than the classical algorithm. The ISE algorithm
performs systematically better with respect to the higher
formants of the speech, which are clearly preserved.

Figure 6 shows the frequency spectrum of the residual sig-
nal (noisy signal minus enhanced signal) for both algo-
rithms. Ideally, this spectrum should be flat, since we
have added white noise to the clean speech signal. As
can be seen, the spectrum obtained with the ISE algo-
rithm resembles much more a white noise spectrum than
the spectrum obtained with the classical algorithm. The
residual signal for the classical algorithm mainly contains
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Figure 3: SNR improvement for both algorithms
(dashed : classical algorithm, solid : ISE algorithm)
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Figure 4: Frequency spectrum of the clean and the noisy
speech signal (top: clean signal, bottom: noisy signal)
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Figure 5: Frequency spectrum of the enhanced signal
(top: classical algorithm, bottom: ISE algorithm)

high frequency components, so that executing the classi-
cal algorithm can be considered merely a low-pass filtering
of the noisy speech signal, whereas the residual signal for
the ISE algorithm also contains components in the low
frequency region.
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Figure 6: Frequency spectrum of the residual signal
(top: classical algorithm, bottom: ISE algorithm)
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