

Jonas Klug¹, Daniel Marquardt², Simon Doclo¹ ¹Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg, Germany ²Starkey Hearing Technologies, Eden Prairie MN, USA

PROBLEM STATEMENT

Objective of binaural noise reduction algorithm:

- increase speech intelligibility: suppress undesired sound sources
- preserve spatial impression of acoustic scene (binaural cues of all sound sources)
- Binaural minimum variance distortionless response beamformer with partial noise estimation (BMVDR-N)
 - preserves binaural cues of target speaker
 - parameter allows to trade off noise reduction and binaural cue preservation of background noise

This poster: signal-dependent method to determine trade-off parameter based on coherence between noisy input signals and output signals of BMVDR beamformer

BINAURAL NOISE REDUCTION

BMVDR beamformer [1, 2]: minimize PSD of the noise component while preserving speech component in reference microphone signals at left and right hearing aid

$$\min_{\boldsymbol{W}_0} \mathcal{E} \left\{ |\boldsymbol{W}_0^H \boldsymbol{V}|^2 \right\} \quad \text{subject to} \quad \boldsymbol{W}_0^H \bar{\boldsymbol{A}}_0 = 1 \\ \min_{\boldsymbol{W}_1} \mathcal{E} \left\{ |\boldsymbol{W}_1^H \boldsymbol{V}|^2 \right\} \quad \text{subject to} \quad \boldsymbol{W}_1^H \bar{\boldsymbol{A}}_1 = 1$$

Requires:

- \mathbf{R}_{v} : noise covariance matrix (estimate or model)
- \overline{A}_0 and \overline{A}_1 : relative transfer function (RTF) of target speaker for left and right hearing aid
- + preserves binaural cues of target speaker
- distorts interaural coherence (IC) of noise component

References

- B. Cornelis, S. Doclo, T. Van den Bogaert, J. Wouters, and M. Moonen. Theoretical analysis of binaural multi-microphone noise reduction techniques. *IEEE Trans.* on Audio, Speech and Language Processing, 18(2):342–355, Feb. 2010.
- S. Doclo, S. Gannot, D. Marquardt, and E. Hadad. Binaural Speech Processing with Application to Hearing Devices. In Audio Source Separation and Speech Enhancement, chapter 18. Wiley, 2018.

Subjective Evaluation of Signal-Dependent Partial Noise Preservation Algorithms for Binaural Hearing Aids

BMVDR-N beamformer [1, 3]: also	preserve
$\min_{oldsymbol{W}_0} \mathcal{E}\left\{ oldsymbol{W}_0^Holdsymbol{V} - \eta_0^{}oldsymbol{V}_0 ^2 ight\}$	subject

 $\min_{\boldsymbol{W}_{1}} \mathcal{E}\left\{ |\boldsymbol{W}_{1}^{H}\boldsymbol{V} - \eta_{1}V_{1}|^{2} \right\} \text{ subject to } \boldsymbol{W}_{1}^{H} \overline{\boldsymbol{A}}_{1} = 1$

 $W_{\mathsf{BMVDR-N},0} = (1 - \eta_0) W_{\mathsf{BMVDR},0} + \eta_0 \mathbf{e}_0$ $W_{\text{BMVDR-N,1}} = (1 - \eta_1) W_{\text{BMVDR,1}} + \eta_1 \mathbf{e}_1$

η_0 and η_1 : frequency-dependent trade-off parameters between noise reduction and binaural cue preservation of background noise

 $\eta_0 = \eta_1 = 1$: perfect binaural cue preservation, no noise reduction $\eta_0 = \eta_1 = 0$: maximum noise reduction, no binaural cue preservation

TRADE-OFF PARAMETERS

- **Fixed broadband** values (e.g. $\eta_0 = \eta_1 = 0.2 \dots 0.3$)
- Frequency-dependent values, based on IC discrimination ability of human auditory system [3]
- Frequency-dependent values, based on input/output SNR [4]
- Iarge SNR: more important to keep maximum noise reduction (BMVDR)
- Iow SNR: more important to preserve binaural cues (scaled input signals)

Frequency-dependent continuous function, based on magnitude squared coherence (MSC) between noisy reference microphone signals and output signals of BMVDR beamformer

Characteristic curve between MSC_{io} and trade-off parameter η .

MSC-based algorithms:

MSC₁ with $\eta_{max} = 0.7$ and MSC_{io}^{min} = 0 MSC₂ with $\eta_{max} = 1$ and MSC_{io}^{min} = 0.1

Trans. on Audio, Speech and Language Processing, 26(7):1257–1270, Jul 2018

auditory scene. EURASIP Journal on Advances in Signal Processing, 2016(1):12, Feb. 2016.

re portion of noise component

to $\boldsymbol{W}_0^H \boldsymbol{\overline{A}}_0 = 1$

EXPERIMENTAL RESULTS

Acoustic scenario

- reverberant cafeteria ($T_{60} \approx 1250 \,\mathrm{ms}$) [5]
- Target speaker at 0° (scenario 1) and at -35° (scenario 2)

Algorithm implementation

- Noise covariance matrix \mathbf{R}_{v} : diffuse noise assumption

Objective performance measures

Bam-Q: spatial impression of acoustic scene [6]

Subjective listening test

- N = 11 normal-hearing subjects
- Speech reception threshold (SRT): Oldenburg sentence test

(d) scenario 2 (-35 $^{\circ}$

- spatial quality compared to BMVDR
- (scenario 2)

[3] D. Marquardt and S. Doclo. Interaural Coherence Preservation for Binaural Noise Reduction Using Partial Noise Reduction Using Partial Noise Estimation and B. Kollmeier. Database of multichannel in-ear and behind-the-ear head-related and binaural Noise Reduction Using Partial Noise Estimation and B. Kollmeier. Database of multichannel in-ear and behind-the-ear head-related and binaural Noise Reduction Using Partial Noise Reduction Using room impulse responses. EURASIP Journal on Advances in Signal Processing, 2009:10, 2009. [4] J. Thiemann, M. Müller, D. Marquardt, S. Doclo, and S. van de Par. Speech enhancement for multimicrophone binaural hearing aids aiming to preserve the spatial [6] J. Fleßner, S. Ewert, B. Kollmeier, and R. Huber. Quality assessment of multi-channel audio processing schemes based on a binaural auditory model. in Proc., IEEE International Conference on Acoustics, Speech and Signal Processing, May 2014.

Measured impulse responses from a binaural hearing aid (2 microphones each) in

Ambient noise (babble noise, clacking plates) recorded in the same cafeteria

STFT framework: frame length 30 ms, frame shift 15 ms, $f_s = 16$ kHz RTF vectors: calculated from anechoic HRIRs, no DOA estimation errors Recursive smoothing: time constant for MSC 20 ms

Intelligibility-weighted hybrid SNR, taking into acount better ear glimpsing

Spatial quality: MUSHRA using reference microphone signals as hidden reference

(e) scenario 2 (-35 $^{\circ}$

hybrid SNR and Bam-Q predict subjective results rather well

BMVDR: SRT improvement of about 4 dB, poor spatial quality

BMVDR-IC: similar SRT improvement as BMVDR, significantly improved

BMVDR-MSC: similar SRT improvement as BMVDR, significantly improved spatial quality compared to BMVDR and BMVDR-IC

⁽f) scenario 2 (-35 $^{\circ}$)