

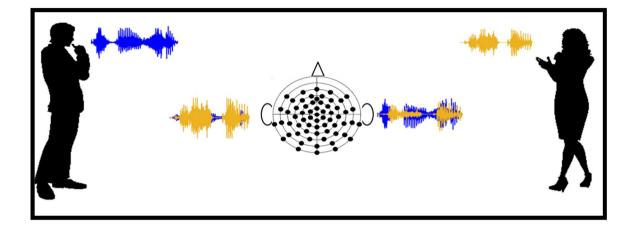
Cognitive-Driven Binaural Speech Enhancement System for Hearing Aid Applications

Ali Aroudi¹, Daniel Marquardt^{1,2}, <u>Simon Doclo¹</u>

¹ Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4All, University of Oldenburg, Germany ² Starkey Hearing Technologies, USA

IHCON 2018

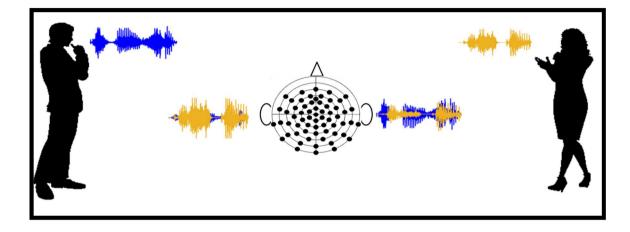
Problem statement



- Identify target speaker to be enhanced using hearing aid microphone signals (acoustic scene analysis) + EEG signals
- Auditory attention decoding (AAD): least-squares-based method [1]
- Often studied for **anechoic noiseless acoustic conditions ×**
- Reference signals for decoding: clean speech signals of speakers are not available ×

[1] J. A. O'Sullivan et al., Attentional selection in a cocktail party environment can be decoded from single-trial EEG, Cerebral Cortex, 2014

Problem statement



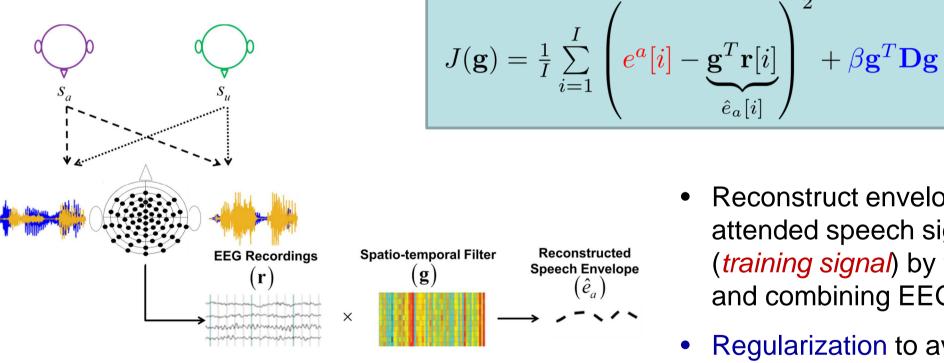
Goal

- Investigate impact of different acoustic conditions (reverberation + background noise) on AAD filter training and decoding performance
- Generate appropriate reference signals from hearing aid microphone signals (here: LCMV beamformer)

Impact of different acoustic conditions on AAD

Auditory attention decoding method [1]

Training step: compute spatio-temporal filter **g**

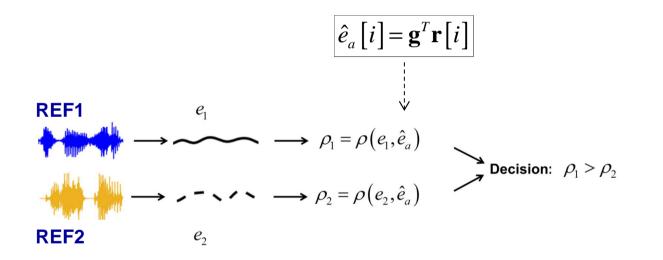


Regularization to avoid over-fitting

[1] J. A. O'Sullivan et al., Attentional selection in a cocktail party environment can be decoded from single-trial EEG, Cerebral Cortex, 2014

Auditory attention decoding method [1]

 Decoding step: correlate envelope of estimated attended speech signal with envelopes of *reference signals*

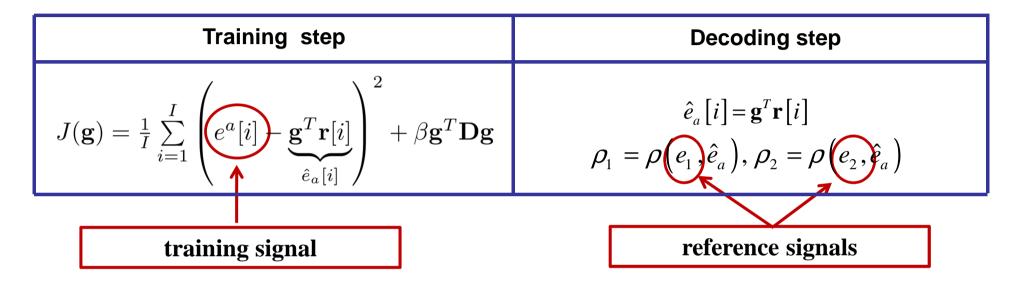


[1] J. A. O'Sullivan et al., Attentional selection in a cocktail party environment can be decoded from single-trial EEG, Cerebral Cortex, 2014

EEG condition and signals for filter training and decoding

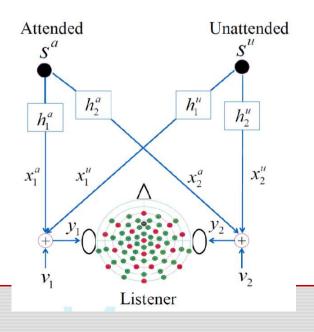
Training step	Decoding step		
$J(\mathbf{g}) = \frac{1}{I} \sum_{i=1}^{I} \left(e^{a}[i] - \underbrace{\mathbf{g}^{T} \mathbf{r}[i]}_{\hat{e}_{a}[i]} \right)^{2} + \beta \mathbf{g}^{T} \mathbf{D} \mathbf{g}$	$\hat{e}_{a}[i] = \mathbf{g}[\mathbf{r}[i]]$ $\rho_{1} = \rho(e_{1}, \hat{e}_{a}), \rho_{2} = \rho(e_{2}, \hat{e}_{a})$		
EEG training condition	EEG evaluation condition		
EEG training condition	EEG evaluation condition		
Anechoic + Noiseless	Anechoic + Noiseless		
Reverberant + Noiseless	Reverberant + Noiseless		
Anechoic + Noisy	Anechoic + Noisy		
Reverberant + Noisy	Reverberant + Noisy		
All conditions	All conditions		

EEG condition and signals for filter training and decoding



Different **acoustic signals** as reference (and training) signals:

- clean speech signals
- o anechoic speech signals (HRTFs)
- o anechoic speech signals affected by
 - noise \rightarrow noisy signals
 - reverberation → *reverberant* signals
 - interfering speaker \rightarrow interfered signals
 - all acoustic components \rightarrow *binaural* signals



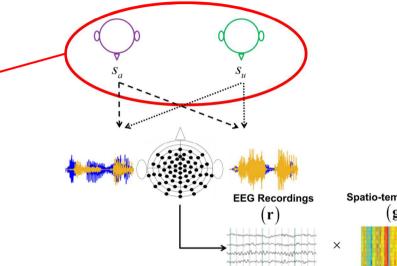
Impact of different acoustic conditions on AAD

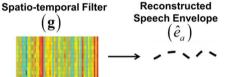
Experimental evaluation

Acoustic setup and simulation

Two audio stories by two different male speakers (German) Left and right speaker simulated at -45° and 45°

Acoustic stimuli presented to participants using insert earphones





Experimental Analysis Condition	Stimuli Presentation	$\mathbf{SNR}[dB]$	$T_{60}[\mathrm{s}]$	
Noiseless	Noiseless	∞	< 0.05	23
Reverberant	Reverberant I	∞	0.50	
	Reverberant II	∞	1.00	
Noisy	Noisy I	9.0	< 0.05	diffuse babble
NOISY	Noisy II	4.0	< 0.05	noise
	Reverberant-noisy I	9.0	0.50	
Reverberant-noisy	Reverberant-noisy II	4.0	0.50	
	Reverberant-noisy III	9.0	1.00	

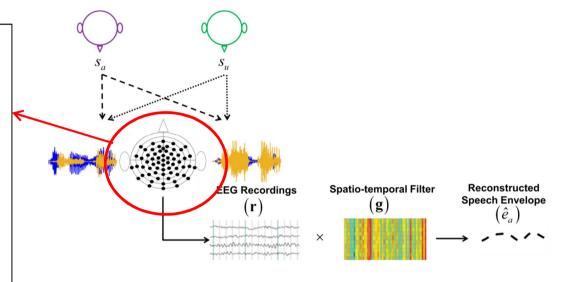
[2] A. Aroudi, B. Mirkovic, M. De Vos, S. Doclo, IEEE Trans. Neural Systems and Rehabilitation Engineering, under revision.

Simon Doclo

Cognitive-Driven Binaural Speech Enhancement

EEG setup, training and decoding

- Subjects:
 - *N*=18 German-speaking participants
 - 8 instructed to attend to left speaker,
 10 instructed to attend to right speaker
- EEG signals:
 - 64 channels (Easycap GmbH)
 - band-pass filtered (2-8 Hz), f_s = 64 Hz
- Training and decoding:
 - trial length: 60 seconds
 - each participant's own data
- Decoding performance:
 - percentage of correctly decoded trials over all considered trials and participants
 - leave-one-out cross validation approach

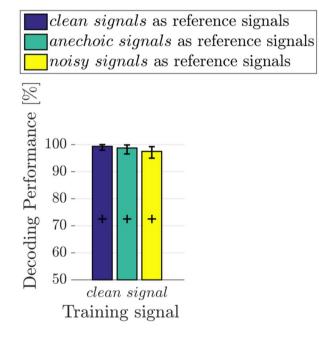


[2] A. Aroudi, B. Mirkovic, M. De Vos, S. Doclo, IEEE Trans. Neural Systems and Rehabilitation Engineering, under revision.

Experimental results

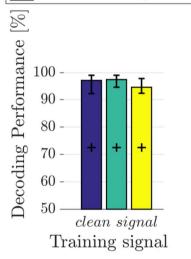
Reference signals: influence of noise, reverberation and interfering speaker

Anechoic - Noisy

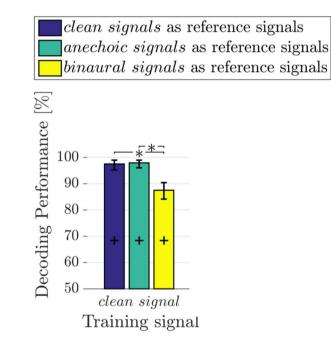


Reverberant - Noiseless

clean signals as reference signals *anechoic signals* as reference signals *reverberant signals* as reference signals



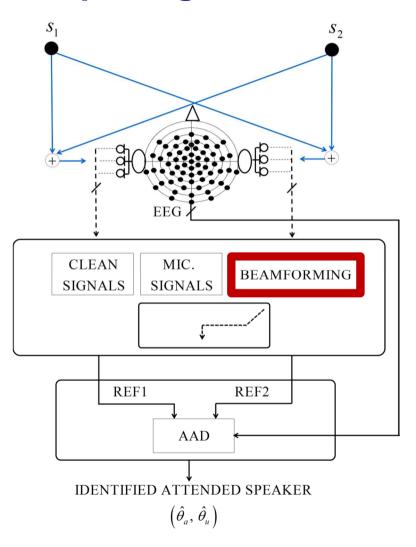
Reverberant - Noisy



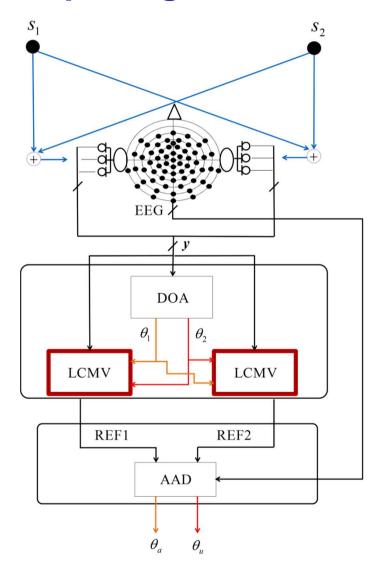
- □ Reference signals affected by reverberation or noise → comparable decoding performance as when using clean reference signals
- □ Reference signals affected by interfering speaker → decoding performance significantly decreases

Cognitive-driven binaural speech enhancement system

Beamformer output signals as reference signals



Beamformer output signals as reference signals



Beamformer output signals as reference signals

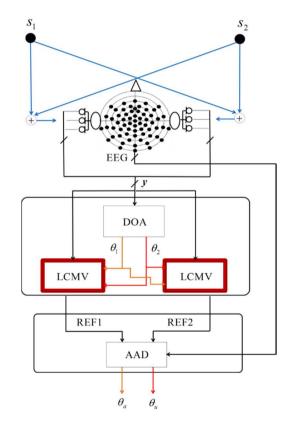
Linearly Constrained Minimum Variance (LCMV) beamformer [3] aims at

- 1. minimizing (diffuse) noise output PSD
- 2. passing signals from *target direction* θ_t without distortion
- 3. suppressing signals from *interference direction* θ_i with suppression factor δ

$$\min_{\mathbf{w}} \underbrace{\mathbf{w}^{H} \mathbf{\Phi}_{n} \mathbf{w}}_{\text{noise PSD}} \quad \text{subject to} \quad \underbrace{\mathbf{w}^{H} \mathbf{a}(\theta_{t}) = 1}_{\text{target}}, \underbrace{\mathbf{w}^{H} \mathbf{a}(\theta_{i}) = \delta}_{\text{interference}}$$

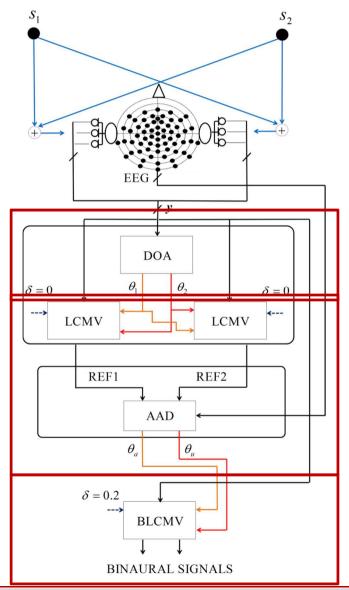
Requires

- > Noise covariance matrix, e.g., diffuse noise assumption
- Relative transfer functions (RTFs) of sources:
 - Reverberant RTFs (oracle/estimate)
 - Anechoic RTFs based on HRTF measurements and direction-of-arrival (DOA) of target and interfering speaker (oracle/estimate)



[3] E. Hadad, S. Doclo, S. Gannot, The Binaural LCMV Beamformer and its Performance Analysis, IEEE/ACM TASLP, 2016.

Cognitive-driven binaural speech enhancement system



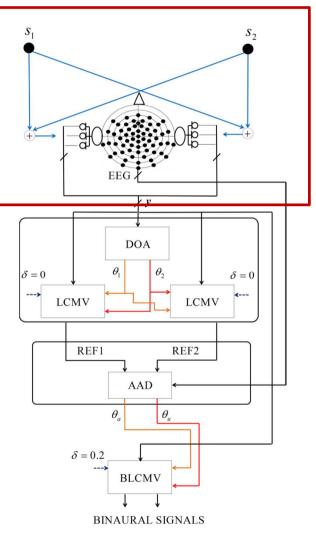
- 1. Acoustic scene analysis: DOA of speakers
- 2. AAD using LCMV beamformer output signals (steered to both speakers) decides which speaker is attended/unattended
- 3. AAD information is used in **binaural LCMV beamformer** to:
 - Pass (estimated) attended speaker
 - Suppress (estimated) unattended speaker with factor δ =0.2
 - Preserve binaural cues of both speakers

Cognitive-driven binaural speech enhancement system

Experimental evaluation

Acoustic setup and simulation

Experimental Analysis Condition	Stimuli Presentation	SINR [dB]	T ₆₀ [s]
Anachaia - Naiau	Noisy I	-1.00	<0.05
Anechoic + Noisy	Noisy II	-2.50	<0.05
Reverberant + Noisy	Reverberant-noisy I	-1.00	0.50
	Reverberant-noisy II	-2.50	0.50



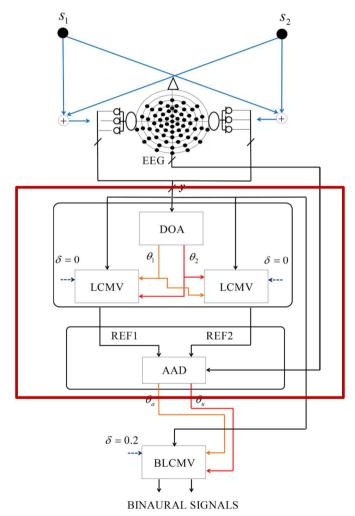
AAD using LCMV output signals as reference signals

• DOA estimation of speakers

- oracle DOA (ODOA)
- estimated DOA (EDOA) from binaural microphone signals with SVM-based method using GCC-PHAT features [4]

• LCMV beamformer

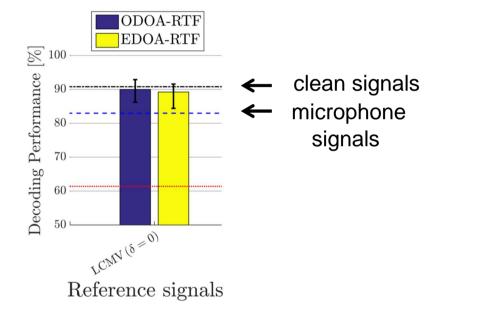
- Noise covariance matrix: diffuse noise assumption
- Relative transfer functions:
 - oracle reverberant RTFs (ORTF)
 - anechoic RTFs using oracle DOA (ODOA-RTF)
 - anechoic RTFs using estimated DOA (EDOA-RTF)
- Auditory attention decoding
 - trial length: 30 seconds
 - oracle AAD (OAAD) or estimated AAD (AAD)



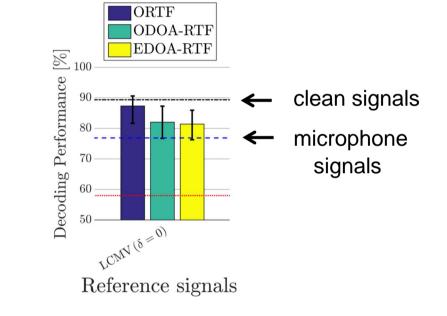
[4] H. Kayser *et al.*, "A discriminative learning approach to probabilistic acoustic source localization," in Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), pp. 99–103, Sep. 2014.

Experimental results: AAD performance

Anechoic-noisy condition



Reverberant-noisy condition



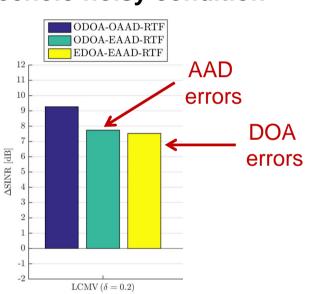
Improved AAD performance using LCMV output signals compared to using microphone signals

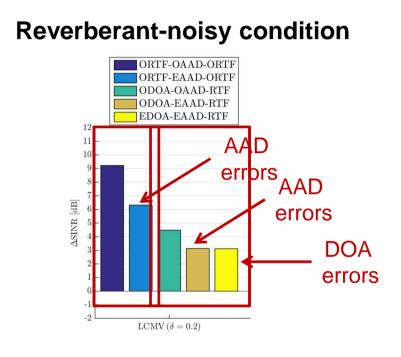
Reverberant condition: anechoic RTFs decrease AAD performance compared to reverberant RTFs

Anechoic + reverberant condition: robust to DOA estimation errors

Experimental results: speech enhancement

Binaural SINR improvement averaged over all trials





Anechoic-noisy condition

- □ Large binaural SINR improvement on average
- □ AAD errors degrade binaural SINR improvement (attended speaker wrongly suppressed)
- Robust to DOA estimation errors
- Reverberant condition: lower SINR improvement than anechoic condition when using anechoic RTFs

Summary

- Least-squares-based AAD method
 - > clean speech signals are not available as reference signals in practice
 - ➤ reference signals affected by reverberation or noise → comparable decoding performance as when using clean signals
 - ➤ reference signals affected by interfering speaker → decoding performance significantly decreases
 - Improved decoding performance using LCMV output signals compared to using microphone signals
- Cognitive-driven binaural speech enhancement system
 - Large binaural SINR improvement on average although AAD errors degrade performance
 - In reverberant conditions: better SINR improvement using reverberant than anechoic RTFs

Thanks for your attention!

Questions?

Simon Doclo Cognitive-Driven Binaural Speech Enhancement