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Research facilities

* Free-field and sound-proof listening booths
e Anechoic chamber (8,5m x 7/m x 4m; f_~ 50 Hz)



Research facilities

o Communication acoustics simulator (active system,
16 microphones + 24 loudspeakers, T¢,: 0.4 — 4 sec)

e Variable acoustics lab (passive, Tg,: 0.2 — 1 sec)



Research facilities

e Virtual reality lab (3D Ambisonics, 86 loudspeakers,
cylindrical screen video projection)

o Gesture lab (interactive audio-visual scenes, motion/head
tracking, eye movement/EOG)
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Research topics

¢ Single- and multi-microphone speech enhancement

Noise reduction (DNN-based, exploiting interframe correlation)

Dereverberation (spectral enhancement, multi-channel
equalization, blind probabilistic model-based)

Acoustic sensor networks (spatially distributed microphones,
sampling rate offset estimation, distributed processing)

Computational acoustic scene analysis (CASA, localization)

Beamformer design (e.qg., virtual artificial head)

o Signal processing for ear-mounted communication devices

Binaural noise reduction, aiming at preserving spatial impression
of acoustic scene (binaural cues)

Open-fitting hearing devices: acoustic transparency, feedback
cancellation and active noise/occlusion control

EEG-based auditory attention decoding for steering beamformers




I. Acoustic sensor networks



Acoustic sensor networks

Exploit spatial diversity of spatially distributed
microphones for improved speech enhancement
and source localisation

Previous and current research:

Low-complexity method to estimate relative
transfer function (RTF) vector of target speaker
for hearing aids + external microphone(s)

Improved trade-off between noise reduction
and binaural cue preservation

(Binaural) source localization exploiting external
microphones

Dereverberation using weighted prediction error
method with microphone-dependent prediction delay

Microphone utility and subset selection
Sampling rate offset estimation




Blind multi-microphone speech
enhancement

e Filter-and-sum structure: |2 =W 'Y




Blind multi-microphone speech
enhancement

e Filter-and-sum structure: | < — WHY

e “Workhorse algorithm”: parametric Multi-channel Wiener filter (MWF)

Goal: estimate desired speech component in reference microphone + trade off
interference reduction and speech distortion

. | \ - 3 | ) \—1x/
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— requires estimate of covariance matrices

Can be decomposed as MVDR beamformer and spectral postfilter

— requires estimate/model of interference covariance matrix, estimate/model
of relative transfer function (RTF) vector of desired speaker, and PSDs of speech
and interference components at MVDR output



RTF vector estimation
exploiting external microphone

Estimate RTF vector of target speaker to steer binaural MVDR beamformer

Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field




RTF vector estimation
exploiting external microphone

Estimate RTF vector of target speaker to steer binaural MVDR beamformer

Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

— correlate noisy HA microphone signals with noisy external microphone signal
and normalize by reference element

Low computational complexity with similar

(even better in practice) performance than Wi = I_I;U ‘_?L
state-of-the-art covariance whitening (CW) approach ap Ry, "ar
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Audio Demo



Extension:
Multiple external microphones

« Each external microphone vyields (different) RTF estimate

« Linear combination/selection of RTF estimates
(per frequency)
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3. Output SNR-maximizing combination
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Extension:
Partial RTF vector estimation

= Partial RTF vector estimation

D- > ¥ ‘o Za
in general acoustic scenario - y R
(e.g. interfering speaker and noise) bl . |
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= Assumption: part of RTF vector is > > H

known (e.g. anechoic steering vector

for hearing aids) e : —
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q — known -1 7
Aunknown O f%r : Z,
O >

= GSC-ESR structure: create external speech references by removing
undesidered components (interference, noise) in external microphone signals
using noise+interference references of Generalized Sidelobe Canceller structure

Ve, = (CIR,, .C.) ' CTE,R,ecm. Ve, = (CHR,,C.) " CPE,R,eqm.



Dereverberation:
Weighted prediction error

Goal: estimate clean speech STFT coefficients s(k, ) from reverberant (and
noisy) STFT coefficients y,,(k, 1) by subtracting late reverberant component

Y (K, 1) = T (K, 1) % 5(k, 1) +vpm (K, 1)

A 7
~

Tm (k1)
Probabilistic estimation using (statistical) models of desired speech signal
and reverberation

Exploit sparsity properties of speech in STFT-domain

Approach: transform to equivalent AR model — sparse multi-channel linear
prediction (MCLP)

xy(k, 1) =d(k,l) + % Im(k,n)xy (k1 —T —n)

T m=1 n=0 T T
clean signal prediction delay
incl. early reflections) filters (early reflections)

lean Reverberant



Dereverberation:
Weighted prediction error

Weighted prediction error (WPE) method for dereverberation

x1(k) = d(k) + X, (F)g(k) d(k) = xi (k) — X, (k)&(k)

!

predicted reverberation

Prediction delay plays
crucial role / trade-off
between residual
reverberation and distortion

'

Prediction delay is usually chosen based on correlation properties of speech,
i.e. microphone-independent



Dereverberation:
Weighted prediction error

Generalization of original WPE approach [Nakatani et al., 2010]

STFT coefficients of desired signal are assumed to be modelled using circular
sparse/super-Gaussian prior with time-varying variance A(n)

pld(n)) = AI(I}_II?.;EUJM?;(d(H}; 0, A(n))(A(n))

Scaling function y(.) can be interpreted as hyper-prior on variance

Maximum-Likelihood Estimation

N N .
L(g) = H p(d(n)) # min Y (I'i:;:gjl + log wA(n) -{ log t,.",r[)\(n,}j)

A=0g -

n=1

Alternating optimization procedure

Estimate prediction vector
- . _l -
gV = (XDl X, ) XID x

Estimate variances (assuming complex generalized
Gaussian prior with shape parameter p)

A1) () = |41 () 2P,




WPE for acoustic sensor
networks

When microphones are spatially distributed, time
differences of arrival (TDOASs) between microphones
may be large and diverse
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When using WPE with a fixed prediction delay, this
may lead to distortion or excessive reverberation

mm=) apply TDOA compensation to WPE input, leading to
microphone-dependent prediction delays

7
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Different schemes to implement prediction delays

non-integer prediction delays with
crossband filters (NINT)

non-integer prediction delays with
band-to-band approximation (NINT-B2B)

(coarse) integer prediction delays (INT)



WPE for acoustic sensor
networks

Simulation results:

Fixed prediction delay (MI) may result in low speech quality, depending on position
of speech source

Microphone-dependent prediction delays: NINT performs best, closely followed by
INT performs worse than NINT, however at significantly lower
computational complexity

M=9, fs=16 kHz; STFT: 64ms
(overlap 16ms); WPE: L,=12,
=2, p=0.5



WPE for acoustic sensor
networks

Simulation results:

Reverberant
microphone signal

Fixed prediction delay

Microphone-
dependent prediction
delay (NINT)

Teo = 750ms, M=9, fs=16 kHz; STFT: 64ms (overlap 16ms); WPE: L=12, 1=2, p=0.5; estimated TDOAs (GCC-PHAT)



Current/future work

Complex and time-varying scenarios:
incorporate CASA into control path of
algorithms, switch between keeping all
speakers or removing undesired speakers

Smart speaker scenario: multiple
nodes with multiple microphones

WPE-based dereverberation in acoustic 2 &
. S 72 © ¢
sensor networks: microphone utility, microphone =
subset selection, reference microphone selection =
o
(Binaural) source localisation exploiting e

external microphones

Sampling rate offset estimation and compensation
for distributed noise reduction (DANSE) S I




I1. Deep multi-frame
noise reduction
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Outline

Deep Multi-Frame Noise Reduction for
Single-Microphone Speech Enhancement

* Problem Statement
 Multi-Frame MVDR Filter

Extension Towards Binaural
Noise Reduction

Slide 2 Deep Multi-Frame Noise Reduction
13.03.2023 Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg
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Deep Multi-Frame Noise Reduction

©

X

compute apply
mask / filter mask / filter

» signal-independent transform:
« STFT
» learned

« signal-dependent: KLT

model-based
learning-based
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time frames
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Signal Model

frequency bins

= noisy multi-frame vector: y, =[Y; .. Yi_n41l7 = x; + n,

time frames

= multi-frame speech vector x, = [X; ... Xi—n+1l?

= x; can be decomposed into temporally correlated and uncorrelated
components w.r.t. X;:

, E{xeX{}
Xt =Vt Xt + Xy, YVt = EAD! e cV

— highly time-varying speech interframe correlation (IFC) vector v, ,

— depends on sound (e.g. voiced vs. unvoiced)

Slide 4 Deep Multi-Frame Noise Reduction
13.03.2023 Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg
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Multi-Frame MVDR Filter

= minimize output noise PSD while preserving temporally correlated speech
component:

wlFMVDR — minwf @, . w, st.wlly,, = 1

w

= solved by multi-frame MVDR (MFMVDR) filter:

-1

wMFMVDR _ (Dn,t)’x,t

t T yH -1
Yx,t n,th,t

»requires estimate of inverse noise covariance matrix db,‘l,lt and speech IFC
vector y, ¢

»Deep MFMVDR filter: estimate quantities by integrating fully differentiable
MFMVDR filter into supervised learning framework, minimizing time-domain
loss function at output of MFMVDR filter

Deep Multi-Frame Noise Reduction
Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg



not trainable trainable

Carl von Ossietzky
Universitat
Oldenburg

Signal Processing Group

Supervised Learning-Based Parameter Estimation

y compute

(Features: concatenation of \
1. logarithm of noisy magnitude
2. cosine of noisy phase
3. sine of noisy phase

\_ J
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not trainable trainable
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Supervised Learning-Based Parameter Estimation

compute
filter

[Deep Filtering:
estimate filter coefficients directly

DINKE w
features multi-frame filter >
coefficients
Slide 7 Deep Multi-Frame Noise Reduction
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Supervised Learning-Based Parameter Estimation

compute
filter

features

Geep Multi-Frame MVDR: \

DNN1:
noise covariance ®;,! wMFMVDR

~ 4
(Dn YX
DNN2 Pid. 7,
speech IFC vector ¥,

\_
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not trainable trainable
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Supervised Learning-Based Parameter Estimation

compute
filter

features

(Loss: Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) \
_ [ xl12 _ ®Tx
L =10 logo (j0pz) @ = i

[J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, in Proc. 2019 ICASSP]
» popular time-domain loss for speech enhancement and separation algorithms

\_ J
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Simulation Results

= Deep Noise Suppression (DNS) challenge datasets: diverse speech and noise sources

= DNN architecture: causal temporal convolutional network (TCN): 2 stacks of 4 layers
each, kernel size 3 — temporal receptive field of 61 frames (128 ms)

fs=16 kHz; STFT: 8ms (overlap 6ms);
N=5; Gmin=-17 dB; p=0.001

= Performance benefit of
« complex-valued masking vs. real-valued masking
* MFMVDR structure vs. direct filtering

Slide 10 Deep Multi-Frame Noise Reduction
13.03.2023 Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg
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Simulation Results

= Real-time factor

= Network size

Deep Multi-Frame Noise Reduction
Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg
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Simulation Results - Audio examples

noisy

single-frame mask,
complex

multi-frame filter,
direct estimation

multi-frame filter,
MFMVDR structure

Slide 12 Deep Multi-Frame Noise Reduction
13.03.2023 Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg
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Extension Towards Binaural (Multi-Microphone) Noise Reduction
() T

signal vector ye=1Y% - YeenialT ye=[Y} .. Yy Y o Y nud]
target signal X, XL Xt
used correlations RGiglelele:] spatio-temporal

frequency bins

right N
Ieftg

time frames
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not trainable trainable

Supervised Learning-Based Parameter Estimation

compute
features binaural
filters

(Loss: Combined Mean Absolute Spectral Error
1 ~ ~
=) Bl -+ - |ix -8

ve{l,r}

* more robust against reverberation than SI-SDR

k. [Z.-Q. Wang, P. Wang, and D. Wang, IEEE/ACM TASLP, 2020]

Deep Multi-Frame Noise Reduction
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Simulation Results

= dataset based on Clarity Enhancement Challenge

« diverse localized speech and noise sources

* simulated binaural RIRs, mild reverberation
= DNN architecture: causal temporal convolutional network (TCN)
= performance benefit of using VIFMVDR structure vs. direct filtering

measure = APESQ measure = AMBSTOI
1-5 0.2
40% 1.0
0.1
S o5
>
o
a 0.0 0.0
£
-0.5
-0.1
-1.0
. >
N O
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Simulation Results — Audio Examples

clean
noisy

binaural multi-
frame filter,
direct
estimation

binaural multi-
frame filter,
MFMVDR

structure
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Possible Simplifications (speech IFC vector)

Temporal-Only

Deep Multi-Frame Noise Reduction
Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg

Interaural Transfer Function
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Conclusions

Considerable monaural and binaural noise reduction performance using
supervised learning-based approaches

Consistent benefit by imposing multi-frame MVDR structure

Complexity of deep binaural MFMVDR filter can be reduced by
* assuming a quasi-stationary interaural transfer function

» preserving only temporal target correlations

Current/future research:

* Investigation of deep (multi-microphone) binaural MFMVDR filter for
dynamic acoustic scenarios

« Joint noise reduction and binaural cue preservation of complete acoustic
scene using deep learning-based approaches

Deep Multi-Frame Noise Reduction
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III. Geometry-aware sound
source localisation



Sound source localisation

Model-based approaches (e.g. SRP-PHAT, MUSIC)

Computation of analytical function, which explicitly
depends on microphone array geometry
— flexibility towards different array geometries

o0

M M S
PO,r) = 27722 / Tra(w)e?“™ 1@ qy

k=1 1l=1 )
— 00

1

P(0,r) = |a” (0, r)ExEXa(0,r)||

Supervised learning-based approaches

Learn relationship between input features and DOA
(classification problem)

Training data implicitly based on underlying
array geometry — internal representation

Substantial performance degradation when
applying DNN trained for certain array geometry
to other array geometry



Geometry-aware DOA
estimation

Aim: supervised learning-based approach that generalizes well to different
microphone array geometries

DNN taking mixed data features as input:
features extracted from microphone signals
microphone array geometry (assumed to be known!)



Geometry-aware DOA
estimation

Supervised learning systems:
CNN: using signal phases as input features [Chakrabarty & Habets, 2019]

FC-full: using time-domain GCC-PHAT between all microphone pairs as input features

Yi(w) - Yy (@) }

I 5
Ve(w) - Y, (w)] fru = (Y120 Y130+ Y10

Yii = F {
FC-max: reduced feature set only using location of (interpolated) maxima of GCC-
PHAT

e o 7 7 7
dk.ﬂ — arg Inax T}g__f_ fmu;n — [dl,E: dl.:i: S :di‘-.f—l,_ﬂI]
&

-

FC-GA: using maxima of GCC-PHAT + microphone array geometry as input features

f-r' = [:‘Ela cees LML YL, - ?yn"-lr] f - [f"””w’ f"']



Geometry-aware DOA
estimation

Simulation results:

Single static sound source in noisy and reverberant environment
72 DOA classes (5° resolution), f, = 8 kHz, framelength = 32 ms

Multi-condition training using simulated microphone signals (speech + white noise
as sound source, diffuse babble noise), cross-entropy loss function

CNN, FC-full, FC-max: trained for specific microphone array geometry
(M=5, arc-shaped)

FC-GA: every training sample uses different microphone array geometry
(M=5, planar array, random positions with width and depth of 0.4 m)

Room dimensions: | [9.0, 5.0,3.0]m =+ (1.0, 1.0, 0.5] m I T
Array position: [4.5,2.5,1.5]m &£ [0.5, 0.5, 0.5]m 0.05r

Source distance: 1.0 - 3.0 m [within boundaries] E o}

Source direction: 0%:5°:355° }ﬁ-o.us— o o

Tl[j(]: 0.13s-1.0s o

SNR: 0-30dB T2 01 0 01 0.2

X [m]



Geometry-aware DOA

estimation

Sensitivity to random coordinate deviations

= No deviations: DNN-based
systems outperform model-
based algorithms

= Small deviations:
substantial performance
degradation for baseline
DNN-based systems

= Proposed geometry-aware
system robust to deviations

Performance for random
(perfectly known) planar
array geometry

Accuracy [%]

100 -~

75 1

50 ~

251

0

T¢o = 500ms, SNR=20 dB

..............................

———— T ————
e —
———

----- SRP-PHAT
-=-- MUSIC
—8— CNN

~4—= FChu
—=— FCrmax
— FCqa

0.00 001 0.02 003 004 005 006 0.07 008 009 0.10
Coordinate deviation [m]

Algorithm | MAE [°] | Accuracy [%]
SRP-PHAT 2.44 93.5
MUSIC 2.69 86.0
FCaa 1.47 96.1




Current/future work

Investigate robustness to inaccuracies in assumed microphone array
geometry

Improved conditioning on microphone array geometry (e.g. using
feature-wise linear modulation / FiLM)

Signal-informed DOA estimation el
exploiting external microphone E(““’?
(Kowalk et al., IWAENC 2022) Binary mask

microphone M (w) i é'gg”,?ﬁ%
array Feature map

Yo (e —_—p
O% Informed

Y () 4’
[)—’l( ) Feature - ( ) v
Vi T DNN —p» ’ 2
: extraction estimate 6
—>

Yy-1(w) )
(O-2-1@)_y (GCC-PHAT)



Research topics

e Single- and multi-microphone speech enhancement

Noise reduction (DNN-based, exploiting interframe correlation)

Dereverberation (spectral enhancement, multi-channel
equalization, blind probabilistic model-based)

Acoustic sensor networks (spatially distributed microphones,
sampling rate offset estimation, distributed processing)

Computational acoustic scene analysis (CASA, localization)
Beamformer design (e.qg., virtual artificial head)

o Signal processing for ear-mounted communication devices

Binaural noise reduction, aiming at preserving spatial impression
of acoustic scene (binaural cues)

Open-fitting hearing devices: acoustic transparency, feedback
cancellation and active noise/occlusion control

EEG-based auditory attention decoding for steering beamformers



Questions ?

http://www.sigproc.uni-oldenburg.de

Signal Processing Uni Oldenburg
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