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• Founded in 1973

• Named after Carl von Ossietzky
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1.300 scientific staff
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• Free-field and sound-proof listening booths

• Anechoic chamber (8,5m x 7m x 4m; fc ≈ 50 Hz)

Research facilities
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• Communication acoustics simulator (active system, 
16 microphones + 24 loudspeakers, T60: 0.4 – 4 sec)

• Variable acoustics lab (passive, T60: 0.2 – 1 sec)

Research facilities
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• Virtual reality lab (3D Ambisonics, 86 loudspeakers, 
cylindrical screen video projection)

• Gesture lab (interactive audio-visual scenes, motion/head 
tracking, eye movement/EOG)

Research facilities



• Single- and multi-microphone speech enhancement

– Noise reduction (DNN-based, exploiting interframe correlation)

– Dereverberation (spectral enhancement, multi-channel 
equalization, blind probabilistic model-based) 

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA, localization)

– Beamformer design (e.g., virtual artificial head)

• Signal processing for ear-mounted communication devices

– Binaural noise reduction, aiming at preserving spatial impression 
of acoustic scene (binaural cues) 

– Open-fitting hearing devices: acoustic transparency, feedback 
cancellation and active noise/occlusion control

– EEG-based auditory attention decoding for steering beamformers

7

Research topics



I. Acoustic sensor networks



 Exploit spatial diversity of spatially distributed
microphones for improved speech enhancement 
and source localisation

 Previous and current research: 

 Low-complexity method to estimate relative 
transfer function (RTF) vector of target speaker 
for hearing aids + external microphone(s)

 Improved trade-off between noise reduction 
and binaural cue preservation

 (Binaural) source localization exploiting external 
microphones

 Dereverberation using weighted prediction error 
method with microphone-dependent prediction delay 

 Microphone utility and subset selection

 Sampling rate offset estimation 

9

Acoustic sensor networks



• Filter-and-sum structure :

Blind multi-microphone speech
enhancement

10[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Gannot et al., IEEE/ACM TASLP, 2017] 



• Filter-and-sum structure :

• “Workhorse algorithm”: parametric Multi-channel Wiener filter (MWF) 

Blind multi-microphone speech
enhancement

11[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Gannot et al., IEEE/ACM TASLP, 2017] 

Goal: estimate desired speech component in reference microphone + trade off 
interference reduction and speech distortion

 requires estimate of covariance matrices

Can be decomposed as MVDR beamformer and spectral postfilter

 requires estimate/model of interference covariance matrix, estimate/model 
of relative transfer function (RTF) vector of desired speaker, and PSDs of speech 
and interference components at MVDR output



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

12

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

→ correlate noisy HA microphone signals with noisy external microphone signal 
and normalize by reference element

 Low computational complexity with similar
(even better in practice) performance than
state-of-the-art covariance whitening (CW) approach

13

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 



Audio Demo

14
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Extension: 
Multiple external microphones

[Gößling, Middelberg, Doclo, Proc. WASPAA 2019 ] [Middelberg, Doclo, Proc. IWAENC, 2022]

• Each external microphone yields (different) RTF estimate

• Linear combination/selection of RTF estimates
(per frequency)

1. Input SNR-based selection

2. Simple averaging

3. Output SNR-maximizing combination



 Partial RTF vector estimation 
in general acoustic scenario 
(e.g. interfering speaker and noise)

 Assumption: part of RTF vector is 
known (e.g. anechoic steering vector 
for hearing aids)

 GSC-ESR structure: create external speech references by removing 
undesidered components (interference, noise) in external microphone signals 
using noise+interference references of Generalized Sidelobe Canceller structure 

16[Middelberg, Doclo, Proc. ITG Conference on Speech Communication, 2021]

Extension: 
Partial RTF vector estimation



• Goal: estimate clean speech STFT coefficients from reverberant (and 
noisy) STFT coefficients 𝑚 by subtracting late reverberant component

 Probabilistic estimation using (statistical) models of desired speech signal
and reverberation

 Exploit sparsity properties of speech in STFT-domain 

• Approach: transform to equivalent AR model → sparse multi-channel linear 
prediction (MCLP)

clean signal 
(incl. early reflections)

delay
(early reflections)

prediction 
filters

Clean Reverberant

Dereverberation:
Weighted prediction error

17



 Weighted prediction error (WPE) method for dereverberation

 Prediction delay is usually chosen based on correlation properties of speech, 
i.e. microphone-independent

predicted reverberation

18[Nakatani et al., IEEE/ACM TASLP, 2010] [Jukić et al., IEEE/ACM TASLP, 2015] 

Prediction delay plays 
crucial role / trade-off 
between residual 
reverberation and distortion

Dereverberation: 
Weighted prediction error



 Generalization of original WPE approach [Nakatani et al., 2010]

 STFT coefficients of desired signal are assumed to be modelled using circular 
sparse/super-Gaussian prior with time-varying variance (n)

Scaling function (.) can be interpreted as hyper-prior on variance 

 Maximum-Likelihood Estimation

 Alternating optimization procedure

1. Estimate prediction vector 

2. Estimate variances (assuming complex generalized
Gaussian prior with shape parameter p)

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015] 19

Dereverberation: 
Weighted prediction error



 When microphones are spatially distributed, time 
differences of arrival (TDOAs) between microphones 
may be large and diverse

 When using WPE with a fixed prediction delay, this 
may lead to distortion or excessive reverberation 

apply TDOA compensation to WPE input, leading to 
microphone-dependent prediction delays

 Different schemes to implement prediction delays 

 non-integer prediction delays with 
crossband filters (NINT)

 non-integer prediction delays with 
band-to-band approximation (NINT-B2B)

 (coarse) integer prediction delays (INT)

20

WPE for acoustic sensor 
networks

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 
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WPE for acoustic sensor 
networks

 Simulation results:

 Fixed prediction delay (MI) may result in low speech quality, depending on position 
of speech source

 Microphone-dependent prediction delays: NINT performs best, closely followed by 
NINT-B2B; INT performs worse than NINT, however at significantly lower 
computational complexity

M=9, fs=16 kHz; STFT: 64ms 
(overlap 16ms); WPE: Lg=12, 
=2, p=0.5

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 
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 Simulation results:

Position 1 Position 2

Reverberant
microphone signal

Fixed prediction delay

Microphone-
dependent prediction

delay (NINT)

T60 ≈ 750ms, M=9, fs=16 kHz; STFT: 64ms (overlap 16ms); WPE: Lg=12, =2, p=0.5; estimated TDOAs (GCC-PHAT)

WPE for acoustic sensor 
networks

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 



 Complex and time-varying scenarios: 
incorporate CASA into control path of
algorithms, switch between keeping all 
speakers or removing undesired speakers

 Smart speaker scenario: multiple
nodes with multiple microphones

 WPE-based dereverberation in acoustic
sensor networks: microphone utility, microphone
subset selection, reference microphone selection

 (Binaural) source localisation exploiting
external microphones

 Sampling rate offset estimation and compensation 
for distributed noise reduction (DANSE)
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II. Deep multi-frame 
noise reduction



Signal Processing Group

Deep Multi-Frame
Noise Reduction

March 13, 2023

Marvin Tammen, Simon Doclo
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Signal Processing Group

Outline

Deep Multi-Frame Noise Reduction for
Single-Microphone Speech Enhancement

• Problem Statement
• Multi-Frame MVDR Filter

Extension Towards Binaural
Noise Reduction
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Deep Multi-Frame Noise Reduction

encoder
compute 

mask / filter

• signal-independent transform:

• STFT

• learned

• signal-dependent: KLT

• model-based

• learning-based

apply

mask / filter
decoder
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Signal Model

 noisy multi-frame vector: 𝒚𝑡 = 𝑌𝑡 … 𝑌𝑡−𝑁+1
𝑇 = 𝒙𝑡 + 𝒏𝑡

 multi-frame speech vector 𝑡 𝑡 𝑡−𝑁+1
𝑇

 𝑡 can be decomposed into temporally correlated and uncorrelated 
components w.r.t. 𝑡:

𝑡 𝑥,𝑡 𝑡 𝑡
′

𝑥,𝒕
𝑡 𝑡

∗

𝑡
2

𝑁

 highly time-varying speech interframe correlation (IFC) vector 𝒙,𝒕

 depends on sound (e.g. voiced vs. unvoiced)  

time frames
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Multi-Frame MVDR Filter

 minimize output noise PSD while preserving temporally correlated speech
component:

𝑡
𝑀𝐹𝑀𝑉𝐷𝑅

𝒘

𝐻
𝑛,𝑡 ,  s.t. 𝐻

𝑥,𝑡

 solved by multi-frame MVDR (MFMVDR) filter:

𝑡
𝑀𝐹𝑀𝑉𝐷𝑅 𝑛,𝑡

−1
𝑥,𝑡

𝑥,𝑡
𝐻

𝑛,𝑡
−1

𝑥,𝑡

requires estimate of inverse noise covariance matrix 𝑛,𝑡
−𝟏 and speech IFC 

vector 𝑥,𝑡

Deep MFMVDR filter: estimate quantities by integrating fully differentiable
MFMVDR filter into supervised learning framework, minimizing time-domain 
loss function at output of MFMVDR filter
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Supervised Learning-Based Parameter Estimation

Features: concatenation of

1. logarithm of noisy magnitude

2. cosine of noisy phase

3. sine of noisy phase

not trainable trainable

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Supervised Learning-Based Parameter Estimation

not trainable trainable

Deep Filtering:

estimate filter coefficients directly

features
DNN1: 

multi-frame filter

coefficients

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Supervised Learning-Based Parameter Estimation

Deep Multi-Frame MVDR:

features

DNN2: 

speech IFC vector �̂�𝑥

DNN1: 

noise covariance  𝚽𝑛
−1 𝑀𝐹𝑀𝑉𝐷𝑅

𝑛
−1

𝑥

𝑥
𝐻

𝑛
−1

𝑥

not trainable trainable

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Supervised Learning-Based Parameter Estimation

not trainable trainable

Loss: Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

10
𝒙 2

𝒙−𝛼�̂� 2
�̂�𝑇𝒙
𝒙 2

• [J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, in Proc. 2019 ICASSP]

• popular time-domain loss for speech enhancement and separation algorithms

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Simulation Results

 Deep Noise Suppression (DNS) challenge datasets: diverse speech and noise sources

 DNN architecture: causal temporal convolutional network (TCN): 2 stacks of 4 layers 
each, kernel size 3  temporal receptive field of 61 frames (128 ms)

 Performance benefit of

• complex-valued masking vs. real-valued masking

• MFMVDR structure vs. direct filtering

fs=16 kHz; STFT: 8ms (overlap 6ms); 
N=5; Gmin=-17 dB; =0.001
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Simulation Results

 Real-time factor

 Network size



Slide 12 Deep Multi-Frame Noise Reduction

Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg13.03.2023

Signal Processing Group

Simulation Results - Audio examples

noisy

single-frame mask, 
complex

multi-frame filter,
direct estimation

multi-frame filter,
MFMVDR structure
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Extension Towards Binaural (Multi-Microphone) Noise Reduction

monaural binaural

signal vector 𝑡 𝑡 𝑡−𝑁+1
𝑇

𝑡 𝑡
𝑙

𝑡−𝑁+1
𝑙

𝑡
𝑟

𝑡−𝑁+1
𝑟 𝑇

target signal 𝑡 𝑡
𝑙

𝑡
𝑟

used correlations temporal spatio-temporal

time frames
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N
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Supervised Learning-Based Parameter Estimation

STFT

STFT

cat features

compute 

binaural 

filters

ISTFT

ISTFT

𝑟

𝑙

not trainable trainable

loss

𝑟

𝑙

𝑟 𝑙

Loss: Combined Mean Absolute Spectral Error

𝜈∈{𝑙,𝑟}

𝜈 𝜈 𝜈 𝜈

• more robust against reverberation than SI-SDR 
• [Z.-Q. Wang, P. Wang, and D. Wang, IEEE/ACM TASLP, 2020]
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Simulation Results

 dataset based on Clarity Enhancement Challenge

• diverse localized speech and noise sources

• simulated binaural RIRs, mild reverberation

 DNN architecture: causal temporal convolutional network (TCN)

 performance benefit of using MFMVDR structure vs. direct filtering
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Simulation Results – Audio Examples

clean

noisy

binaural multi-
frame filter, 
direct
estimation

binaural multi-
frame filter, 
MFMVDR 
structure



Slide 17 Deep Multi-Frame Noise Reduction

Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg13.03.2023

Signal Processing Group

Possible Simplifications (speech IFC vector)
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Conclusions

 Considerable monaural and binaural noise reduction performance using
supervised learning-based approaches

 Consistent benefit by imposing multi-frame MVDR structure

 Complexity of deep binaural MFMVDR filter can be reduced by

• assuming a quasi-stationary interaural transfer function

• preserving only temporal target correlations

 Current/future research:

• Investigation of deep (multi-microphone) binaural MFMVDR filter for
dynamic acoustic scenarios

• Joint noise reduction and binaural cue preservation of complete acoustic
scene using deep learning-based approaches
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III. Geometry-aware sound
source localisation



• Model-based approaches (e.g. SRP-PHAT, MUSIC)

• Computation of analytical function, which explicitly 
depends on microphone array geometry
 flexibility towards different array geometries

• Supervised learning-based approaches 

• Learn relationship between input features and DOA 
(classification problem)

• Training data implicitly based on underlying 
array geometry  internal representation

• Substantial performance degradation when 
applying DNN trained for certain array geometry
to other array geometry 

Sound source localisation



• Aim: supervised learning-based approach that generalizes well to different 
microphone array geometries 

• DNN taking mixed data features as input:

1. features extracted from microphone signals 

2. microphone array geometry (assumed to be known!)

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Supervised learning systems:

1. CNN: using signal phases as input features [Chakrabarty & Habets, 2019]

2. FC-full: using time-domain GCC-PHAT between all microphone pairs as input features

3. FC-max: reduced feature set only using location of (interpolated) maxima of GCC-
PHAT

4. FC-GA: using maxima of GCC-PHAT + microphone array geometry as input features

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Simulation results:

• Single static sound source in noisy and reverberant environment

• 72 DOA classes (5° resolution), fs = 8 kHz, framelength = 32 ms

• Multi-condition training using simulated microphone signals (speech + white noise 
as sound source, diffuse babble noise), cross-entropy loss function

• CNN, FC-full, FC-max: trained for specific microphone array geometry 
(M=5, arc-shaped)

• FC-GA: every training sample uses different microphone array geometry 
(M=5, planar array, random positions with width and depth of 0.4 m)

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Sensitivity to random coordinate deviations

• Performance for random 
(perfectly known) planar 
array geometry 

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 

 No deviations: DNN-based 

systems outperform model-

based algorithms

 Small deviations: 

substantial performance 

degradation for baseline 

DNN-based systems

 Proposed geometry-aware 

system robust to deviations

T60 = 500ms, SNR=20 dB



 Investigate robustness to inaccuracies in assumed microphone array 
geometry

 Improved conditioning on microphone array geometry (e.g. using 
feature-wise linear modulation / FiLM)

 Signal-informed DOA estimation
exploiting external microphone
(Kowalk et al., IWAENC 2022)

Current/future work

31



• Single- and multi-microphone speech enhancement

– Noise reduction (DNN-based, exploiting interframe correlation)

– Dereverberation (spectral enhancement, multi-channel 
equalization, blind probabilistic model-based) 

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA, localization)

– Beamformer design (e.g., virtual artificial head)

• Signal processing for ear-mounted communication devices

– Binaural noise reduction, aiming at preserving spatial impression 
of acoustic scene (binaural cues) 

– Open-fitting hearing devices: acoustic transparency, feedback 
cancellation and active noise/occlusion control

– EEG-based auditory attention decoding for steering beamformers

32

Research topics



Questions ?
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http://www.sigproc.uni-oldenburg.de

Signal Processing Uni Oldenburg

http://www.sigproc.uni-oldenburg.de/
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