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• Free-field and sound-proof listening booths

• Anechoic chamber (8,5m x 7m x 4m; fc ≈ 50 Hz)

Research facilities
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• Communication acoustics simulator (active system, 
16 microphones + 24 loudspeakers, T60: 0.4 – 4 sec)

• Variable acoustics lab (passive, T60: 0.2 – 1 sec)

Research facilities
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• Virtual reality lab (3D Ambisonics, 86 loudspeakers, 
cylindrical screen video projection)

• Gesture lab (interactive audio-visual scenes, motion/head 
tracking, eye movement/EOG)

Research facilities



• Single- and multi-microphone speech enhancement

– Noise reduction (DNN-based, exploiting interframe correlation)

– Dereverberation (spectral enhancement, multi-channel 
equalization, blind probabilistic model-based) 

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA, localization)

– Beamformer design (e.g., virtual artificial head)

• Signal processing for ear-mounted communication devices

– Binaural noise reduction, aiming at preserving spatial impression 
of acoustic scene (binaural cues) 

– Open-fitting hearing devices: acoustic transparency, feedback 
cancellation and active noise/occlusion control

– EEG-based auditory attention decoding for steering beamformers

7

Research topics



I. Acoustic sensor networks



 Exploit spatial diversity of spatially distributed
microphones for improved speech enhancement 
and source localisation

 Previous and current research: 

 Low-complexity method to estimate relative 
transfer function (RTF) vector of target speaker 
for hearing aids + external microphone(s)

 Improved trade-off between noise reduction 
and binaural cue preservation

 (Binaural) source localization exploiting external 
microphones

 Dereverberation using weighted prediction error 
method with microphone-dependent prediction delay 

 Microphone utility and subset selection

 Sampling rate offset estimation 

9

Acoustic sensor networks



• Filter-and-sum structure :

Blind multi-microphone speech
enhancement

10[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Gannot et al., IEEE/ACM TASLP, 2017] 



• Filter-and-sum structure :

• “Workhorse algorithm”: parametric Multi-channel Wiener filter (MWF) 

Blind multi-microphone speech
enhancement

11[Doclo, Kellermann, Makino, Nordholm, IEEE Signal Processing Magazine, 2015] [Gannot et al., IEEE/ACM TASLP, 2017] 

Goal: estimate desired speech component in reference microphone + trade off 
interference reduction and speech distortion

 requires estimate of covariance matrices

Can be decomposed as MVDR beamformer and spectral postfilter

 requires estimate/model of interference covariance matrix, estimate/model 
of relative transfer function (RTF) vector of desired speaker, and PSDs of speech 
and interference components at MVDR output



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

12

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 



 Estimate RTF vector of target speaker to steer binaural MVDR beamformer

 Spatial coherence (SC) method: assume that noise components in hearing aid
microphones and external microphone are uncorrelated, e.g., when external
microphone is spatially separated from HA microphones + diffuse noise field

→ correlate noisy HA microphone signals with noisy external microphone signal 
and normalize by reference element

 Low computational complexity with similar
(even better in practice) performance than
state-of-the-art covariance whitening (CW) approach

13

RTF vector estimation 
exploiting external microphone 

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019 ] [Gößling, Marquardt, Doclo, IEEE/ACM TASLP, 2021] 



Audio Demo

14
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Extension: 
Multiple external microphones

[Gößling, Middelberg, Doclo, Proc. WASPAA 2019 ] [Middelberg, Doclo, Proc. IWAENC, 2022]

• Each external microphone yields (different) RTF estimate

• Linear combination/selection of RTF estimates
(per frequency)

1. Input SNR-based selection

2. Simple averaging

3. Output SNR-maximizing combination



 Partial RTF vector estimation 
in general acoustic scenario 
(e.g. interfering speaker and noise)

 Assumption: part of RTF vector is 
known (e.g. anechoic steering vector 
for hearing aids)

 GSC-ESR structure: create external speech references by removing 
undesidered components (interference, noise) in external microphone signals 
using noise+interference references of Generalized Sidelobe Canceller structure 

16[Middelberg, Doclo, Proc. ITG Conference on Speech Communication, 2021]

Extension: 
Partial RTF vector estimation



• Goal: estimate clean speech STFT coefficients from reverberant (and 
noisy) STFT coefficients 𝑚 by subtracting late reverberant component

 Probabilistic estimation using (statistical) models of desired speech signal
and reverberation

 Exploit sparsity properties of speech in STFT-domain 

• Approach: transform to equivalent AR model → sparse multi-channel linear 
prediction (MCLP)

clean signal 
(incl. early reflections)

delay
(early reflections)

prediction 
filters

Clean Reverberant

Dereverberation:
Weighted prediction error

17



 Weighted prediction error (WPE) method for dereverberation

 Prediction delay is usually chosen based on correlation properties of speech, 
i.e. microphone-independent

predicted reverberation

18[Nakatani et al., IEEE/ACM TASLP, 2010] [Jukić et al., IEEE/ACM TASLP, 2015] 

Prediction delay plays 
crucial role / trade-off 
between residual 
reverberation and distortion

Dereverberation: 
Weighted prediction error



 Generalization of original WPE approach [Nakatani et al., 2010]

 STFT coefficients of desired signal are assumed to be modelled using circular 
sparse/super-Gaussian prior with time-varying variance (n)

Scaling function (.) can be interpreted as hyper-prior on variance 

 Maximum-Likelihood Estimation

 Alternating optimization procedure

1. Estimate prediction vector 

2. Estimate variances (assuming complex generalized
Gaussian prior with shape parameter p)

[Jukić, van Waterschoot, Gerkmann, Doclo, IEEE/ACM Trans. Audio Speech Language Proc., Sep. 2015] 19

Dereverberation: 
Weighted prediction error



 When microphones are spatially distributed, time 
differences of arrival (TDOAs) between microphones 
may be large and diverse

 When using WPE with a fixed prediction delay, this 
may lead to distortion or excessive reverberation 

apply TDOA compensation to WPE input, leading to 
microphone-dependent prediction delays

 Different schemes to implement prediction delays 

 non-integer prediction delays with 
crossband filters (NINT)

 non-integer prediction delays with 
band-to-band approximation (NINT-B2B)

 (coarse) integer prediction delays (INT)

20

WPE for acoustic sensor 
networks

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 
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WPE for acoustic sensor 
networks

 Simulation results:

 Fixed prediction delay (MI) may result in low speech quality, depending on position 
of speech source

 Microphone-dependent prediction delays: NINT performs best, closely followed by 
NINT-B2B; INT performs worse than NINT, however at significantly lower 
computational complexity

M=9, fs=16 kHz; STFT: 64ms 
(overlap 16ms); WPE: Lg=12, 
=2, p=0.5

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 
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 Simulation results:

Position 1 Position 2

Reverberant
microphone signal

Fixed prediction delay

Microphone-
dependent prediction

delay (NINT)

T60 ≈ 750ms, M=9, fs=16 kHz; STFT: 64ms (overlap 16ms); WPE: Lg=12, =2, p=0.5; estimated TDOAs (GCC-PHAT)

WPE for acoustic sensor 
networks

[Lohmann, van Waterschoot, Bitzer, Doclo, ICASSP 2023] 



 Complex and time-varying scenarios: 
incorporate CASA into control path of
algorithms, switch between keeping all 
speakers or removing undesired speakers

 Smart speaker scenario: multiple
nodes with multiple microphones

 WPE-based dereverberation in acoustic
sensor networks: microphone utility, microphone
subset selection, reference microphone selection

 (Binaural) source localisation exploiting
external microphones

 Sampling rate offset estimation and compensation 
for distributed noise reduction (DANSE)
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II. Deep multi-frame 
noise reduction



Signal Processing Group

Deep Multi-Frame
Noise Reduction

March 13, 2023

Marvin Tammen, Simon Doclo



Slide 2 Deep Multi-Frame Noise Reduction

Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg13.03.2023

Signal Processing Group

Outline

Deep Multi-Frame Noise Reduction for
Single-Microphone Speech Enhancement

• Problem Statement
• Multi-Frame MVDR Filter

Extension Towards Binaural
Noise Reduction
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Deep Multi-Frame Noise Reduction

encoder
compute 

mask / filter

• signal-independent transform:

• STFT

• learned

• signal-dependent: KLT

• model-based

• learning-based

apply

mask / filter
decoder
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Signal Model

 noisy multi-frame vector: 𝒚𝑡 = 𝑌𝑡 … 𝑌𝑡−𝑁+1
𝑇 = 𝒙𝑡 + 𝒏𝑡

 multi-frame speech vector 𝑡 𝑡 𝑡−𝑁+1
𝑇

 𝑡 can be decomposed into temporally correlated and uncorrelated 
components w.r.t. 𝑡:

𝑡 𝑥,𝑡 𝑡 𝑡
′

𝑥,𝒕
𝑡 𝑡

∗

𝑡
2

𝑁

 highly time-varying speech interframe correlation (IFC) vector 𝒙,𝒕

 depends on sound (e.g. voiced vs. unvoiced)  

time frames
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Multi-Frame MVDR Filter

 minimize output noise PSD while preserving temporally correlated speech
component:

𝑡
𝑀𝐹𝑀𝑉𝐷𝑅

𝒘

𝐻
𝑛,𝑡 ,  s.t. 𝐻

𝑥,𝑡

 solved by multi-frame MVDR (MFMVDR) filter:

𝑡
𝑀𝐹𝑀𝑉𝐷𝑅 𝑛,𝑡

−1
𝑥,𝑡

𝑥,𝑡
𝐻

𝑛,𝑡
−1

𝑥,𝑡

requires estimate of inverse noise covariance matrix 𝑛,𝑡
−𝟏 and speech IFC 

vector 𝑥,𝑡

Deep MFMVDR filter: estimate quantities by integrating fully differentiable
MFMVDR filter into supervised learning framework, minimizing time-domain 
loss function at output of MFMVDR filter
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Supervised Learning-Based Parameter Estimation

Features: concatenation of

1. logarithm of noisy magnitude

2. cosine of noisy phase

3. sine of noisy phase

not trainable trainable

lossfeatures
compute 

filter
𝐻STFT ISTFT



Slide 7 Deep Multi-Frame Noise Reduction

Marvin Tammen, Simon Doclo — Signal Processing Group, University of Oldenburg13.03.2023

Signal Processing Group

Supervised Learning-Based Parameter Estimation

not trainable trainable

Deep Filtering:

estimate filter coefficients directly

features
DNN1: 

multi-frame filter

coefficients

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Supervised Learning-Based Parameter Estimation

Deep Multi-Frame MVDR:

features

DNN2: 

speech IFC vector 𝜸̂𝑥

DNN1: 

noise covariance  𝚽𝑛
−1 𝑀𝐹𝑀𝑉𝐷𝑅

𝑛
−1

𝑥

𝑥
𝐻

𝑛
−1

𝑥

not trainable trainable

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Supervised Learning-Based Parameter Estimation

not trainable trainable

Loss: Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

10
𝒙 2

𝒙−𝛼𝒙̂ 2
𝒙̂𝑇𝒙
𝒙 2

• [J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, in Proc. 2019 ICASSP]

• popular time-domain loss for speech enhancement and separation algorithms

lossfeatures
compute 

filter
𝐻STFT ISTFT
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Simulation Results

 Deep Noise Suppression (DNS) challenge datasets: diverse speech and noise sources

 DNN architecture: causal temporal convolutional network (TCN): 2 stacks of 4 layers 
each, kernel size 3  temporal receptive field of 61 frames (128 ms)

 Performance benefit of

• complex-valued masking vs. real-valued masking

• MFMVDR structure vs. direct filtering

fs=16 kHz; STFT: 8ms (overlap 6ms); 
N=5; Gmin=-17 dB; =0.001
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Simulation Results

 Real-time factor

 Network size
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Simulation Results - Audio examples

noisy

single-frame mask, 
complex

multi-frame filter,
direct estimation

multi-frame filter,
MFMVDR structure
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Extension Towards Binaural (Multi-Microphone) Noise Reduction

monaural binaural

signal vector 𝑡 𝑡 𝑡−𝑁+1
𝑇

𝑡 𝑡
𝑙

𝑡−𝑁+1
𝑙

𝑡
𝑟

𝑡−𝑁+1
𝑟 𝑇

target signal 𝑡 𝑡
𝑙

𝑡
𝑟

used correlations temporal spatio-temporal

time frames
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Supervised Learning-Based Parameter Estimation

STFT

STFT

cat features

compute 

binaural 

filters

ISTFT

ISTFT

𝑟

𝑙

not trainable trainable

loss

𝑟

𝑙

𝑟 𝑙

Loss: Combined Mean Absolute Spectral Error

𝜈∈{𝑙,𝑟}

𝜈 𝜈 𝜈 𝜈

• more robust against reverberation than SI-SDR 
• [Z.-Q. Wang, P. Wang, and D. Wang, IEEE/ACM TASLP, 2020]
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Simulation Results

 dataset based on Clarity Enhancement Challenge

• diverse localized speech and noise sources

• simulated binaural RIRs, mild reverberation

 DNN architecture: causal temporal convolutional network (TCN)

 performance benefit of using MFMVDR structure vs. direct filtering
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Simulation Results – Audio Examples

clean

noisy

binaural multi-
frame filter, 
direct
estimation

binaural multi-
frame filter, 
MFMVDR 
structure
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Possible Simplifications (speech IFC vector)
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Conclusions

 Considerable monaural and binaural noise reduction performance using
supervised learning-based approaches

 Consistent benefit by imposing multi-frame MVDR structure

 Complexity of deep binaural MFMVDR filter can be reduced by

• assuming a quasi-stationary interaural transfer function

• preserving only temporal target correlations

 Current/future research:

• Investigation of deep (multi-microphone) binaural MFMVDR filter for
dynamic acoustic scenarios

• Joint noise reduction and binaural cue preservation of complete acoustic
scene using deep learning-based approaches
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III. Geometry-aware sound
source localisation



• Model-based approaches (e.g. SRP-PHAT, MUSIC)

• Computation of analytical function, which explicitly 
depends on microphone array geometry
 flexibility towards different array geometries

• Supervised learning-based approaches 

• Learn relationship between input features and DOA 
(classification problem)

• Training data implicitly based on underlying 
array geometry  internal representation

• Substantial performance degradation when 
applying DNN trained for certain array geometry
to other array geometry 

Sound source localisation



• Aim: supervised learning-based approach that generalizes well to different 
microphone array geometries 

• DNN taking mixed data features as input:

1. features extracted from microphone signals 

2. microphone array geometry (assumed to be known!)

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Supervised learning systems:

1. CNN: using signal phases as input features [Chakrabarty & Habets, 2019]

2. FC-full: using time-domain GCC-PHAT between all microphone pairs as input features

3. FC-max: reduced feature set only using location of (interpolated) maxima of GCC-
PHAT

4. FC-GA: using maxima of GCC-PHAT + microphone array geometry as input features

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Simulation results:

• Single static sound source in noisy and reverberant environment

• 72 DOA classes (5° resolution), fs = 8 kHz, framelength = 32 ms

• Multi-condition training using simulated microphone signals (speech + white noise 
as sound source, diffuse babble noise), cross-entropy loss function

• CNN, FC-full, FC-max: trained for specific microphone array geometry 
(M=5, arc-shaped)

• FC-GA: every training sample uses different microphone array geometry 
(M=5, planar array, random positions with width and depth of 0.4 m)

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 



• Sensitivity to random coordinate deviations

• Performance for random 
(perfectly known) planar 
array geometry 

Geometry-aware DOA 
estimation

[Kowalk, Doclo, Bitzer, ICASSP 2023] 

 No deviations: DNN-based 

systems outperform model-

based algorithms

 Small deviations: 

substantial performance 

degradation for baseline 

DNN-based systems

 Proposed geometry-aware 

system robust to deviations

T60 = 500ms, SNR=20 dB



 Investigate robustness to inaccuracies in assumed microphone array 
geometry

 Improved conditioning on microphone array geometry (e.g. using 
feature-wise linear modulation / FiLM)

 Signal-informed DOA estimation
exploiting external microphone
(Kowalk et al., IWAENC 2022)

Current/future work

31



• Single- and multi-microphone speech enhancement

– Noise reduction (DNN-based, exploiting interframe correlation)

– Dereverberation (spectral enhancement, multi-channel 
equalization, blind probabilistic model-based) 

– Acoustic sensor networks (spatially distributed microphones, 
sampling rate offset estimation, distributed processing)

– Computational acoustic scene analysis (CASA, localization)

– Beamformer design (e.g., virtual artificial head)

• Signal processing for ear-mounted communication devices

– Binaural noise reduction, aiming at preserving spatial impression 
of acoustic scene (binaural cues) 

– Open-fitting hearing devices: acoustic transparency, feedback 
cancellation and active noise/occlusion control

– EEG-based auditory attention decoding for steering beamformers

32

Research topics



Questions ?

33

http://www.sigproc.uni-oldenburg.de

Signal Processing Uni Oldenburg

http://www.sigproc.uni-oldenburg.de/
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