

DNN-based speech enhancement for hearing devices

Prof. Dr. Simon Doclo

Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg, Germany

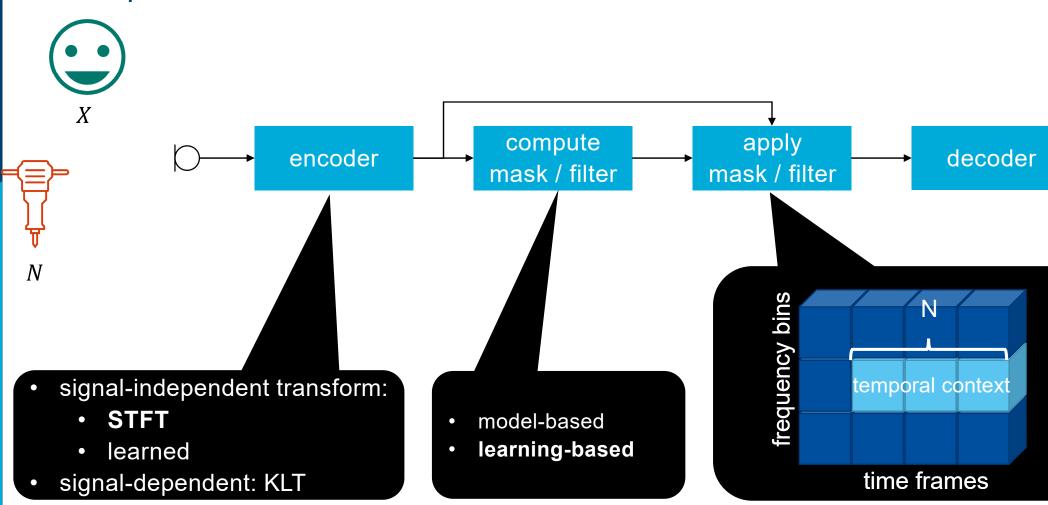
Outline

- Deep multi-frame MVDR-based noise reduction
 - combination of model-based and learning-based approach
 - single-microphone processing + extension towards binaural processing
- Low-complexity single-channel noise reduction based on Skip-GRUs
- DNN-based own voice extraction using model-based data augmentation

Disclaimer: all presented algorithms are on-line but complexity not always low enough for hearing devices

Deep Multi-Frame MVDR-based Noise Reduction

International Hearing Instrument Developer Forum



Deep Multi-Frame Noise Reduction

Slide 4 06.08.2023

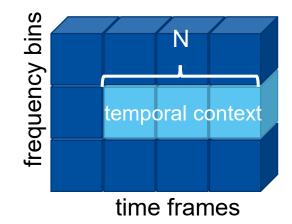
Multi-Frame Signal Model

- noisy multi-frame vector: $y_t = [Y_t \dots Y_{t-N+1}]^T = x_t + n_t$
- multi-frame speech vector $\boldsymbol{x}_t = [X_t \quad \dots \quad X_{t-N+1}]^T$

$$\boldsymbol{x}_t = \boldsymbol{\gamma}_{x,t} X_t + \boldsymbol{x}'_t, \qquad \boldsymbol{\gamma}_{x,t} = \frac{\mathcal{E}\{\boldsymbol{x}_t X_t^*\}}{\mathcal{E}\{|X_t|^2\}} \in \mathbb{C}^N$$

 \rightarrow highly time-varying speech interframe correlation (IFC) vector $\gamma_{x,t}$

 \rightarrow depends on sound (e.g. voiced vs. unvoiced)



Multi-Frame MVDR Filter

 minimize output noise PSD while preserving temporally correlated speech component:

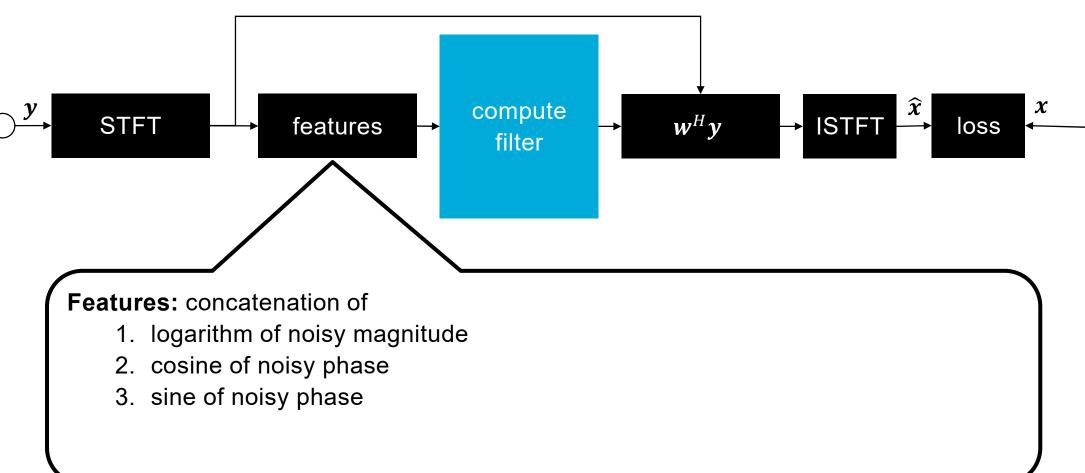
$$\boldsymbol{w}_t^{MFMVDR} = \min_{\boldsymbol{w}} \boldsymbol{w}^H \boldsymbol{\Phi}_{n,t} \boldsymbol{w}, \text{ s.t. } \boldsymbol{w}^H \boldsymbol{\gamma}_{x,t} = 1$$

solved by multi-frame MVDR (MFMVDR) filter:

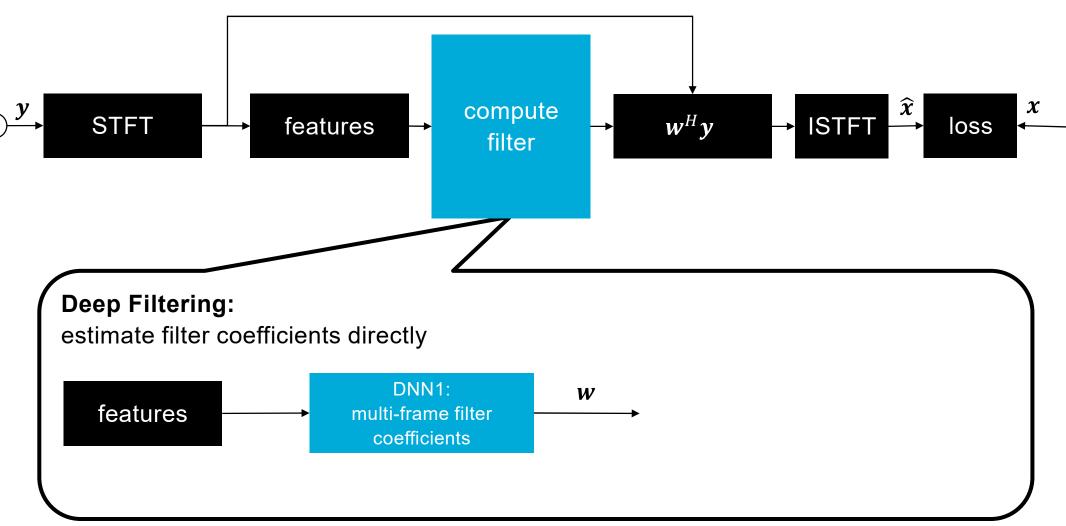
$$\boldsymbol{w}_{t}^{MFMVDR} = \frac{\boldsymbol{\Phi}_{n,t}^{-1} \boldsymbol{\gamma}_{x,t}}{\boldsymbol{\gamma}_{x,t}^{H} \boldsymbol{\Phi}_{n,t}^{-1} \boldsymbol{\gamma}_{x,t}}$$

- >requires estimate of inverse noise covariance matrix $\Phi_{n,t}^{-1}$ and speech IFC vector $\gamma_{x,t}$
- Deep MFMVDR filter: estimate quantities by integrating fully differentiable MFMVDR filter into supervised learning framework, minimizing time-domain loss function at output of MFMVDR filter

Supervised Learning-Based Parameter Estimation

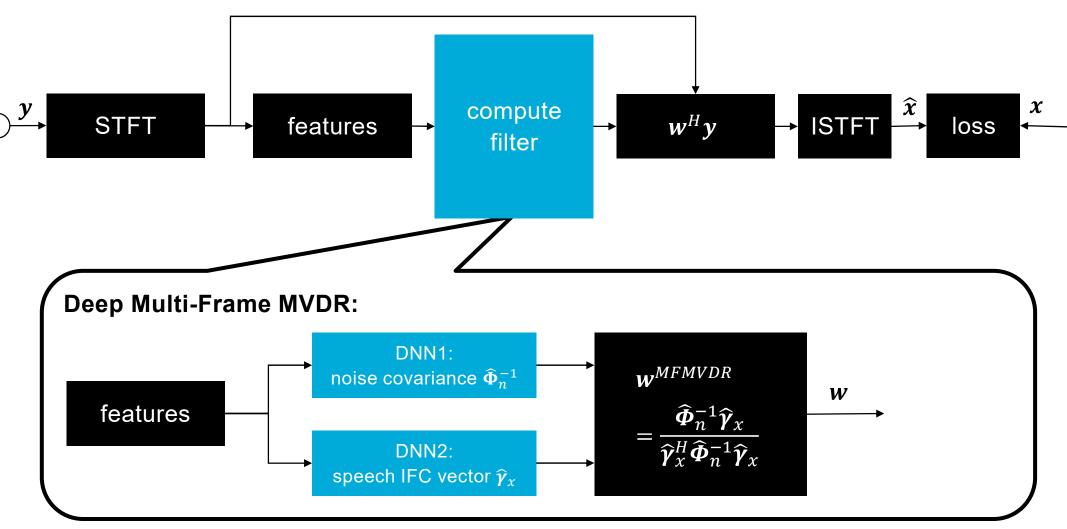


Supervised Learning-Based Parameter Estimation



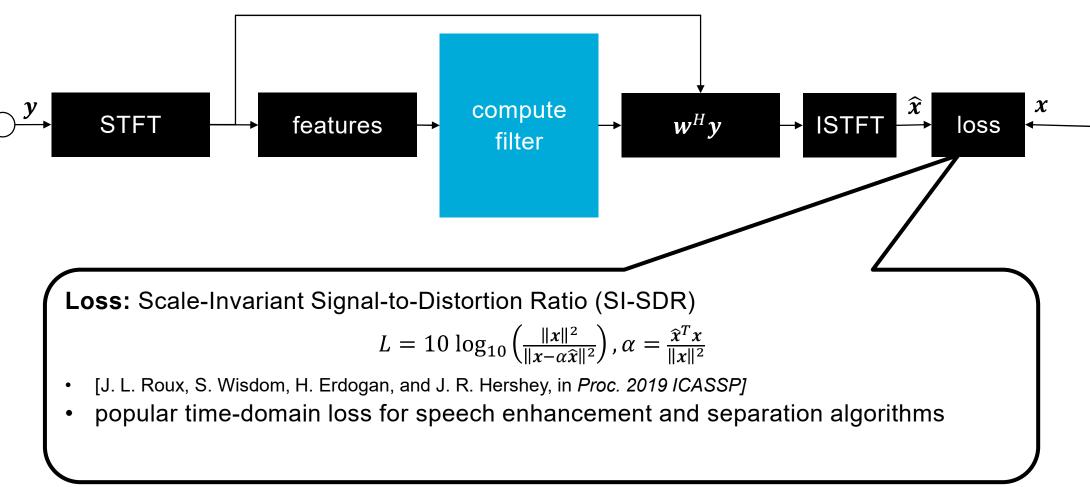
Slide 8 06.08.2023

Supervised Learning-Based Parameter Estimation



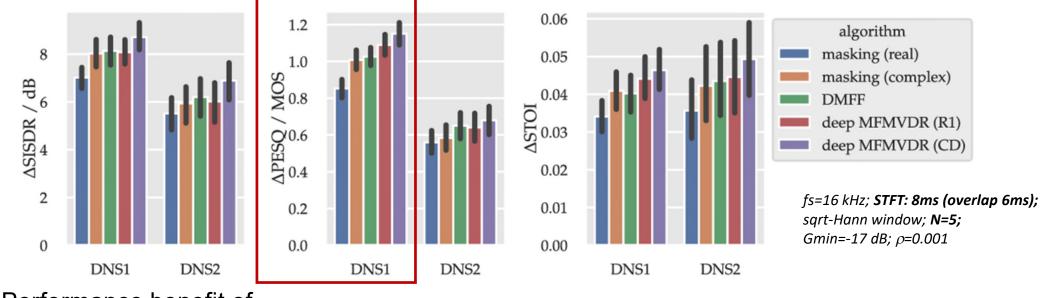
Slide 9 06.08.2023

Supervised Learning-Based Parameter Estimation



Simulation Results

- Deep Noise Suppression (DNS) challenge datasets: diverse speech and noise sources
- DNN architecture: causal temporal convolutional network (TCN): 2 stacks of 4 layers each, kernel size 3 → temporal receptive field of 61 frames (128 ms)



- Performance benefit of
 - complex-valued masking vs. real-valued masking
 - MFMVDR structure vs. direct filtering

Slide 11 06.08.2023

Simulation Results

Network size, complexity and real-time factor (RTF)

algorithm	trainable weights / M	bottleneck dimension	memory / MB	RTF	RTF contribution, MFMVDR / %
deep MFMVDR (SPP)	5.3	231	195.6	0.176	54.9
deep MFMVDR (RS)	4.9	128	137.3	0.167	47.9
deep MFMVDR (CD)	5.3	128	110.9	0.139	39.0
deep MFMVDR (PDT)	5.1	128	93.3	0.170	43.4
deep MFMVDR (R1)	5.1	128	85.2	0.100	7.5
masking (real)	5.0	226	30.2	0.075	0.0
masking (complex)	5.0	226	28.5	0.077	0.0
DMFF	5.2	226	29.5	0.079	0.0

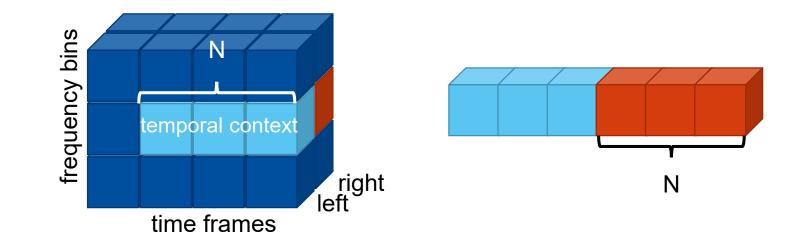
Simulation Results - Audio examples

noisy	
single-frame mask, complex	
multi-frame filter, direct estimation	
multi-frame filter, MFMVDR structure	

Slide 13 06.08.2023

Extension Towards Binaural (Multi-Microphone) Noise Reduction

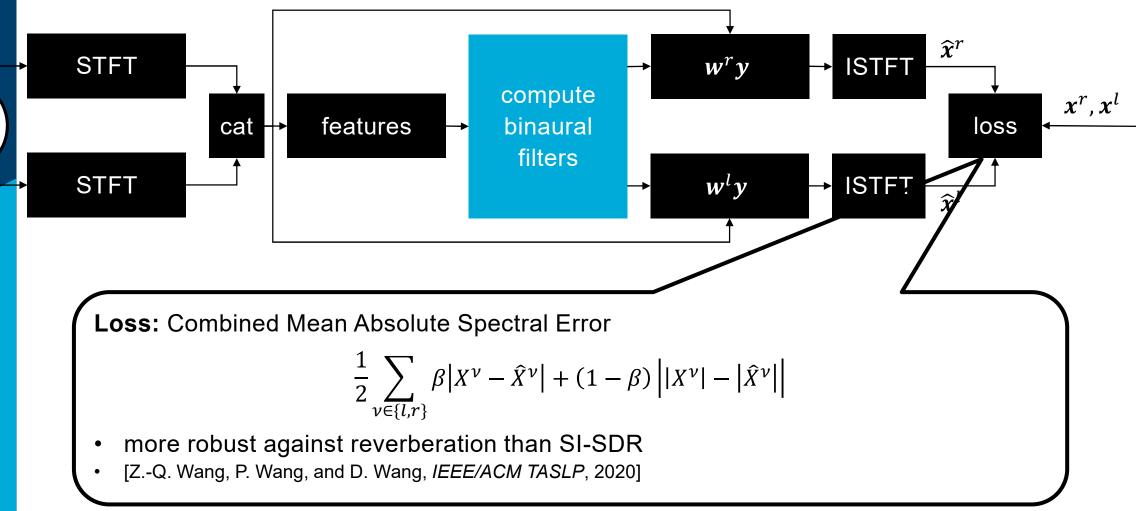
	monaural	binaural
signal vector	$\boldsymbol{y}_t = [Y_t \dots Y_{t-N+1}]^T$	$\boldsymbol{y}_{t} = [Y_{t}^{l} \dots Y_{t-N+1}^{l} Y_{t}^{r} \dots Y_{t-N+1}^{r}]^{T}$
target signal	X_t	X_t^l, X_t^r
used correlations	temporal	spatio-temporal



Slide 14 06.08.2023

[Tammen & Doclo, Proc. IWAENC 2022]

Supervised Learning-Based Parameter Estimation

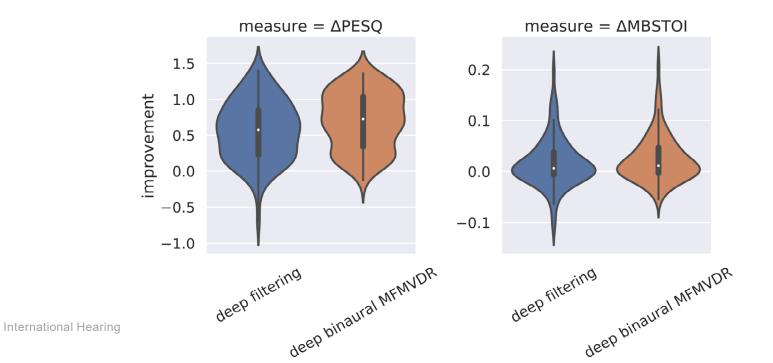


Slide 15 06.08.2023

[Tammen & Doclo, Proc. IWAENC 2022]

Simulation Results

- dataset based on Clarity Enhancement Challenge
 - diverse localized speech and noise sources
 - simulated binaural room impulse responses (RIRs), mild reverberation
- DNN architecture: causal temporal convolutional network (TCN)
- Small but consistent performance benefit of using MFMVDR structure vs. direct filtering



[Tammen & Doclo, Proc. IWAENC 2022]

Simulation Results – Audio Examples

clean	
noisy	
binaural multi- frame filter, direct estimation	
binaural multi- frame filter, MFMVDR structure	

[Tammen & Doclo, Proc. IWAENC 2022]

Conclusions

- Considerable monaural and binaural noise reduction performance using supervised learning-based approaches
- Consistent benefit by imposing multi-frame MVDR structure
- Complexity of deep binaural MFMVDR filter can be reduced by
 - assuming a quasi-stationary interaural transfer function
 - preserving only temporal target correlations
- Current/future research:
 - Investigation of deep (multi-microphone) binaural MFMVDR filter for dynamic acoustic scenarios
 - Joint noise reduction and **binaural cue preservation** of complete acoustic scene using deep learning-based approaches

Conclusions

- Considerable monaural and binaural noise reduction performance using supervised learning-based approaches
- Consistent benefit by imposing multi-frame MVDR structure
- C(

Deep Multi-Frame Filtering for Hearing Aids

Hendrik Schröter¹, Tobias Rosenkranz², Alberto N. Escalante-B.², Andreas Maier¹

 Ci ¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab ²WS Audiology, Research and Development, Erlangen, Germany

hendrik.m.schroeter@fau.de

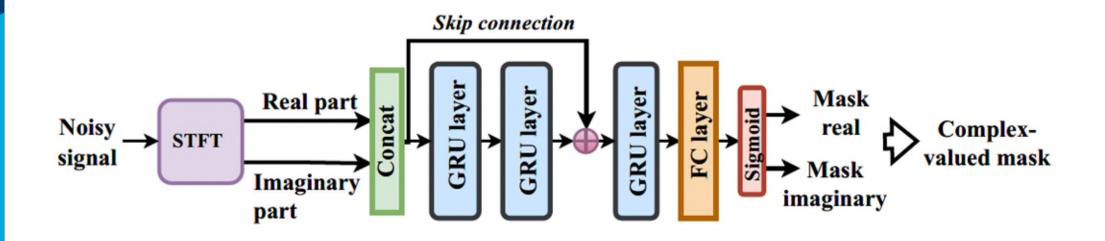
Low-complexity single-channel noise reduction

Slide 20 06.08.2023

International Hearing Instrument Developer Forum

Low-complexity single-channel noise reduction

- Compact system which is resource-efficient during inference
- Skip-GRU architecture: smooth flow of information without increasing complexity



[Sinha, Rollwage & Doclo, Proc. ITG Speech Comm. 2023]

Low-complexity single-channel noise reduction

- Evaluation on DNS challenge dataset
- Latency for all algorithms 32 ms (lower latency possible)

Systems	SI-SDR (dB)	WB-PESQ	STOI	MACs (G/s)	#Param
Input Noisy Signals	9.2	1.8	0.87	-	-
FullSubNet+ (ret) [14]	13.5	2.6	0.89	31.81	8.7 M
DEMUCS-48 (ret) [9]	14.5	2.5	0.90	1.51	18.9 M
DTLN (ret) [11]	12.2	2.1	0.88	0.12	1.0 M
GRU (real)	13.2	2.2	0.89	0.21	1.8 M
Skip-GRU (real)	13.9	2.3	0.90	0.21	1.8 M
GRU (complex)	14.1	2.4	0.90	0.39	4.4 M
Skip-GRU (complex)	14.4	2.4	0.90	0.39	4.4 M

Proposed Skip-GRU system achieves similar performance as best SOA system with about 4 times lower complexity

[Sinha, Rollwage & Doclo, Proc. ITG Speech Comm. 2023]

Own voice extraction

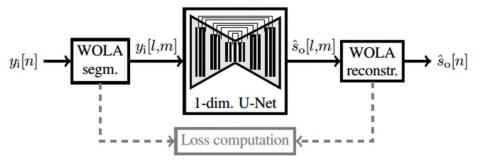
Own voice extraction

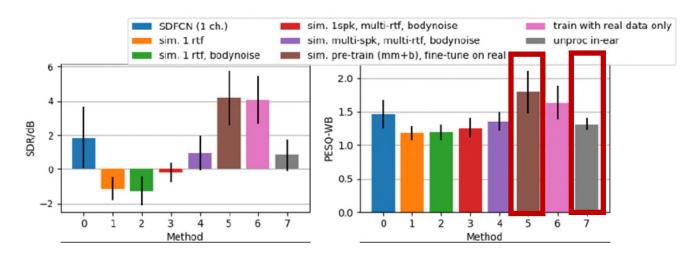
- Aim: enhance own voice of user wearing earpiece in noisy acoustic environment (e.g. industrial workplace)
- Different characteristics for own voice and external noise at in-ear and outer microphones
 - in-ear microphone: bandlimited own voice, high SNR (external noise), body noise
 - outer microphone: full bandwidth, low SNR (external noise)
- **Objectives of algorithm:** estimate clean speech signal at outer microphone from
 - in-ear microphone: combined bandwidth
 extension, equalization and noise reduction
 (body + external noise)
 - in-ear and outer microphone



Own voice extraction

- Limited training data available for supervised learning-based algorithms:
 - use **acoustic models** to generate simulated data (data augmentation):
 - Fixed relative transfer function (sp.-indep.)
 - Phoneme-dependent relative transfer function (sp.dep.)
 - domain transfer (train with simulated data, fine-tune with real recordings)

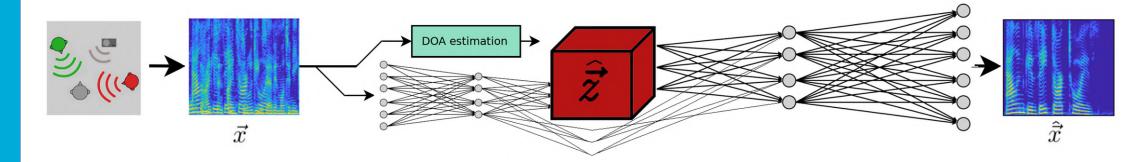




Slide 25 06.08.2023

Current / future work: challenges and opportunities...

- Applications to (binaural) speech enhancement, own voice extraction, DOA estimation, acoustic feedback control and active noise reduction
- Explore trade-off between latency/complexity and performance
- Best hybrid compromise between model-based and learning-based approaches
- Realistic **dynamic acoustic scenes** with moving speakers and (fast) head movements
- Integration with individual hearing loss compensation: 1-stage (individual) vs. 2-stage
- Explore advantages of unsupervised/semi-supervised algorithms



Questions ?

http://www.sigproc.uni-oldenburg.de YouTube Signal Processing Uni Oldenburg

Slide 27 06.08.2023