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• Possibilities with analog hearing aids = limited !
• Developments in HW and micro-electronics:

– Digital signal processor (DSP)
– Multiple microphones (2-3)
– Binaural wireless link between hearing aids

• Digital hearing instruments and cochlear 
implants allow for advanced acoustical 
signal (pre-)processing

• Important algorithmic constraints:
– Input-output latency (< 10…15 ms)

– Power constraints from small battery

Signal processing in hearing aids
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Signal processing in hearing aids

• Signal processing block diagram
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Signal processing algorithms

• Cochlear loss: 
– Frequency-specific amplification
– Dynamic range compression

• Binaural and central loss:
– Noise reduction
– Binaural Algorithms

• “Technical” requirements
– Feedback control (40-60 dB acoustic gain!)
– Occlusion effect / ‘own voice’ detection 
– Classification of acoustic environment
– (fully digital, 1V supply from very small battery, 5-6d 

battery time, wireless binaural link (new!))
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• Basic processing: acoustic amplification and dynamic range 
compression (frequency-selective)
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• Due to acoustic coupling between receiver and microphone 
(large amplification): acoustic feedback control

• Increase speech intelligibility in background noise: single- or 
multi-microphone noise reduction and dereverberation

NR+
Derev

NR+
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Dynamic range compression
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Empirical finding:
Reduced dynamic range between threshold of hearing
and uncomfortable level

Recruitment phenomenon

Loud signals are too loud ...

... Soft signals are too soft
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Multichannel dynamic range compression

• Limited success with many 
bands and very short time 
constants
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Multichannel dynamic range compression

• Instantaneous compression including suppression model 
(instantaneous-frequency (IF) control)

• Gain and compression applied independently in frequency 
channels flattens spectro-temporal pattern

• Non-linear processing sharpens spectro-temporal pattern

without IF-control:

Hohmann and Kollmeier, ISH 2006, Springer



Feedback cancellation
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Acoustic feedback
• Amplification of recorded signal needed

• BUT: ringing/howling when amplification is increased above certain limit

• REASON: acoustic coupling between receiver and microphone

• Acoustic feedback limits maximum amplification in hearing aids 
(even more problematic in open-fitting hearing aids)

Acoustic Feedback
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Acoustic Feedback: illustration
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Acoustic feedback cancellation: approaches

• Notch Filters: traditional solution

Suppress the narrow-band oscillations that originate from 
system instability (when such instability occurs)

• Self-adjusting notch filters

• Adaptive notch filters

• Adaptive Feedback Cancellation:

Estimate and cancel feedback signal by recursively 
identifying and tracking the unknown feedback path 
transfer function F(z)
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Notch filtering: detect and attenuate frequencies where instability occurs

Notch filtering

� Reactive approach → always too late! 

� Amplification is still limited

� Hearing aid response is compromised
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Notch filtering

Microphone signal analysis → Feedback detection → Notch Filter design
� �
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More promising solution? Adaptive Feedback cancellation

Adaptive Feedback cancellation

Signal
processing

in H.A.

Acoustic
feedback path
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+
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path
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Time-varying
→ adaptive filters

Loudspeaker

Microphone

Model the leakage signal and subtract it from the 
microphone signal           increases maximum amplification 
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Due to signal correlation,
decorrelation is required, e,g, by

� injecting noise signal r(t), possibly 
psycho-acoustically masked

� adding a delay d to the forward path:

Note: if v(t)=white noise, then d=1 
is sufficient !

�adding a nonlinear operation to the 
forward path:
– frequency shift
– phase modulation
– half wave rectifier:

Adaptive Feedback cancellation



Noise reduction
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Speech intelligibility in background noise

microphones

Processing of 
Recorded Signals

receiver



21

Background noise reduction

• Goal: increase signal-to-noise ratio (SNR)
• one microphone:

can only exploit temporal or spectral differences in speech and noise signal

• more than one microphone:
can also distinguish between signals coming from different positions in space 

(spatial processing)

t1 sec:

t1 + d/c sec:

velocity of sound c

mic1mic2

d meter

d/c sec

t0 sec:

difference in arrival time of 
sound between 2 mics depends 
on position of sound source



22

• Single-microphone techniques:
– only temporal and spectral information → limited performance
– spectral subtraction, Kalman filter, subspace-based

• Multi-microphone techniques:
– exploit spatial information
– Fixed beamforming: fixed directivity pattern
– Adaptive beamforming: adapt to different

acoustic environments → improved performance

Filter w0

Filter wN-1

Filter w1 +

0[ ]y k

1[ ]y k

1[ ]Ny k−

[ [[ ]] ]n n nx kk vy k= +

Output z[k]

speech [ ]s k

noise [ ]n k

Background noise reduction



Single-microphone noise reduction
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• Microphone array processing
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Single-Microphone Noise Reduction

[ ] [ ] [ ]y k s k n k= +
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Single-Microphone Noise Reduction
• STFT-based techniques (overlap-add)
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Single-Microphone Noise Reduction

• Noisy microphone signal:

• Average noise PSD (stationary noise assumption):

→ Estimate clean speech spectrum S[k,l] (for each frame), using noisy speech 
spectrum Y[k,l] (for each frame, i.e. short-time estimate) + estimated average 
noise PSD         :

based on real-valued gain function: ˆ[ , ] [ , ] [ , ]S k l G k l Y k l=

2[ , ] ( [ , ], [ ])nG k l f Y k l lσ=

22

noise frames
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Spectral Enhancement: Gain Functions

• Example: Wiener Filter
– Goal: 

find filter G[k,l] such that MSE is minimized :

– Solution: 

Assuming that speech s[k] and noise n[k] are uncorrelated, then...

{ }
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*
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<- auto-correlation in l-th frame
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SNR high → G[k,l] ≈ 1
SNR low  → G[k,l] ≈ 0
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Spectral Enhancement: Gain Functions
• Example: Wiener Filter
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Spectral Enhancement: Musical Noise

• Audio demo: car noise

• Artifact: musical noise
– Estimation errors in the frequency-domain: usage (subtraction) of 

average noise PSD          with short-time estimates Y[k,l]
→ randomly fluctuating noise floor
→ spurious peaks in spectral representation of the enhanced signal
→ statistical analysis shows that broadband noise is transformed into signal 

composed of short-lived tones with randomly distributed frequen cies 
(= musical noise)

Wiener filter][ky ][̂ks

ˆ[ , ] [ , ] [ , ]S k l G k l Y k l=

instantaneousaverage

2[ ]n lσ
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Musical noise
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Spectral Enhancement: Musical Noise

• Counter-measures:
– Half-wave rectification: put negative values of G[k,l] to 0

– Better suppression rules: e.g. Ephraim-Malah suppression rule

– Magnitude averaging: replace Y[k,l] in calculation of G[k,l] by a local average 
over frames 

– Noise over-subtraction: increase the estimated noise PSD in order to reduce the 
amplitude of the random spectral peaks

– Spectral floor: impose lower limit                on magnitude squared enhanced DFT 
coefficients (trade-off noise reduction vs. musical noise, ß = 0.1...0.4)

– Cepstral smoothing

2 2[ ] [ ], with 1...2n nl O l Oσ σ→ =
2[ ]n lβ σ
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Noise PSD estimation

• Noise PSD is generally time-varying and not known a-priori
• Estimation of average noise PSD            :

– Based on VAD (Voice Activity Detection):
• Hard decision between speech and noise
• sample noise in speech pause prior to speech and keep estimate 

fixed during speech activity
• Works well for stationary noise at 

moderate to high SNRs (above 0 dB)

– Based on „Minimum Statistics“:
• Soft-decision
• Relies on observation that power of 

noisy speech signal frequently decays 
to power level of disturbing noise 
(gaps/dips in speech PSD)

• Allows to update estimated noise PSD 
also during speech activity

• Works better for non-stationary noise

2[ ]n lσ
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• Single-microphone techniques:
– only temporal and spectral information → limited performance
– spectral subtraction, Kalman filter, subspace-based

• Multi-microphone techniques:
– exploit spatial information
– Fixed beamforming: fixed directivity pattern
– Adaptive beamforming: adapt to different

acoustic environments → improved performance

Filter w0

Filter wN-1

Filter w1 +

0[ ]y k

1[ ]y k

1[ ]Ny k−

[ [[ ]] ]n n nx kk vy k= +

Output z[k]

speech [ ]s k

noise [ ]n k

Background noise reduction



Multi-microphone noise reduction
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Introduction: directional microphone
• A (directional) microphone is characterized by a directivity pattern, which 

specifies the gain (+ phase shift) that the microphone gives to a signal 
coming from a certain direction θ

• Directivity pattern H(ω,θ) is also function of frequency (ω)

• Directivity pattern of directional microphone (e.g. cardioid, supercardioid) 
is fixed and defined by physical microphone design

|H(ω,θ)| for 1 frequency
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Filter-and-sum beamforming

• By weighting or filtering (= frequency-dependent weighting) + summing the 
signals from microphones at different positions , the aim is to produce a 
(software-controlled) `virtual’ directivity pattern’ (= weighted sum of individual 
directivity patterns)

• This is referred to as `spatial filtering’ and `spatial filter design’, with 
correspondences to traditional (spectral) filter design
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Fixed beamforming: delay-and-sum beamforming

• Principle: Microphone signals are delayed and then summed together 

• Based on coherent / incoherent interference :  
e.g. for 2 microphones
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• Adaptive filter-and-sum structure:
– Aim is to minimize noise output power, while maintaining a chosen frequency 

response in a given look direction (typically front direction in hearing aids)
– This is similar to a delay-and-sum beamformer (in white noise), but now the 

noise field is unknown and can change over time
– Implemented as adaptive filter (e.g. constrained LMS algorithm)

Adaptive beamforming
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mic 1 mic 2

mic 3
Adaptive beamforming - GSC

Filter w1

Filter w2

+∆
- -

Spatial pre-processor
(Fixed beamforming)

Adaptive stage
(Adaptive Noise Canceller)
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speech reference
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Clinical trial
• Implementation on commercial Cochlear Nucleus Freedom device
• 5 CI users, 2 week field test, lab measurement
• Adaptive beamformer vs. fixed directional microphone
• SRT measurements (fixed procedure at SNR = -5dB / +5dB)
• Noise material: stationary speech-weighted (spw) and babble noise:

S0N90, S0N90/180/270

SmartSound Beam™
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Conclusions

• Single-channel noise reduction
– Only spectral filtering
– can only exploit differences in spectra between speech and noise:

• noise reduction at expense of speech distortion
• achievable noise reduction may be limited
• musical noise

– Noise PSD estimation is difficult for non-stationary noise

• Multi-microphone noise reduction:
– In addition spatial filtering
– Can exploit position differences between speech and noise source

(also for non-stationary noise)
– Fixed beamforming: fixed directivity pattern
– Adaptive beamforming: adapts to unknown noise fields
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• Basic processing: acoustic amplification and dynamic range 
compression (frequency-selective)
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Microphone

Amplification
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-
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• Due to acoustic coupling between receiver and microphone 
(large amplification): acoustic feedback control

• Increase speech intelligibility in background noise: single- or 
multi-microphone noise reduction and dereverberation

NR+
Derev

NR+
Derev
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Questions ?

House of Hearing, Oldenburg


