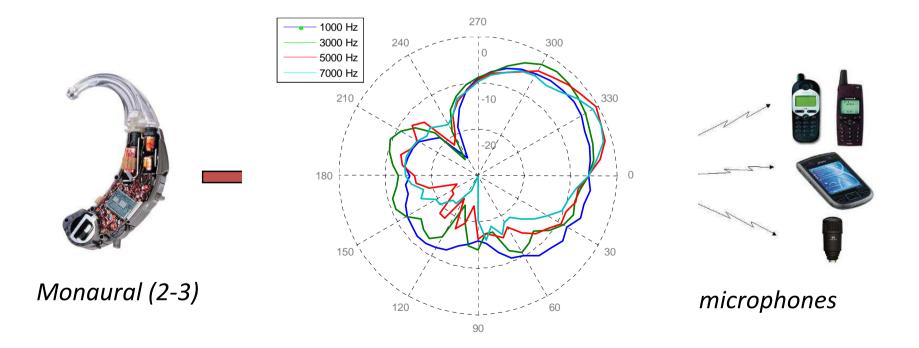


RTF-Steered Binaural MVDR Beamforming Incorporating an External Microphone for Dynamic Acoustic Scenarios

Nico Gößling, Prof. Dr. Simon Doclo

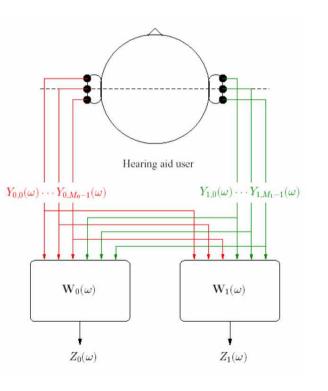
University of Oldenburg, Dept. of Medical Physics and Acoustics and Cluster of Excellence Hearing4all


International Congress on Acoustics, Aachen – September 12, 2019

Hearing impaired suffer from a loss of speech understanding in adverse acoustic environments with competing speakers, background noise and reverberation

Multiple microphones available \rightarrow spatial + spectral processing

Introduction

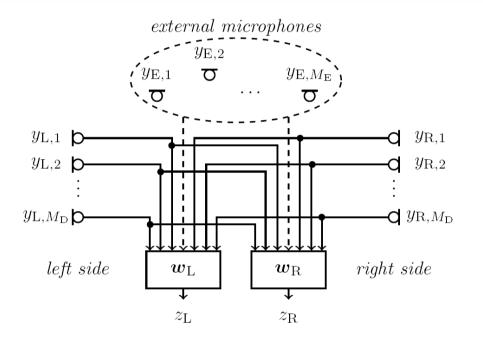

□ This presentation:

- Binaural noise reduction algorithms based on minimum variance distortionless response (MVDR) beamformer
- Integration with external microphone(s) that are spatially separated from the hearing aid microphones

Main objectives of algorithms:

- Improve speech intelligibility and avoid signal distortions
- Preserve spatial awareness and directional hearing (binaural cues)

Binaural noise reduction


Binaural MVDR beamformer

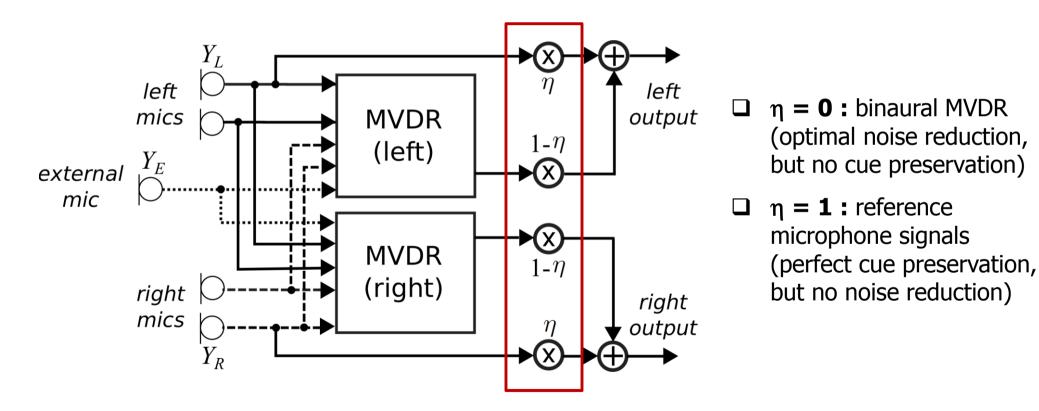
Minimum-Variance-Distortionless-Response (MVDR) beamformer

Spatial filtering using **all** microphones (head-mounted and external)

Goal: minimize noise power while preserving speech component in left and right reference microphone signals

Requires estimate/model of noise covariance matrix (e.g. diffuse) and estimate/model of relative transfer function (RTF) of desired speech source

Preserves **binaural cues** of desired source, but distorts binaural cues of noise



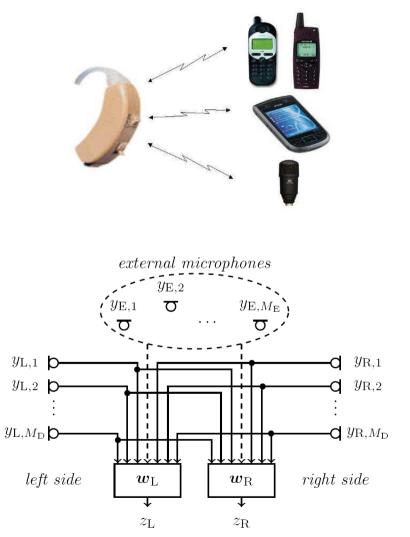
Binaural MVDR beamformer with partial noise estimation

6

□ **Goal:** preserve binaural cues of residual noise by **partly mixing** binaural MVDR output signals with reference microphone signals

Note: different procedures available to determine trade-off parameter η (frequency/signal-dependent, psycho-acoustically motivated)

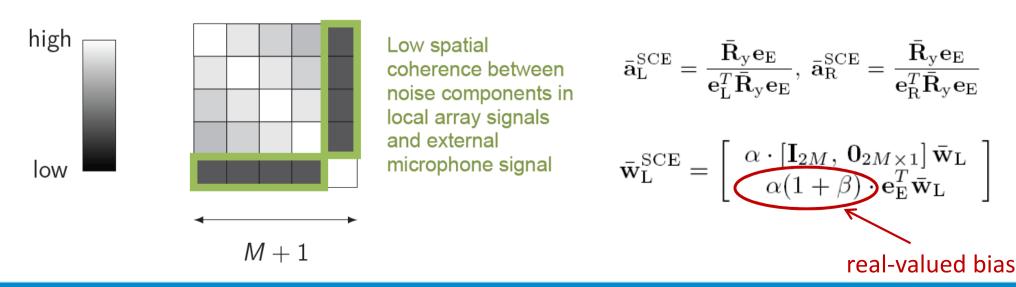
External microphones


External microphones

 Exploit the availability of one or more external microphones (acoustic sensor network) with hearing aids

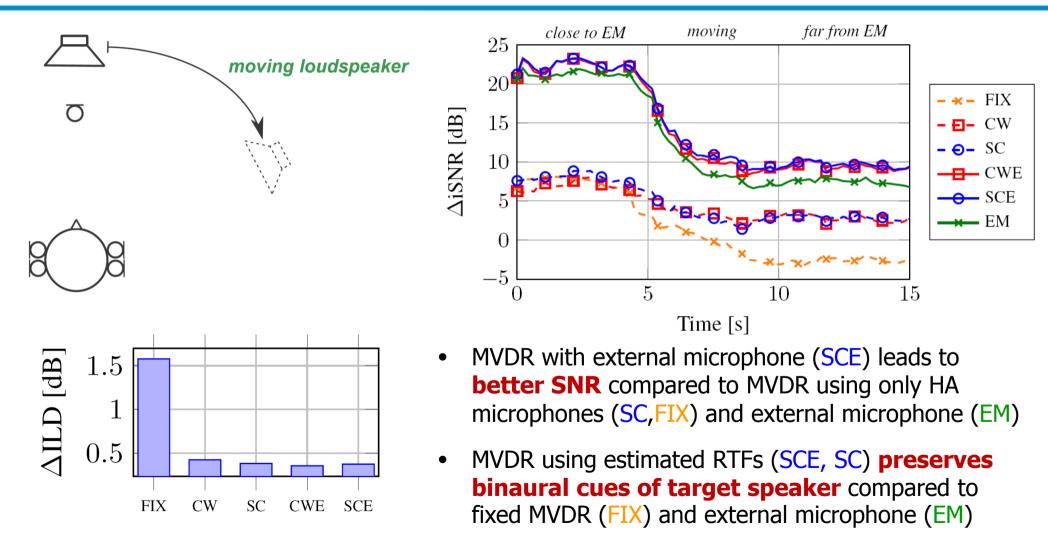
- Integrating external microphone(s) with hearing aid microphones may lead to:
 - Low-complexity method to estimate relative transfer function (RTF) vector of target speaker
 - Improved noise reduction and binaural cue preservation performance

$$\mathbf{w}_L = \frac{\mathbf{R}_n^{-1}\mathbf{h}_L}{\mathbf{h}_L^H \mathbf{R}_n^{-1}\mathbf{h}_L}, \quad \mathbf{w}_R = \frac{\mathbf{R}_n^{-1}\mathbf{h}_R}{\mathbf{h}_R^H \mathbf{R}_n^{-1}\mathbf{h}_R}$$


[[]Bertrand 2009, Szurley 2016, Yee 2018, Farmani 2018, Kates 2018, Ali 2019, Gößling 2019]

One external microphone: RTF estimation

- Estimate RTF vector of target speaker to steer binaural MVDR beamformer
- Spatial coherence (SC) method: assume that noise components in external microphone and HA microphones are uncorrelated, e.g., when external microphone is spatially separated from HA microphones + diffuse noise field
 - \rightarrow correlate HA microphone signals with external microphone signals and normalize by reference element
- Low computational complexity with similar (even better in practice) performance than state-of-the-art covariance whitening (CW) approach



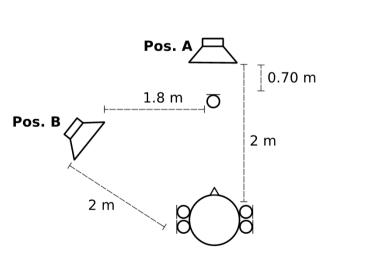
[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019]

One external microphone: Simulation results

Oldenburg Varechoic Lab ($T_{60} \approx 350$ ms), M=4 + 1 external mic (1.5m/0.5m), moving speaker, pseudo-diffuse babble noise, iSNR=0dB (right HA) STFT: 32 ms, 50% overlap, sqrt-Hann; SPP in external microphone; smoothing: 100 ms (speech), 1 s (noise)

[Gößling, Doclo, Proc. IWAENC 2018] [Gößling, Doclo, Proc. ICASSP 2019]

Audio Demo


Real-world recordings ($T_{60} \approx 300 \text{ ms}$), changing speaker position

Filter: with

- KEMAR with **two BTE hearing aids** (2 mics each) and **one external mic**
- German speaker (10 sec at position A, 10 sec at position B)

Filter: only HA

Pseudo-diffuse babble noise

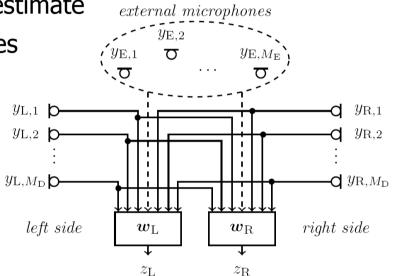
		microphones	external mic	
Hearing aid input signals	External mic	MVDR- FIX	eMVDR- SC	
		frontal (anechoic)	spatial coherence based RTF estimation	
$(\circ))$	()	$\square)))$		MVDR
				MVDR-N (partial noise estimation, η=0.2)

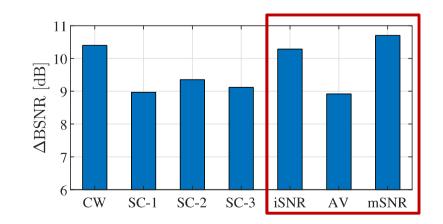
Multiple external microphones

- Each external microphone yields (different) RTF estimate
- Linear combination/selection of RTF estimates (per frequency)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

1. Input SNR-based selection

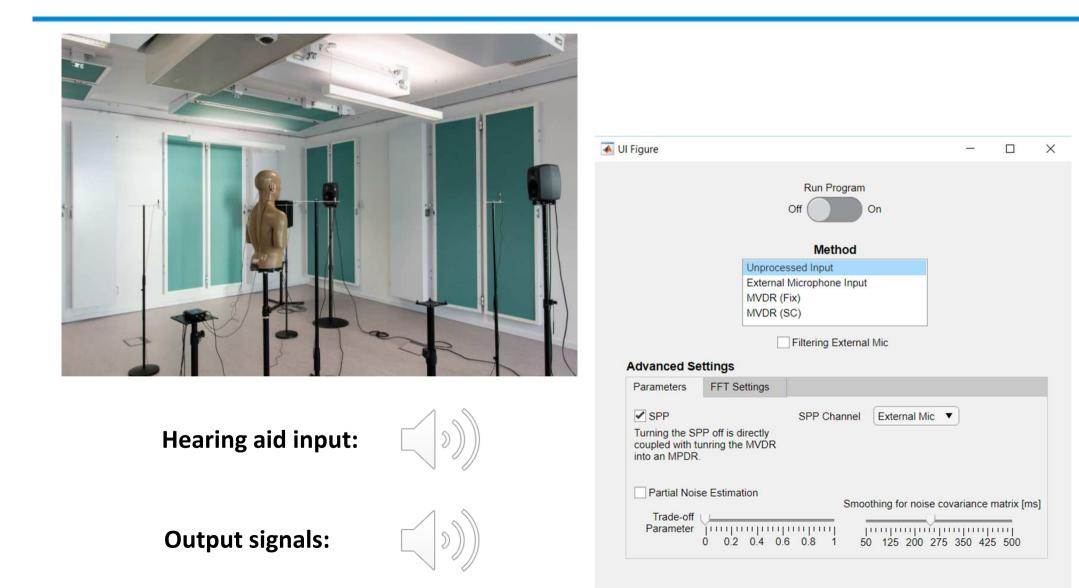

$$oldsymbol{c}^{ ext{iSNR}} = oldsymbol{e}_{ ext{E}, \hat{i}}\,, \quad \hat{i} = rg\max_{i} \; rac{oldsymbol{e}_{ ext{E}, i}^Toldsymbol{R}_{ ext{y}}oldsymbol{e}_{ ext{E}, i}}{oldsymbol{e}_{ ext{E}, i}^Toldsymbol{R}_{ ext{n}}oldsymbol{e}_{ ext{E}, i}}$$


2. Simple averaging

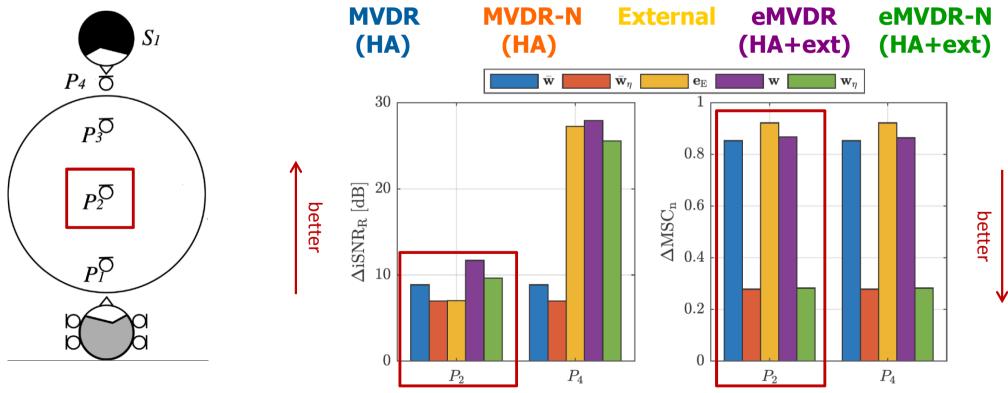
$$oldsymbol{c}^{\mathrm{AV}} = \left[rac{1}{M_{\mathrm{E}}}, \dots, rac{1}{M_{\mathrm{E}}}
ight]^T$$

3. Output SNR-maximizing combination

$$oldsymbol{c}^{ ext{mSNR}} = rg\max_{oldsymbol{c}} \ ext{SNR}^{ ext{out}}_{ ext{BMVDR,L}} = \mathcal{P}\{oldsymbol{\Lambda}_2^{-1}oldsymbol{\Lambda}_1\}$$



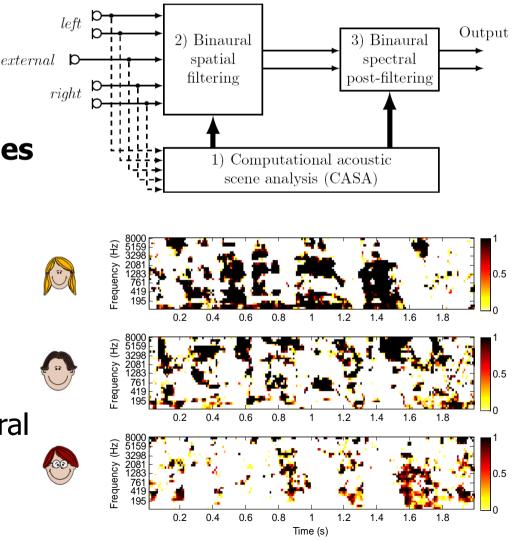
Real-time demonstrator



Binaural MVDR-N beamformer

- Including external microphone in **binaural MVDR-N beamformer** leads to:
 - Larger output SNR for same trade-off parameter η
 - Same output SNR with larger trade-off parameter $\eta \rightarrow$ **better cue preservation**

Starkey database with real-world recordings ($T_{60} \approx 620$ ms), M=4, target speaker S₁, multi-talker babble noise, 0 dB input iSNR (right hearing aid) MVDR: perfectly estimated noise correlation matrix, RTF of target speaker estimated using covariance whitening method


[Gößling, Doclo, Proc. HSCMA 2017] [Gößling, Doclo, submitted to IEEE/ACM TASLP]

Current/future work

- Performance analysis for different acoustic scenarios (interfering speakers)
- Synchronization/latency issues
- Complex and time-varying scenarios: incorporate computational acoustic scene analysis (CASA) into control path of developed algorithms
- Subjective evaluation of binaural speech enhancement algorithms with HA/CI users ongoing

Acknowledgments

Dr. Daniel Marquardt

Nico Gößling

Wiebke Middelberg

Dr. Elior

Hadad

Prof. Sharon Gannot

Funding:

- □ Cluster of Excellence Hearing4all (DFG)
- □ Collaborative Research Centre SFB 1330 Hearing acoustics (DFG)
- □ Joint Lower-Saxony Israel Project "Acoustic scene aware speech enhancement for binaural hearing aids" (Partner: Bar-Ilan University, Israel)

Recent publications

- S. Doclo, S. Gannot, D. Marquardt, E. Hadad, "Binaural Speech Processing with Application to Hearing Devices", Chapter 18 in <u>Audio Source Separation and Speech Enhancement</u> (E. Vincent, T. Virtanen, S. Gannot, eds.), Wiley, 2018.
- S. Doclo, W. Kellermann, S. Makino, S. Nordholm, <u>Multichannel signal enhancement algorithms for assisted listening</u> <u>devices</u>, IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 18-30, Mar. 2015.
- D. Marquardt, V. Hohmann, S. Doclo, <u>Interaural Coherence Preservation in Multi-channel Wiener Filtering Based Noise Reduction for</u> <u>Binaural Hearing Aids</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 23, no. 12, pp. 2162-2176, Dec. 2015.
- J. Thiemann, M. Müller, D. Marquardt, S. Doclo, S. van de Par, <u>Speech Enhancement for Multimicrophone Binaural Hearing Aids Aiming</u> <u>to Preserve the Spatial Auditory Scene</u>, EURASIP Journal on Advances in Signal Processing, 2016:12, pp. 1-11.
- D. Marquardt, S. Doclo, <u>Interaural Coherence Preservation in Binaural Hearing Aids using Partial Noise Estimation and Spectral</u> <u>Postfiltering</u>, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 26, no. 7, pp. 1257-1270, Jul. 2018.
- N. Gößling, D. Marquardt, S. Doclo, <u>Performance analysis of the extended binaural MVDR beamformer with partial noise estimation in a homogeneous noise field</u>, in Proc. Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA), San Francisco, USA, Mar. 2017, pp. 1-5.
- N. Gößling, S. Doclo, <u>Relative transfer function estimation exploiting spatially separated microphones in a diffuse noise field</u>, in Proc. International Workshop on Acoustic Signal Enhancement, Tokyo, Japan, Sep. 2018, pp. 146-150.
- N. Gößling, S. Doclo, *RTF-steered Binaural MVDR Beamforming Incorporating an External Microphone for Dynamic Acoustic Scenarios*, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, May 2019, pp. 416-420.
- N. Gößling, W. Middelberg, S. Doclo, *RTF-steered Binaural MVDR Beamforming Incorporating Multiple External Microphones*, in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, Oct. 2019, pp. 368-372.

<u>http://www.sigproc.uni-oldenburg.de</u> \rightarrow Publications

Questions ?

