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Chapter 1
Introduction and Motivation
This bachelor project is based on SmarAct’s PICOSCAN Vibrometer (PSV), which is cur-

rently developed to investigate out-of-plane vibrations of sample surfaces based on sinu-

soidal phase modulation (SPM)-interferometry. A built in lock-in amplifier (LIA) enables

the instrument to extract the amplitude and phase of the vertical vibration of the investi-

gated surface with picometer accuracy. Therefore it can be used investigate the dynamic

response of different samples such as atomic force microscopy (AFM) cantilevers, mobile

phone loudspeakers or micro-electro-mechanical system (MEMS). The revealed dynamic

response can then be used to characterize the quality and understanding of it allows to

tune the product to a wanted performance. This project aims to extend the instrument to

offer investigations of vibrations in all 3 dimensions, thus also in-plane-vibrations. These

lateral vibrations are often coupled with the vertical vibrations and it is of great advan-

tage to know the complete vibrational behavior in 3D space in order to understand mo-

tion and function of the investigated sample. Since the product was already about to be

released its hardware should not be changed at all and firmware modifications should

be minor. Due to these limiting conditions I needed to realize this project by developing

a post-processing software, which processes the measurement data. In order to get this

required information also a different recording process of data needed to be developed

as pre-processing. Based on its SPM-interferometry the PSV offers scanning of confocal

microscopy images. Taking advantage of the principle of stroboscopic imaging allowed

me to construct periodic image sequences, which contained exactly one period of the

actuated sine wave. In order to provide the data for the analysis software a method of

simultaneously measuring the reflection and referencing it to the momentary angular

phase of the actuating signal was developed and realized in the firmware of the PSV.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION

The main part of the project was implementing and optimizing different methods to ex-

tract lateral vibration information out of this image sequences. Therefor I developed an

analysis software, which constructs the image sequence and is able to perform different

techniques based on various image processing and fitting algorithms. Hereby I aimed

to measure down to 10 nm vibrations amplitudes, which is about 100 times smaller than

the pixel resolution and about 500 times smaller than the optical resolution. This main

approach of the template matching (TM) on a periodic image sequence was inspired by

Cretin et al. [1].
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Chapter 2
Physical Principles of Vibration
Measurement
Here I describe the fundamental theories, methods and algorithms, on which this work is

based. The following list provides the topics and their application or usage in this work:

• The theory about flexural vibrations of free rectangular beams can describe the

dynamic behavior of the samples in order to compare the theoretical results to the

measured data.

• The principles of SPM interferometry is used by the PSV to provide accurate position

and reflection intensity data.

• Temporal and spatial image derivatives are computed by convolution with deriva-

tive kernels and they are used by all approaches to estimation the motion.

• The 2D weighted least square peak fitting algorithm is used to reveal the sub-pixel

position of optimal correlation position of two images.

• The Lucas-Kanade algorithm can give a rough estimate of image motion for every

pixel.

• The optical flow estimation for a periodic image sequence (OFEPIS) algorithm can

reveal vibrations by estimating the periodic motion at each pixel.

3



CHAPTER 2. PHYSICAL PRINCIPLES OF VIBRATION MEASUREMENT

2.1 Flexural Vibrations of Free Rectangular Beams

Figure 2.1: Rectangular free Euler-Bernoulli beam. Dimensions given by length L,
width W and thickness T. Horizontal flexural vibrations are defined to oscillate in y-
direction and vertical flexural vibrations in z-direction.

This section describes the vibrational behavior of beams, since the theory allows selection

of suitable samples by revealing their resonance frequencies and bending shapes and it

allows to interpret the results by comparing it to the theoretical model. The dynamic

behavior of rectangular beams, which are mounted at one end and free at the other,

can be described by Euler-Bernoulli beam theory, if the beams cross section A = W · T,

secondmoment of inertia I, elasticity module E and density ρ are approximately uniform.

For rectangular shaped beams the vertical second moment of inertia is given by Iz =

W · T3/12 and the horizontal by Iy = T ·W3/12. An analytic solution of the displacement

z depending on position x, time t, amplitudeM and frequency f can be determined based

on a forth order differential equation [2], [3]:

E · I · ∂4z(x, t)
∂x4 + ρ · A · ∂2z(x, t)

∂t2 = 0 (2.1)

A general solution to Equation 2.1 is given by:

z(x, t) =
(

α1 · ekx + α2 · e−kx + α3 · eikx + α4 · e−ikx
)

e−iωt
(2.2)

Inserting Equation 2.2 into Equation 2.1 results in the dispersion relation:

EI · k4 − ρA ·ω2 = 0 ⇔ 2π · f = ω = k2

√
EI
ρA

(2.3)

Since one end of the cantilever beam is clamped (e.g. to a wafer-chip), it is not able

to move and the displacement and slope at this end must be zero. At the free end of

4
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Figure 2.2: First four flexural vibration modes of Euler-Bernoulli beam.
the cantilever there is no moment or shear force. This results in the following boundary

conditions in Equation 2.4 for a cantilever with a clamped and a free end:

z(0, t) = 0,
∂z(0, t)

∂x
= 0 (clamped at x = 0)

and
∂2z(0, t)

∂x2 = 0,
∂3z(0, t)

∂x3 = 0 (free at x = L)
(2.4)

These four equations gained by the boundary conditions are solved for the coefficients

αi (i = 1, 2, 3, 4). Solutions only exist, if the characteristic equation

cos (knL) cosh (knL) + 1 = 0 (2.5)

is fulfilled. This condition leads to an infinite set of discrete solutions for knL, whereby

each corresponds to a flexural vibration mode with mode number n ∈ N, wave number

kn and frequency fn (calculated by the dispersion relation in Equation 2.3). Inserting the

allowed solutions and the determined coefficients into the general solution results in the

deflection

zn(x) = M
(

cos (knx)− cosh (knx)− cos (knL) + cosh (knL)
sin (knL) + sinh (knL)

[sin (knx)− sinh (knx)]
)
(2.6)

for all mode numbers n. Figure 2.2 shows the first four flexural vibration modes of an

Euler-Bernoulli beam calculated by Equation 2.6.
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CHAPTER 2. PHYSICAL PRINCIPLES OF VIBRATION MEASUREMENT

2.2 Sinusoidal Phase Modulation Interferometry

Figure 2.3: Schematic setup of a Michelson interferometer.

SPM interferometry is here explained based on a Michelson interferometer setup [4], [5]

seen in Figure 2.3. A singlemode optical fiber outputs a light beam of wavelength λ, which

is collimated by a lens. A beam splitter separates the beam into a reference beam and

an object beam, which are reflected each by its respective mirror. After passing through

the beam splitter again, both reflected beams interfere. A photo detector measures the

intensity of the recombined beam. The "time of flight" of the object and reference beam

(τO,τR) is given by the path lengths (lO,lR) and the speed of light c assuming the refractive

index of the environment nAIR ≈ 1.

τO(t) =
2lO(t)

c
and τR =

2lR

c
(2.7)

Usually the reference mirror is fixed so that lR and τR are constant, however the object

mirror (here it is the reflective surface of the investigated samples) is movable so that lO

and τO depend on time t. The reference and object beam can be described by sinusoidal

waves UO(t) and UR(t), which interfere depending on the optical path difference, only

if the coherence length is larger than the optical path difference Lc � n(lO − lR). In

general, ω depends on time so that the waves are defined as:

UO(t) = αO sin (ΦO(t)) with ΦO(t) =
∫ t−τO(t)

0
ω(t)dt = 2πc

∫ t−τO(t)

0

1
λ(t)

dt

UR(t) = αR sin (ΦR(t)) with ΦR(t) =
∫ t−τR

0
ω(t)dt = 2πc

∫ t−τR

0

1
λ(t)

dt,
(2.8)

6



2.2. SINUSOIDAL PHASE MODULATION INTERFEROMETRY

whereby αO and αR represent the amplitudes of the light waves (e.g. the electric field

strength). The interference light wave is given by the superposition of the two oscillating

wave vectors UO(t) and UR(t):

U(t) = αO sin(ΦO(t)) + αR sin(ΦR(t))

U(t) = U0 sin(Φ)

with U0 =
√

αO
2 + αR2 + 2αOαR cos(ΦR −ΦO)

and Φ = arctan
(

αO sin(ΦO) + αR sin(ΦR)

αO cos(ΦO) + αR cos(ΦR)

) (2.9)

However the photo detector is not able to detect the high frequency ω of the light, so

that it measures the averaged intensity I(t), which for electromagnetic, plane waves is

described by [6]:

I(t) =
cε0U0

2

2
⇒ I(t) ∝ U0

2

I(t) = IO + IR + 2
√

IO IR cos(ΦR −ΦO)

(2.10)

The visibility V = 2
√

IO IR
I0

(also called fringe contrast), which describes the contrast of the

interferometer signal, is inserted into Equation 2.10:

I(t) = I0 + V · I0 cos(∆Φ)

with I0 = IO + IR and ∆Φ = ΦR −ΦO

(2.11)

Operating theMichelson interferometer with a constant wavelength λ simplifies the phases

of the two waves from Equation 2.8 to:

ΦO =
2πc(t− τO)

λ
and ΦR =

2πc(t− τR)

λ
, (2.12)

which by using Equation 2.7 results in:

∆Φ = ΦR −ΦO =
2π(τO − τR)

λ
=

4π(lO − lR)

λ
(2.13)

So the intensity measured by the photo diode depends only on the optical path difference

7
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Figure 2.4: Intensity I(t) measured by the photo detector while the object path dif-ference x(t) increases. (for λ(t) = 1550 nm = const.)

x(t) = lO(t)− lR (inserting Equation 2.13 into Equation 2.11):

I(t) = I0 + V · I0 cos
(

4π

λ
x(t)

)
(2.14)

Therefore, operating the Michelson interferometer with a constant wavelength yields in

a sinusoidal signal, which does not provide information about the direction, whenever

an intensity maximum or minimum is measured with the photo detector (see Figure 2.4).

Additionally, the intensity at the photo detector depends on the optical path difference

x(t), which disables measuring the reflectance of the objects surface. These two issues

are solved by SPM interferometry which is based on a sinusoidal wavelength modulation.

By alternating the drive current of the laser diode with a modulation frequency ωm, the

wavelength can be described by:

λ(t) = λ0 + ∆λ(t) = λ0 + ∆λ0 cos(ωmt), (2.15)

whereby λ0 is the center wavelength and ∆λ0 is the modulation amplitude of the wave-

length. In order to analytically solve the integrals in Equation 2.8 the following approxi-

mation holds for ∆λ� λ0:

1
λ(t)

=
1

λ0 + ∆λ(t)
≈ 1

λ0

(
1− ∆λ(t)

λ0

)
(2.16)

Using Equation 2.8, Equation 2.15, Equation 2.16 and trigonometric identities gives the

phase difference ∆Φ(t) of the SPM interferometry as [6], [7], [8]:

∆Φ(t) =
4π

λ0
(lO − lR)−

4πc∆λ

ωmλ0
2 sin

(
ωm(τO − τR)

2

)
cos

(
ωmt− ωm(τO + τR)

2

)
(2.17)

Inserting this into Equation 2.11 leads to the following intensity function, describing the

8
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signal measured by the photo diode:

I(t) = I0 + VI0 cos [z cos (ωmt + ϕ) + θ]

with z = −4πc∆λ

ωmλ0
2 sin

(
ωm(τO − τR)

2

)
and θ =

4π

λ0
x(t) and ϕ = −ωm(τO + τR)

2

(2.18)

where z is the modulation depth, θ is a phase offset, which is constant for a fixed optical

path length difference x(t) = lO(t)− lR and independent of the modulation frequency

ωm and ϕ describes a phase offset of the AC component of the phase modulation. Equa-

tion 2.18 can be expanded using Bessel functions Jk(z) of the first kind of the modulation

depth z:

I(t) = I0 + VI0[SDC + Sω cos(ωmt + ϕ) + S2ω cos(2ωmt + 2ϕ)

+ S3ω cos(3ωmt + 3ϕ) + S4ω cos(4ωmt + 4ϕ) + . . .]

I(t) = I0 + VI0

[
SDC +

∞

∑
k=1

Skω cos(kωmt + kϕ)

]
with SDC = J0(z) cos(θ)

and Skω = 2Jk(z)
dk

dαk [cos(θ)] for k ∈N+

(2.19)
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Expanding the intensity signal using the Bessel function is of advantage, because odd

harmonics of the modulation frequency ωm are amplitude modulated by the sine of the

phase offset θ and even harmonics aremodulated by the cosine of θ. By detecting (appro-

priate lock-in filtering) of Sω ∝ sin(θ) (odd harmonic) and S2ω ∝ cos(θ) (even harmonic),

quadrature components of the interferometer phase can be constructed. Figure 2.5 b)

shows the Lissajous plot of Sω over S2ω, seen in Figure 2.5 a), whereby one circumference

corresponds to a position change of λ0/2. Figure 2.5 a) also shows the relative position

x(t) determined by the angle γ of the Lissajous plot:

x(t) =
(

γ(t)
2π

+ c
)

λ0

2
with γ(t) = arctan 2 (Sω(t), S2ω(t)) , (2.20)

whereby c ∈ Z counts the revolutions of the Lissajous circle to unwrap the angle γ from

the arctan2 operation. The quadrature signal also provides information about the di-

rection at any relative position. The radius RL =
√

Sω
2 + S2ω

2
of the Lissajous circle in

Figure 2.5, which does not depend on the optical path difference x(t), can be interpreted

as relative reflectance of the objects surface.

10



Chapter 3

2D Image Processing
3.1 Image Derivatives

The motion information in a sequence of images lies within its derivatives, as they are

the measures of change in respect to space and time. Therefore, the image derivatives

are able to emphasize small motions. The image sequence I(x, y, t) contains the intensity

values of the recorded object for every pixel and T time frames (t = 0 . . . T − 1), which

allows calculation of the spatial derivatives ∂I/∂x, ∂I/∂y and the temporal derivative ∂I/∂t.

The spatial derivatives are determined by convolution (indicated by ∗) of each time frame

It with derivative kernels. Derivative kernels compute anisotropic image derivatives, since

they have a directionality. Here the 5× 5 derivative kernels Kx and Ky from Kroon [9] are

used, which performs better than the Sobel kernels [10], since the signal dependency on

the angle is minimized.

Kx =



0.0007 0.0037 0 −0.0037 −0.0007

0.0052 0.1187 0 −0.1187 −0.0052

0.0370 0.2589 0 −0.2589 −0.0370

0.0052 0.1187 0 −0.1187 −0.0052

0.0007 0.0037 0 −0.0037 −0.0007


= KT

y (3.1)

I∂x =
∂It

∂x
= Kx ∗ It and I∂y =

∂It

∂y
= Ky ∗ It (3.2)
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CHAPTER 3. 2D IMAGE PROCESSING

The magnitudes Ispatial and directions α (angles) of the gradient field can be determined

by I∂x and I∂y as:

Ispatial =
√

I∂x
2 + I∂y

2 and α = arctan 2(I∂y, I∂x) (3.3)

The temporal derivative is approximated by the method of finite differences, whereby

the central differences are used. The following derivative kernel Dt in Equation 3.5 is

convoluted with the intensity over time at each pixel (x, y). Due to the periodicity of the

image sequence one can add the last frame in front of the sequence and the first frame

in the end of the sequence to also calculate the derivative values marginal frame.

I+x,y =
[
Ix,y,T−1, Ix,y,0, Ix,y,1, · · · , Ix,y,T−2, Ix,y,T−1, Ix,y,0

]
(3.4)

Dt =


+1

0

−1

 ⇒ I∂t =
∂I+x,y

∂t
= Dt ∗ I+x,y (3.5)

Examples of this image derivatives are presented in Figure 6.13.

3.2 2D Weighted Least Square Peak Fitting Algorithm

In order to determine the lateral vibrations with the TM method I developed a 2D peak

fitting algorithm to extract the sub-pixel peak position of the correlation images. The fol-

lowing algorithm is based on the principles of the weighted least squares Gaussian curve

fitting algorithm, which itself is an extension of Caruana’s fitting algorithm [11]. Building

on this I extended the algorithm from 1D to 2D and I applied the principles of the algo-

rithm to different model functions, which can be linearized. The performance of the fit is

strongly dependent on the choice of a model function f (x, y, p), whereby x and y span

the 2D surface and p =
[
H, µx, µy, σx, σy, θ

]
is the vector of fitting parameters. The 2D

peaks are assumed to be oval with a height H, peak-position (µx, µy), peak-width (σx, σy)

and orientation angle θ of the oval. A 2D hyperbola peak function serves as model exam-

12



3.2. 2D WEIGHTED LEAST SQUARE PEAK FITTING ALGORITHM

ple in the following development of the fitting algorithm:

f (x, y, p) =
H√

V + 1

with V = a (x− µx)
2 + 2b (x− µx)

(
y− µy

)
+ c

(
y− µy

)2

with a =
cos(θ)2

2σx2 +
sin(θ)2

2σy2 and b =
− sin(2θ)

2σx2 +
sin(2θ)

2σy2

and c =
sin(θ)2

2σx2 +
cos(θ)2

2σy2

(3.6)

In the first step themodel function is linearized in order to enable solving it with the least-

square approach. Therefore the linearized model function is additionally rearranged into

a polynomial with the coefficients pα =
[
α0, αx, αy, αxy, αx2 , αy2

]
:

1
f 2 =

V + 1
H2 = α0 + αx · x + αy · y + αxy · xy + αx2 · x2 + αy2 · y2

with α0 =
aµx

2 + cµy
2 + 2bµxµy + 1
H2

and αx =
−2(aµx + bµy)

H2 and αy =
−2(cµy + bµx)

H2

and αxy =
2b
H2 and αx2 =

a
H2 and αy2 =

c
H2

(3.7)

In order to find the best fit of the data with a chosen model function the squared differ-

ences function δ2
needs to be minimized.

δ2 =

[
1

f̂ 2
x,y
−
(

α0 + αxx + αyy + αxyxy + αx2 x2 + αy2 y2
)]2

(3.8)

Inmany cases additive random noise η in the data f̂x,y causes huge deviations, so that the

observed data follows f̂ = f + η instead of f̂ = f in the noise free case. Here f indicates

an ideal distribution according to the model function. The effect is approximated with the

Taylor polynomial of first order of the linearized data function:

1
f̂ 2

=
1

( f + η)2 ≈
1
f 2 −

2η

f 3

⇒ δ ≈ 1
f 2 −

(
α0 + αxx + αyy + αxyxy + αx2 x2 + αy2 y2

)
− 2η

f 3

(3.9)

13
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The revealed dependence on f of the noise effect leads to an unequal weighting of the

data points, which vanishes by defining another error function

ε = f 3δ ≈ f 3

f̂
− f 3

(
α0 + αxx + αyy + αxyxy + αx2 x2 + αy2 y2

)
− 2η, (3.10)

whereby the cubed ideal distribution f 3
is multiplied to δ. This is the main principle of

the weighted least square fitting method. Setting the derivatives of the sum of ε2
with

respect to each coefficient of pα to zero leads to the following linear equation system:



∑ f 6 ∑ f 6x ∑ f 6y ∑ f 6xy ∑ f 6x2 ∑ f 6y2

∑ f 6x ∑ f 6x2 ∑ f 6xy ∑ f 6x2y ∑ f 6x3 ∑ f 6xy2

∑ f 6y ∑ f 6xy ∑ f 6y2 ∑ f 6xy2 ∑ f 6x2y ∑ f 6y3

∑ f 6xy ∑ f 6x2y ∑ f 6xy2 ∑ f 6x2y2 ∑ f 6x3y ∑ f 6xy3

∑ f 6x2 ∑ f 6x3 ∑ f 6x2y ∑ f 6x3y ∑ f 6x4 ∑ f 6x2y2

∑ f 6y2 ∑ f 6xy2 ∑ f 6y3 ∑ f 6xy3 ∑ f 6x2y2 ∑ f 6y4





α0

αx

αy

αxy

αx2

αy2


=



∑ f 6 f̂−2

∑ f 6x f̂−2

∑ f 6y f̂−2

∑ f 6xy f̂−2

∑ f 6x2 f̂−2

∑ f 6y2 f̂−2


A · pα = b ⇔ pα = A−1 · b

(3.11)

which can be solved for the parameters mathb f pα by multiplying with the matrix inverse

of A. The omitted higher terms of the Taylor expansion of the noise can noticeably affect

the fit, if the data shows the peak with a long tail. And additionally, the ideal values for

f are unknown so the noisy data values f̂ are used. Therefore an iterative algorithm

is introduced using Equation 3.11, whereby every iteration adjusts the weighting until it

converges:

f(k) =


f̂ for k = 0(

α0,(k) + αx,(k)x + αy,(k)y + αxy,(k)xy + αx2,(k)x2 + αy2,(k)y2
)− 1

2
for k > 0


(3.12)

the parameters p, which contain the sub-pixel peak position of the correlation images are

calculated from the resultant coefficients pα according to Equation 3.7 and Equation 3.6.
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Chapter 4
Optical Flow Algorithms
4.1 Lucas-Kanade Algorithm
The aim of the Lucas-Kanade algorithm is to provide an estimate of motion for interesting

features in successive frames of a scene. Therefore it uses the image derivatives I∂x, I∂y

and I∂t to calculate the motion vector ∆x = (u, v) at certain ’points of interest’ [12]. The

following two assumptions are done by the algorithm:

4.1.1 Assumptions
• The movement of objects between two successive frames is small. The algorithm

works best for sub-pixel movement, which should not be to small neither.

• The frames should show natural scenes with smoothly changing intensity levels.

4.1.2 Functional Principle
When looking at one pixel with a certain intensity value j, the spatial derivatives, which

are determined as describe in section 3.1, indicate the direction of increasing brightness

in x- and y-direction. A higher intensity value k of the successive frame at the same pixel

results in a positive value for the temporal derivative, and one can assume that the move-

ment occurred against the direction of increasing brightness, since a higher brightness

moved into the observed pixel (see example in Figure 4.1). This works vice versa for a

lower succeeding intensity. The change in intensity ∆Ix,y,t(u, v) at the pixel (x, y) due to a

movement (u, v) is calculated in Equation 4.1 using the spatial derivatives. The change in

intensity over a pixel displacement (u, v) equals the negative temporal derivative, since
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CHAPTER 4. OPTICAL FLOW ALGORITHMS

Figure 4.1: Technique of Lucas-Kanade algorithm. The spatial derivatives determine
the direction of increasing brightness. Comparing this with the temporal derivative leads

to the estimated motion.

the object moves over time rather than the observing pixel.

∆Ix,y,t(u, v) = I∂x (x, y, t) · u + I∂y (x, y, t) · v = −I∂t(x, y, t) (4.1)

This provides one equation with two unknowns without a unique solution. Assuming

smooth spatial changes of the movement enables considerations of the 3× 3 pixel neigh-

borhood, thus adding eight equations and creating an overdetermined equation system:

I∂x (x + ∆x, y + ∆y, t) · u + I∂y (x + ∆x, y + ∆y, t) · v = −I∂t(x + ∆x, y + ∆y, t)

f or ∆x = −1, 0, 1 and ∆y = −1, 0, 1
(4.2)

Summarized as:

S ·

u

v

 =~t (4.3)

where the vector~t contains the 9 terms−I∂t(x+∆x, y+∆y, t) and the 9× 2matrix S con-

sists out of the rows
(
I∂x (x + ∆x, y + ∆y, t) , I∂y (x + ∆x, y + ∆y, t)

)
. The least squares

solution is found by multiplying the equation by ST
.

STS

u

v

 = ST t̃ ⇔

u

v

 =
(
STS

)−1
ST t̃ (4.4)

4.1.3 Points of Interest
The Least Squares solution is only appropriate, if STS is invertible. Therefore, none of

the two eigenvalues λ1 and λ2 are supposed to be zero. If the eigenvalues are small
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4.2. OPTICAL FLOW ESTIMATION FOR A PERIODIC IMAGE SEQUENCE

the solution can still be ill-conditioned. This leads to the following criteria for points of

interest:

• A pixel is called point of interest only if both eigenvalues of STS are large, which is

measured by a adjustable threshold. Two large eigenvalues indicate the large in-

tensity gradients in two nearly orthogonal directions. Interestingly this correspond

directly to the criteria of corners in an image developed by Harris et al. [13].

4.2 Optical Flow Estimation for a Periodic Image Sequence
The general idea of OFEPIS [14] is that the intensity It at position (x, y) equals the intensity

It+1 of the successive frame at position (x + u, y + v), whereby (u, v) is the displacement

vector in between the two frames, thus:

I(x + u, y + v, t + 1) = I(x, y, t) (4.5)

4.2.1 Harmonic Model Approach
Since a harmonic oscillation is induced by the actuator, the responding motion of the

sample is assumed to harmonically oscillate with the same frequency as well. This leads

to the following approach for the displacement vector (u, v):

u(x, y, t) =
L

∑
l=1

al(x, y) · cos(ωlt) + bl(x, y) · sin(ωlt)

v(x, y, t) =
L

∑
l=1

cl(x, y) · cos(ωlt) + dl(x, y) · sin(ωlt)

with ωl =
2πl
T

,

(4.6)

whereby L indicates the harmonic order of the periodic approach and T the number of

frames of the periodic image sequence.

4.2.2 Optimization Criteria
As optimization criterion the algorithm aims to minimize the deviation of the equality in

Equation 4.5 over the whole image domain D, which is given by:

E1(u, v) =
T−1

∑
t=0

∫
D
(I(x, y, t)− I(x + u, y + v, t + 1))2 dxdy (4.7)
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Additionally, a spatial smoothness term is introduced as second criterion in order to min-

imize the deviation in the movement of neighboring pixels:

E2(u, v) =
T−1

∑
t=0

∫
D

(
|∇u|2 + |∇v|2

)
dxdy (4.8)

These two optimization criteria are summed to the following energy function, which is to

be minimized. α is the weighting parameter between the two constraints.

E(u, v) = E1(u, v) + αE2(u, v) (4.9)

Now I(x + u, y + v, t + 1) can be approximated by its Taylor expansion to the first order,

since the first order image derivatives are already known from section 3.1.

I(x + u, y + v, t + 1) ≈ I(x, y, t) +
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

(4.10)

Inserting Equation 4.10 into Equation 4.7 leads to the following expression:

E1(u, v) =
T−1

∑
t=0

∫
D

(
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

)2

dxdy (4.11)

Replacing u and v by their approaches in Equation 4.6 results in

E1(u, v) =
T−1

∑
t=0

∫
D

(
L

∑
l=1

(
Ial al + Ibl bl + Icl cl + Idl dl

)
+ It

)2

dxdy (4.12)

whereby Ial = ∂I/∂x · cos(ωlt) and Ibl = ∂I/∂x · sin(ωlt) and Icl = ∂I/∂y · cos(ωlt) and

Idl =
∂I/∂y · sin(ωlt). Equation 4.5 is substituted also into Equation 4.8 which results in:

E2 =
T
2

L

∑
l=1

∫
D

(
|∇al |2 + |∇bl |2 + |∇cl |2 + |∇dl |2

)
dxdy (4.13)

Since the optimization criterion from Equation 4.9 depends on 4 · L · X ·Y unknown vari-

ables it needs to be solved numerical using the iterative Jacobi method
1
. The iterative

algorithm [14] is implemented in the analysis software described in section 6.3.

1
Further information about this method are given in source [15]
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Chapter 5
Evaluation Measurement Setup

Figure 5.1: Measurement setup for quantification of the developed method to de-termine lateral vibrations. Two PSVsmeasure the lateral vibrations from above andaside. a) Scanning stages b) Sample holder with sample c) Each vibrometer consists out
of an interferometer unit and a stage controller d) Amplifier operates on the actuating

signal e) Power supplies for amplifier f) Computer with vibrometer user interface.

In order to obtain the 3D vibration behavior, it is necessary to measure out-of-plane vi-

brations as well as in-plane vibrations. The PSV is a scanning interferometer which was

conventionally developed to record out-of-plane vibrations. Using two conventional PSVs,

which image the sample from tow orthogonal sides, enables recording of 3D vibration

(see Figure 5.1). The results of these reference measurements are then used to verify

the results from the developed in-plane measurement routine. If this routine can be

validated a 3D vibration measurement can be performed using only one PSV. Here the

two PSVs are simultaneously used to record the amplitude and phase of their respective

out-of-plane vibration (usual function of the instrument) and additionally provide phase

related intensity data, which can later be processed to extract lateral vibrations. The scan-
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CHAPTER 5. EVALUATION MEASUREMENT SETUP

ning stages of the vibrometers and a sample holder are mounted on a breadboard or a

granite block and they are adjusted in a way that the sample lies within both scanning vol-

umes. A power amplifier was used in some experiments to enable higher amplitudes of

the output voltage signal in order to induce larger vibrations. The samples are either ex-

cited directly, if they include their own actuation mechanism (e.g. loudspeakers or MEMS

microgrippers), or they are mounted on an external piezo actuator (e.g. cantilevers).

5.1 PICOSCAN Vibrometer

Figure 5.2: Schematic of PSV. The sensor head of a Michelson interferometer is
mounted to a x,y,z scanning stage. Additionally a signal generator actuates the sample

and simultaneously provides the reference signal for the dual-phase LIA, which extracts

amplitude and phase of the vibration from the position signal.

The PSV developed by SmarAct GmbH is based on SPM interferometry using a Michel-

son setup realized with optical fibers (theory described in section 2.2). The confocal in-

terferometer head is able to focus the infrared laser (λ = 1550 nm) to a 7µm Gaussian

spot and it is mounted onto a 3D positioning stage (x,y,z), which enables scanning of the

sample and adjustment of focus. Due to the implemented confocal optics a lateral reso-

lution of down to 5µm is reached. In confocal microscopy the sample is raster-scanned

and the light intensity at each pixel is recorded. The confocal principle ensures that only

light that originates from the focus is recorded while all out-of-focus light is suppressed.

Such a confocal scanning microscope is implemented in the PSV with optical fibers [16].
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5.1. PICOSCAN VIBROMETER

The positioners are based on an unique piezo stick-slip stepping motion
1
, which is devel-

oped by SmarAct GmbH. The integrated function generator, which is based on a 12 bit

direct digital synthesizer (DDS),
2
provides a sinusoidal signal to actuate the sample, which

could either have its own actuation mechanism or it is actuated by a mechanical actua-

tor stage. This actuating signal serves as reference for the dual-phase LIA
3
(based on a

field programmable gate array (FPGA)), which is able to extract the amplitude and relative

phase from the interferometer position signal at the reference frequency. More detailed

specifications of the PSV are provided in Appendix 8.5.

5.1.1 Measurement Procedure for Out-of-Plane Vibrations with the PSV
1. At first the wavelength modulation and the gains of the SPM interferometer need to

be adjusted, so that the quadrature signal (see Figure 2.5) appears as a circle. The

adjustment needs to be done on the sample surface at a position that shows a high

reflection of the infrared laser.

2. A confocal microscopy image of the sample is recorded in order to get an overview

of the sample structure.

3. The measurement head is positioned at a selected point of interest on the sample

and the position signal is recorded while the signal generator actuates the sample

with a frequency sweep. A fast Fourier transform (FFT) of the position signal re-

veals the dynamic response of the observed feature of the sample, whereby peaks

usually correspond to resonance modes at respective eigenfrequencies.

4. The sample is actuated at a selected frequency of interest (from the FFT) while the

measurement head scans the amplitude and phase of the actuated frequency com-

ponent in the position signal using the LIA. This information is used to construct 3D

deflection images of the sample surface at the selected frequency.

1
Further information at http://www.smaract.com/technology/ (03.10.2018)
2
Information about DDS found in source [17].

3
Further information about lock-in amplifiers are given in source [18]
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5.2 Piezo Based Actuator Stage

Figure 5.3: Piezo based actuator stage to excite samples externally.
For those experiments whereby cantilevers are observed, the P-142.05 shear piezo from

Physik Instrumente (PI) [19] is used as actuator stage, since the cantilevers do not have a

mechanism to be actuated directly. A piezo chip PA3JE from Thorlabs [20], which is able

to oscillate in z-direction, is placed on top of the shear piezo, which offers actuation in

x-,y-direction. Thus, the complete actuator stage offers actuation in all three dimensions.

However, in these experiments only the y-direction of the shear piezo. was excited.

5.3 Samples
In order to test the post processing algorithms to reveal lateral vibrations I investigated

two different samples made of silicon, which have micrometer sized structures to inves-

tigate:

• The delta-shaped cantilever F from the Bruker MLCT-O10 cantilevers chip [21] (see

Figure 5.4). This sample is actuated externally by the actuator stage.

• The left gripper arm of the Femtotools FT-G60 Microgripper (FT-G60), which can be

actuated electrostatically using its comb structure. (see Figure 5.5 and Appendix 8.5).
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5.3. SAMPLES

Figure 5.4: Confocal microscopy image of the Bruker MLCT-O10 cantilevers with onemegapixel resolution. Scanning area: 4mm x 4mm. Cantilever F within red region.

Figure 5.5: Confocal microscopy image of the Femtotools FT-G60microgripper withone megapixel resolution. Scanning area: 4mm x 4mm. The red region indicates the
scanning area, which is recorded by the PSV. The total length of one microgripper arm is

about L ≈ 2847µm, determined by this microscopy image. However only about 1650µm
are recorded within the red scanning area.
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Chapter 6
In-Plane Vibration Analysis

Figure 6.1: Operating workflow to investigate lateral vibrations using the PSV. The
initialization of the instrument is the same for out-of-plane vibrations. The knife-edge

method gives qualitative information about interesting frequencies and features. The

image sequence methods enable quantitative investigation of the vibrational motion of

selected features at chosen frequencies.

Two main ideas gave the basic foundation for the development and implementation of

the following workflow in Figure 6.1 to investigate in-plane vibrations using the PSV. The

knife edging (KE) [22], further described in section 6.1, uses the oscillating intensity signal

measured on an preferably sharp intensity edge, which vibrates perpendicular to its edge

orientation. The PSV can process this intensity signal either by calculation of an FFT or by

filtering with its LIA in order to extract frequency related vibration information. In the sec-

ond approach to reveal in-plane vibrations an image sequence of the vibrating sample is

constructed using intensity and phase data from the PSV (see subsection 6.3.1). There are

various optical flow algorithms to estimate the motion of this image sequence by post

processing. Here the mainly used optical flow method revealing in-plane vibrations is TM

(described in subsection 6.3.3), whereby algorithms of the single TM-steps are developed

and implemented into an analysis software. Two other motion estimation algorithms
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were implemented and applied in order to compare to the TM-method. It turned out that

using the KE-method with the PSV does not offer quantitative investigation of in-plane

vibrations, however it still serves as a qualitative measure capable of revealing which fea-

ture vibrates at which frequency. Hereby the much shorter measurement time and no

need of post processing are the advantages of performing KE before the time consuming

measurements to construct image sequences, which then provide quantitative informa-

tion about the vibrational motion of the sample.

6.1 Knife Edging

Figure 6.2: Knife-Edge principle. a) Scheme on vibrating edge between two regions of
different intensity (Low: 20% reflection, High: 70% reflection). The measurement laser

is focused on a spot near the edge. b) The graph shows the recorded intensity over the

oscillation cycles of the sample.

The KE-method is performed before quantitative vibration measurements in order to get

a qualitative indicator of the vibrating features and their resonance frequencies [23]. As

seen in Figure 6.2 a) the measurement laser is focused onto an edge of the sample struc-

ture, which separates two regions of different reflection intensity. The edge oscillates

together with the whole sample so that the measurement laser detects the different in-

tensities of the two regions alternatively. This results in the oscillating intensity signal

seen in Figure 6.2 b). Each rising and falling flank of the signal follows the shape of the

antiderivative of a Gaussian. This results from the approximately Gaussian beam profile

of the laser described by G(x), whereby x0 = 0 is set to be in the center of the Gaussian

laser spot and σ is a measure of its width, since it relates to the full width at half maximum
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(FWHM) as FWHM = 2
√

2 ln(2)σ [24].

G(x) =
1

σ
√

2π
· e
−x2

2σ2 (6.1)

KE can only reveal the vibration components which are orthogonal to the edge orienta-

tion, since no intensity variation can be observed while the sample moves parallel to the

investigated edge. Therefore, corner points are interesting in order to reveal vibrations

in all directions. In general the edge of the sample oscillates at the actuated frequency fa

with an amplitude A⊥ (only the component, which is perpendicular to the edge) around

its rest position d, which is the distance of the edge to the center of the laser spot. The

phase offset ϕ0 is given by the relative phase shift between the edge oscillation and the

actuating signal.

xedge(t) = A⊥ · cos(2π fa · t + ϕ0) + d (6.2)

An important assumption of this method is, that the edge separates two regions of differ-

ent reflection intensity I, whereby each region has a constant intensity. The portion of the

Gaussian laser beam, which hits the region with the higher intensity can be determined

by the integral from negative infinity to the x-position of the edge. This and the respective

integral of the low reflection region are each multiplied by their intensity values IHigh and

ILow and summed up to result in the total intensity measured, which is dependent on the

position of the edge.

I(xedge) = IHigh ·
∫ xedge

−∞
G(x)dx + ILow ·

∫ ∞

xedge

G(x)dx (6.3)

This equation can be rewritten by inserting Equation 6.2 into Equation 6.3:

I(t) =
IHigh − ILow

2
· er f

(
A⊥ · cos (2π fa · t + ϕ0) + d

σ
√

2

)
+

IHigh + ILow

2
(6.4)

For A⊥ � σ and d � σ this function can be approximated by its Taylor expansion up to

the first order resulting in a purely sinusoidal signal oscillating at the actuating frequency.

I(t) ≈ Ī + ∆I · A⊥ cos(2π fa · t) + d
σ
√

2π
with Ī =

IHigh + ILow

2
and ∆I = IHigh − ILow

(6.5)

However if A⊥ > σ and d > σ, the harmonics of the actuating frequency fa appear, which

can be shown by the Fourier transformation of the intensity signal (derivation found in
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Appendix 8.5):

F+ {I(t)} (ω) =

4∆I
√

π
∞

∑
k=0

(−1)k(2k)!
k!

1+2k

∑
l=1

(√
2A⊥
4σ

)l
d1+2k−l

(1 + 2k− l)!

l

∑
m=1

se(l + m)(
l−m

2

)
!
(

l+m
2

)
!
δ(mωa −ω)

(6.6)

The harmonics, which are indicated by the term δ(mωa−ω), overlay the actual frequency

response of the lateral vibrations and should not be mistakenly interpreted as resonance

modes (an example found in Figure 6.3). However generally the amplitudes of these

oscillating intensity signals can be extracted with either the FFT-calculation or the lock-in

filtering offered by the PSV. Although higher amplitudes in the measured intensity signal

indicate larger vibration amplitudes, quantitative investigation using KE is difficult due to

many reasons, which also influence the amplitude of the oscillating intensity:

• The high and low reflectance IHigh and ILow of the two regions, which are separated

by the edge. The reflectance of the two regions may not be uniform.

• The relative angle of the vibration direction towards the edge orientation. Only

orthogonal components are measured.

• The relative position distance d of the center of the laser spot to the edge. It is

difficult to exactly position the laser on the edge.

• The width σ of the Gaussian laser spot. The shape and the width are approxima-

tions.

• The dependence of the unknown vibration amplitude on the measured intensity

amplitude is nonlinear.

All this reasons promote using the KE-technique rather qualitatively, because for quan-

titative investigation all these influences need to be determined and taken into account.

Additionally, it seemed to be easier to extract quantitative vibration information with the

image sequence methods. Therefore KE is used to reveal the features and frequencies

which show vibrational resonances, to prepare the measurement of an periodic image

sequence.
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6.1. KNIFE EDGING

Figure 6.3: Frequency response of intensity using the KE-principle. A piezo driven
laser scanner was driven with a frequency sweep from 500Hz to 30 kHz, which reveals a
sharp resonance peak at 1072Hz. The spectrum shows many harmonics which decrease
slowly in amplitude.

6.1.1 Dynamic Response via FFT using Knife Edging

The KE-method can be used to determine a qualitative dynamic response of the sam-

ple revealing the frequencies of in-plane resonances, which can be investigated in more

detail with the KE-scan or the analysis software (described in section 6.3). The user can

position the measurement head of the PSV above an edge of a feature of interest in the

former recorded microscopy image. The intensity signal is recorded while the sample is

actuated with a frequency sweep, which range is also set by the user. The PSV directly

calculates the FFT of the intensity signal. Since the sinusoidal approximation of the sig-

nal in Equation 6.5 only holds for small amplitudes, since large vibrations add harmonics

of the actuating frequency to the spectrum of the intensity signal. These artifacts in the

frequency spectrum could hide the actual information of the affected frequencies. Fig-

ure 6.3 shows ameasured dynamic response of a piezo driven laser scanner, whereby the

lateral vibration amplitude is larger than the spot size so that harmonics of the ground

frequency appear.
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Figure 6.4: KE-scan of the delta shaped Bruker cantilever at 1072 Hz a) Confocal mi-
croscopy image with 0.5µm scanning-resolution b) Amplitude of reflection intensity fil-
tered using a LIA c) Phase of the reflection intensity signal filtered using a LIA d) Deflection

image combining amplitude and phase data, which reveals an estimate of the direction of

vibration (The vibration direction roughly follows the direction of the chip edge on which

the cantilever is mounted).

6.1.2 Scan at Resonance
The knife-edge method can also be used in scanning mode at chosen frequencies to un-

veil moving features and to give a qualitative estimate of the motion’s direction. For each

pixel position it records the intensity signal in order to detect whether there is a moving

edge. It then filters this intensity signal using a dual phase LIA in order to extract ampli-

tude and phase of the reference frequency component. Combing the KE-information of

all image pixels offers a qualitative measure of the vibration direction assuming that a

feature moves uniformly and is surrounded by multiple edges (e.g. like the cantilever in

Figure 6.4). Edges which have the same orientation but opposite intensity gradients show
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a 180◦ relative phase shift (blue verses red). If the scanning resolution is smaller than the

laser spot diameter also the thickness of edges with large amplitudes can be interpreted

as an estimate of the amplitude of the lateral oscillation.

6.2 Recording Phase Related Intensity Data using the PSV
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Figure 6.5: Synchronized output signals of the PSV signal generator. The red sine
wave actuates the sample to be investigated. The blue sawtooth signal outputs the mo-

mentary angular phase of the actuating signal in degrees.

In order to create a periodic image sequence of the moving sample it is necessary to have

intensity frames for T equally distributed angular phases of the actuating sinusoidal sig-

nal. The PSV cannot capture wide-field images directly (recording multiple pixels simulta-

neously), it rather raster-scans the sample surface, whereby its measurement head stops

at each pixel to record position and intensity. Hereby the PSV offers recording multiple

data sets at each position. The measured intensity values at two different pixels are not

necessarily recorded at the same angular phases, because the data recording cannot be

triggered on the actuation signal. Therefore, the amount N of data sets recorded at each

pixel is chosen to be much higher than the number of frames (N � T) and necessarily

the momentary angular phase of each of the N intensity values at each pixel must be

recorded additionally. The frames can be constructed from this randomly over-sampled

data during post processing using different methods described in subsection 6.3.1. In

contrast to the intensity the PSV does not provide the option to directly record the mo-

mentary angular phase of the actuation signal, which is generated by a DDS
1
. This issue is

1
Further information about DDS in source [17]
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Figure 6.6: Angular phases at which the PSV recorded data sets a) The first, third and
fifth falling edge show wrongly recorded angular phases due to the interpolation of the

DDS in between the largest and smallest value. b) Shows the corrected angular phase

data without artifacts.

solved by adding a second DDS-based signal generator providing a sawtooth signal, which

is synchronized to the actuating signal having the same frequency (see Figure 6.5). The

DDS of the PSV has a 12 bit resolution leading to 4096 entries in its look-up table, which

are equally distributed in the interval [0◦, 4095/4096 · 360◦ ≈ 359.912◦]. The resolution is in-

creased by linearly interpolating in between these entries. Unfortunately this leads also

to an unwanted interpolation between the largest value and zero, which is observed as

falling edges in Figure 6.6 and which maps the actual phase values within the interval

[359.912◦, 360◦] proportionally into the interval [359.912◦, 0◦]. Using this information al-

lows correction of these wrongly measured phase values during post processing in the

analysis software according to the formula:

ϕcor =

[
4095 +

(
1− ϕerr ·

4096
4095 · 360

)]
360
4096

= 360− ϕerr

4095
(6.7)

6.2.1 Choice of Sampling Frequency
The reflection and angular phase at each pixel are recorded with the sampling frequency

fs, which needs to be adjusted according to the actuated frequency fa and the number of

recorded data sets N at one pixel. The aim is to measure the reflection at one pixel for N

different equal distributed angular phases of the actuated sine. As discussed before this

is necessary, because synchronizing the offset phase of the data recording at each pixel
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is not offered by the PSV yet. The frequencies fa and fs are stated in Hertz and can adopt

only integer values. A simple solution for low actuated frequencies fa is given as:

fs,low = N · fa,low (6.8)

whereby the N data pairs are distributed over one period of the actuated sine. However

fs is limited to 5MHz, N should be large (e.g. 1000 - 10000), since it leads to a small

maximal angular phase error of the built image frames and fa can be chosen in a wide

range (500Hz - 2.5MHz). This disables the solution in Equation 6.8 for large fa. In addition,

sampling over multiple periods enables averaging, so that measurement outliers have

less influence on the results. Therefore, I suggest another method with the following

criteria:

• The N samples are distributed equally over an integer number of periods P, which

are at least two and at most N − 1. By subtracting or adding multiples of 2π all

angular phases are mapped into one period given by the interval [0; 2π].

• The maximal distance between two angular phases recorded should be minimized.

The first criterion leads to Equation 6.9, which gives N− 2 possible sampling frequencies.

fs = fa ·
N
P

with 2 ≤ P ≤ N − 1 (6.9)

The second criterion helps to determine the best choice by minimizing the maximal dis-

tance between two measured angular phases. A lot of bad choices can be filtered out by

the following criterion:

• N and P should not have any common divisor except one.

If the greatest common divisor g = gcd(N, P) is greater than one, g measured sam-

ples are mapped to the same angular phase in the interval [0; 2π], which increases the

maximal distance between two different measured angular phases by a factor of g. If N

samples are measured over P periods than N/g samples are measured over P/g periods,

which just happens g times equally, whereby all information lies already in this first N/g

samples and P/g periods. Therefore g needs to be one in order not to lose accuracy. In

theory all remaining factors N/P with g = 1 have the best accuracy achievable with N

points. But since fs is rounded to the next integer another phase error occurs, which de-

pends on how close fs is to the next integer. The best choice is determined by calculating
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Figure 6.7: Comparison of sampling frequency factors. The left plots show N = 18
samples equally distributed over different numbers of periods (1,10,11). The right plots

display the mapped angular phases into one period. a) Ideal case, whereby P = 1 b)
Samples are distributed over P = 10 periods so that the amount of different angular
phases by a factor of g = gcd(18, 10) = 2. c) Samples are distributed over P = 11 periods
so that g = gcd(18, 11) = 1, which leads to the same angular phases as in a).

the theoretical maximal distance between two angular phases recorded with the integer

frequency fs. The mapped angular phases for each integer fs are given in A fs(n) and the

difference towards the succeeding angular phase by:

D fs(n) = A fs(n + 1)− A fs(n) f or n = 1...N (6.10)

In the next step the maximum difference is selected for all fs

E( fs) = max(D fs(n)) (6.11)

The sampling frequency fs is chosen, for which E( fs) is minimal. An additional constraint

for the sampling frequency results from the faulty angular phases αerr (described in sec-

tion 6.2). Therefor the sampling frequency should not exceed 4095 times the actuation
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Figure 6.8: Maximal theoretical phase gap dependent on the actuating frequency
fa when measuring N = 1000 samples at each pixel for every possible sampling fre-quency fs according to Equation 6.12.
frequency ( fs < 4096 · fa) in order to avoid two successive erroneous angular phases,

which would clearly increase the difficulty of the identification of those. The choice of

sampling frequency in the here described experiments is further limited by the PSV to

the main frequency of 10MHz and the down-sampled frequencies

fds =
10MHz

2n for n = 0, 1, 2, 3, . . . . (6.12)

Figure 6.8 shows the maximal angular phase gap between measured samples for N =

1000 in dependence of the actuating and the sampling frequency. The graph clearly indi-

cates that fs 6 N · fa, because at least one period needs to be measured in order to re-

construct the periodic image sequence. For the lowest frequency of 1Hz, it will be neces-

sary to recordmore than 1 second at each pixel using a sampling frequency below 1000Hz.

In order to decrease measurement time, the highest possible sampling frequency with a

reasonable error needs to be chosen for every actuated frequency. The graph also reveals

a clear behavior of the phase error when the N = 1000 samples are distributed over 1-2

periods of the actuated sine, which leads to a maximal phase error of 0.36◦ (The curve of

fds = 5MHz (black) shows this behavior in the interval fa = [5 kHz; 10 kHz]). This principle

is used to select the largest suitable sampling frequency in the range fa = [1Hz; 10 kHz].

Above the phase error for all fast sampling frequencies, which lead to a measurement

time below 50ms, is calculated to chose the best.
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6.3 Analysis Software

Figure 6.9: Program flow chart of the analysis software.
In order to extract the lateral vibrations out of the recorded data by the PSV an analysis

software was built using the LabVIEW environment from National Instruments (NI). After

loading the data file, the software needs to create a periodic image sequence by con-

structing frames from of the phase related intensity data. Hereby the erroneous phase

data (see section 6.2) must be corrected in advance. Next, it determines temporal and

spatial image derivatives (section 3.1) of all frames in the sequence, which contain the

motion information, since they are a measure of change in the image sequence. Based

on this it provides three different methods to reveal oscillating motion from this image

sequence and its derivatives. The mainly developed andmost advanced technique within

the program is the TM, which shifts a region of interest (ROI) over all frames determin-

ing the best correspondence. Additionally the Lucas-Kanade algorithm was implemented

as an rough estimate of motion and the OFEPIS-algorithm was implemented to provide

a motion estimate for every pixel rather than only a ROI. Figure 6.9 shows the general

program flow of the analysis software.

6.3.1 Frame Building
As discussed before the firmware of the PSV was upgraded so that it is able to provide a

data set of N intensity-phase value pairs [Ix,y(n); ϕx,y(n)] for each pixel of the scanned

image. The aim is to construct 2D-frames, which correspond to equal distributed angular

phases, whereby T gives the amount of frames and ∆ϕ = 2π/T the phase shift between
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Figure 6.10: Measured raw data at one pixel from which intensity values for all
T = 25 frames are constructed using different methods. Orange plots the intensity
over the angular phase. Red shows a sinusoidal fit of the measured data. Blue indicates

the intensity values of the nearest measured angular phases to the center phase. Green

indicates the intensity values determined by Gaussian weighting.

two frames. The number of frames T is chosen by the user and defines equal intervals

[t · ∆t; (t + 1) · ∆t] with their center angular phases ϕt = (1/2 + t) · ∆t for t = 0 . . . T −

1. Since the PSV does not offer the opportunity to directly trigger at T certain angular

phases, N angular phases are measured (whereby N � T) to reconstruct the intensity

values at the defined angular phases ϕt of interest.

Nearest Measured Angular Phase
The first method was choosing the intensity value of the nearest measured angular phase

to the center ϕt for each of these T intervals. The deviation of the angular phase de-

creases with the increasing amount N of measured data points. Unfortunately for small

intensity amplitudes the noise envelope (see Figure 6.10) corrupts the intensity values

massively. Another drawback of this method is, that most of the recorded data remains
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unused.

I (ϕt) = I (min (|ϕn − ϕt|)) (6.13)
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Figure 6.11: Theoretical reconstruction of the oscillation using nearest neighborswith random data. a) Blue: One period of the actuated sine. Red: N = 36 randomly
measured angular phases. The intervals for each frame are presented. Purple: Centers

ϕt of the T = 9 intervals. Green: Measured angular phases, which are each closest to at
least one center. Yellow: Gaussian weights for each interval.

Weighted Averaging
The weighted averaging frame building uses all measured information to reduce noise.

The weighting corrects for the fact that the measured samples have different angular

phase shift towards the center angular phases ϕt. Only the values In corresponding to

angular pases ϕn within the interval around the center angular phase ϕt are taken into

account to estimate I(ϕt). Figure 6.10 clearly indicates the reduction of noise compared

to the nearest angular phase method.

I (ϕt) =
∑n I(ϕn) · wn

∑n wn
for t · ∆ϕ < ϕn < (t + 1) · ∆ϕ (6.14)

Sinusoidal Weight The weighting function consists out of a sine to an even power,

which is compressed by the factor T/2 in a way that one period fits exactly one inter-

val. The FWHM can be adjusted by varying the exponent p in Equation 6.15, whereby p

only accepts even integers.

wn = sinp
(

T
2
· ϕn

)
with p = 2, 4, 6, 8 . . . (6.15)
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Gaussian Weight For each interval the mean of the Gaussian is set to the center an-

gular phase µ = ϕt. In Equation 6.16 The standard deviation (STD) σ scales the FWHM

proportionally and can be freely chosen. Here σ = ∆t/6 is used, so that the ±3σ - range

equals ∆t [24].

wn =
1

σ
√

2π
· exp

(
−1

2

(
ϕn − ϕt

σ

)2
)

(6.16)

Sinusoidal Fit
A sinusoidal fit of the intensity plotted over the angular phase as in Figure 6.10 could also

be used to reduce the noise and build any amount of frames. Hereby all data points

(e.g. N = 1000) are equally considered, which is an advantage compared to the Gaus-

sian weighting method. Additionally, a sinusoidal fit can be described by only three pa-

rameters: The amplitude, the phase and the offset, which would strongly decrease the

amount of data to be stored or processed. However the a priori assumption that the in-

tensity signal at one pixel follows the shape of a sine does not hold for larger amplitudes

(compare with the KE-method), since it saturates in a high or low reflection value. The

much longer computing time of the fitting algorithm suggest to rather use the Gaussian

weighting method also for small vibration amplitudes, for which the intensity signal could

be approximated as a sine.
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Choice of Parameters
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Figure 6.12: Standard error in dependence of the number of frames T and the num-ber of recorded samples N at each pixel assuming sinusoidal intensity signals withnormal distributed noise, which is estimated according to the measurement dataseen in Figure 6.10.

Figure 6.12 shows a simulation of the standard error in dependence of the number of

reconstructed frames T and the number of recorded intensity-phase pairs N at each

pixel. Hereby the Gaussian weighting was used to reconstruct the intensity for a specific

frame with 6σ equaling the interval size. A sinusoidal intensity signal was with normal dis-

tributed noise was constructed and sampled at N randomly distributed angular phases

(actually this N measured angular phases follow a pattern according to subsection 6.2.1).

In order tominimize the standard error, the number of frames T should be in the range of

10 < T < 30. A higher number of recorded samples N leads always to a smaller standard

error, but also to a longer measurement time and bigger data to be stored. Therefore,

the number of samples recorded at each pixel was chosen to be N = 1000 as default.
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6.3.2 Image Derivatives
The analysis software computes all of the following image derivatives in Figure 6.13 ac-

cording to the theory in section 3.1.

Figure 6.13: Image derivatives of a laterally oscillating, delta shaped cantilever a)
Reflection image b) Temporal derivative of the reflection image sequence revealing mo-

tion in y-direction. c) Spatial derivative in x-direction d) Spatial derivative in y-direction e)

Magnitude field of the gradient field (spatial derivative) f) Angle field of the gradient field

(spatial derivative) All images are given with 1µm resolution.
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6.3.3 Template Matching

Figure 6.14: Workflow of TM-algorithmwith single stages. Defining a ROI and a pathon which it should be shifted allows repeating TM to get the vibration informationalong the path.
This technique is based on image correlation, whereby its aim is to find the displacement

of the features within two successive frames. It asks the question: How does an image

need to be shifted to show the same features at the same positions as in the template

image. The shift-position with the best match corresponds to the displacement, which

occurred in between the two frames. This method only works under the following as-

sumptions:

• The intensity of features does not change over time or when the feature is moved.

• Every feature in the region of interest moves equally (same direction and speed).

• The image moves only in x- and y-direction. Although correlation could also be

done for zooming and rotation both would add another dimension with a lot of

complexity and a significant increase in computing time. However here rotational

motion is not expected at all and vertical motion, which equals zooming, is small

enough to be neglected.

• The observing instrument does not move. With this method the relative motion

between the object and observer is determined. So, if the motion of the observer is

know the absolute motion of the object could also be determined. Here however,

the observing instrument is fixed in order to directly determine the objects motion.

In order to reach the optimal sub-pixel resolution with the TM-technique, the following

procedure of algorithms is applied (see Figure 6.14):

1. The user chooses a ROI on the microscopy image. The analysis software extracts
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Figure 6.15: Microscopy image of microgripper arms with a selected ROI nearby thetip (right) of the upper arm. The ROI contains only horizontal edges, which onlyallows to determine the vertical vibrations accurately.
the ROI of one frame and additionally it extracts sub-images from all frames, which

equal the ROI plus a frame of at least one pixel thickness.

2. The ROI and the framed sub-images are interpolated in order to get more sub-pixel

information when comparing the images.

3. The ROI is shifted over all sub-images and the error correlation (EC) is calculated.

4. For each frame the shift position of the minimal error is extracted from the EC using

a 2D-peak-fitting algorithm.

5. The determined optimal shift positions are plotted over the frame number and fit-

ted with the expected sinusoidal oscillation in x- and y-direction. This provides the

amplitude and direction of the vibration of the features seen in the ROI.

6. The program allows to define a path on a feature (e.g. a beam) so that it auto-

matically does steps 1-5 for all defined ROI positions on this path, which can reveal

vibrational modes of the feature.

Interpolation
The images can only be shifted by an increment of one pixel, because in between two

pixels is no data. Interpolation provides data in between the pixels to enable shifting

with sub-pixel increments, which is essential to observe sub-pixel movement. Therefore,

interpolation increases the resolution, although no additional data is acquired. There are

different interpolation methods:

• nearest An interpolated pixel gets the value from its nearest neighbor assigned.
• bilinear The value is determined using a linear fit based on the two linear fits of
each pair of neighboring pixels
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Figure 6.16: Interpolation of the ROI. Hereby the gradient of the actual measuredreflection intensity images is used, since each edge in the reflection images appearsas a line with two edges in the gradient images, thus providing a finer structure.
• bicubic The value is determined using a cubic fit based on the four cubic fits of each
quadruple of neighboring pixels, whereby the first and second neighbors are taken

into account, since a cubic fit needs at least four data points.

• bicubic spline The various bicubic polynomials for each pixel are connected with
border constraints. At the border between two intervals the polynomial itself and

its first and second derivative should each correspond to the polynomial of the next

interval with its derivatives.

Error Correlation Method

Figure 6.17: Image Correlation. The smaller region of interest R is shifted over the
comparison region A. At each shift position the sub-images R and Asub are correlated

using the EC.

As seen in Figure 6.17 a region of interest R with n×m pixels of one frame is shifted over

an comparison area A of (n + 2k)× (m + 2k) pixels of all frames in a way that for every

shift-position all pixels of R are always over one pixel of A. The center position of R and
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A are equal, but a frame of thickness k is added to construct A, whereby k is the maximal

expected displacement in pixel. This rough estimate of the maximal displacement saves

a lot of computing time as compared to using the whole image, because the correlation

area can be reduced significantly. For every possible shift-position the region of interest

R is correlated with the corresponding n × m sub-matrix Asub of A and the correlation

value is plotted over the shift-position. The error minimization is the main method to

correlate R and A according to the equation:

Ci,j =

√
∑n

p=1 ∑m
q=1
(

Rp,q − Ap+i−1,q+j−1
)2

m · n (6.17)

In general, there are also other correlationmethods such as e.g. the cross correlation. For

this task the EC is chosen, since it weights the positive and negative deviations between R

and A equally. Also this TM-procedure is done using themagnitude of the spatial gradient

of the reflection intensity images, because this spatial derivative images converted edges

into lines, which have two edges, so that more structural information can be compared

in between the frames.

Determining Relative Displacement

Figure 6.18: EC Images. The Error is given by the square root of the sum of squared dif-
ferences, which is plotted over the shift position. All plots are normalized to a maximum

height of 1. a) Side view indicating the linear increase of the error with increasing distance
to the optimal match position. b) 3D perspective of EC image c) 3D perspective plot of

reciprocal EC.

The correlation values for every shift position construct correlation images for every

frame. These are a measure of how good the frames correlate with each shift position of
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the reference frame. The position of the minimum in the correlation images corresponds

to the relative displacement of the current frame compared to the reference frame. The

displacement of each frame can later be used to reconstruct the harmonic oscillation.

This peak in the correlation image could be determined using the integer pixel positions

of the maxima, but this would limit the resolution to one interpolated pixel. In order to

measure the displacement with even smaller resolution than an interpolated sub-pixel

one needs to apply fitting methods to find the theoretical maximum, which lies in be-

tween the interpolated pixels. Figure 6.18 shows a correlation image and its 2D Gaussian

fit calculated by the implemented 2D peak fitting algorithm described in section 3.2. The

program offers four different peak fitting model functions:

f 1(x, y, p) =
H√

V + 1

f 2(x, y, p) = H exp(−V)

f 3(x, y, p) = H
√

V

f 4(x, y, p) = H ·V

with p =
[
H, µx, µy, σx, σy, θ

]
and V = a (x− µx)

2 + 2b (x− µx)
(
y− µy

)
+ c

(
y− µy

)2

with a =
cos(θ)2

2σx2 +
sin(θ)2

2σy2 and b =
− sin(2θ)

2σx2 +
sin(2θ)

2σy2

and c =
sin(θ)2

2σx2 +
cos(θ)2

2σy2

(6.18)

Harmonic Model Fitting

Figure 6.19: The mean positions of the 2D weighted peak fit give the optimal shiftpositions, which are plotted in this graph and fitted using a harmonic model, whichis expected since the actuation is also harmonically.
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The x- and y-means (µx, µy) of the 2Dpeak fit provide relative sub-pixel positions of the EC-

minima for each of the T frames. An example of the x-means is plotted in Figure 6.19. A

sine is fitted to the frame positions, since an harmonic oscillation is expected as outcome

of a harmonic actuation. The amplitude and phase of these sinusoidal oscillations for the

x-and y-direction describe the vibration of the features in the ROI giving the amplitude

direction and relative phase to the actuation.

Line of ROIs
The program also offers to set a path on which the ROI is automatically shifted to defined

positions. For each ROI the former steps are performed to get the amplitude and phase

of the x- and y-vibration. These result can be plotted over the position of the ROI on the

defined path. This method allows investigation of beams are similar structures as seen in

6.3.4 Lucas-Kanade Algorithm with Corner-/Edge Detection

Figure 6.20: Example results of the edge detection algorithm and the Lucas-Kanade algorithm applied to an periodic image sequence of the two FT-G60 arms at
fa = 41 212Hz, where the two arms oscillate at their second lateral bendingmode. a)
Edge detection algorithm to localize the interesting regions of the image sequence, since

the optical flow algorithms obtain the most information from the edges and corners of

image features. b) Motion estimate from one frame to its successive frame determined

by the Lucas-Kanade algorithm, which is not able to reveal the second bending mode of

the two microgripper arms, due to noise. Therefor the Lucas-Kanade algorithm could at

most give a rough estimate and is not used furthermore.

A corner/edge detection algorithm combined with the Lucas-Kanade algorithm are also

implemented according to section 4.1 and example results are shown in Figure 6.20. The

edge detection gives a reasonable but rough result. The Lucas-Kanade algorithm does not
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CHAPTER 6. IN-PLANE VIBRATION ANALYSIS

reveal the second bending mode, so that it is concluded that it can only provide a rough

estimate if the sample meets certain quality criteria. It is not used further to investigate

in-plane vibrations.

6.3.5 Implementation and Examples of the OFEPIS-Algorithm

Figure 6.21: Motion estimate of the OFEPIS-algorithm revealing the second bend-ing mode. The red lines indicate the direction and magnitude of the vibration at their
respective pixel position. Hereby their lengths are exaggerated for visualization.

The OFEPIS algorithm is implemented according to section 4.2 and the iterative scheme,

which is suggested by Li and Yang [14]. It provides motion estimation for every pixel of

the image. In the analysis software the edge detection algorithm is used to display only

the oscillation results of the interesting pixels. An example result is shown in Figure 6.21.
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Chapter 7
Measurement Data and Evaluation
In order to evaluate and optimize the function of the algorithms in the written analysis

program, an experimental setup was built using two PSVs, one to determine the lateral

vibrations and the other was operated in out-of-plane mode as reference device (further

described in chapter 5). Two different samples (described in section 5.3) were inves-

tigated using the developed experimental procedure (see chapter 6) in order to reveal

lateral vibrations.

7.1 Bruker MLCT-O10 Cantilever F

Figure 7.1: Measurement of a 10.08 nm vibration in y-direction of the Bruker MLCT-O10 cantilever F. a) Microscopy image, which was also used to define a ROI in order to
use the TM-technique to reveal the lateral y-vibration. b) Qualitative results of the OFEPIS-

algorithm which clearly reveal the vibration in y-direction.
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Figure 7.2: Reference measurement using a PSV from aside which revealed a10.08nm vibration amplitude in y-direction of the Bruker MLCT-O10 cantilever chipexcited at fa = 25007 Hz. a) Recorded position with the sampling frequency fs =
156.25 kHz. The envelope of the position signal also fluctuates due to low frequency me-
chanical noise (motion of desk etc.). b) FFT from the position signal revealing the averaged

semi-amplitude at the actuated frequency.

The delta shaped cantilever F of the Bruker MLCT-O10 cantilever chip was actuated in

y-direction at a frequency fa = 25 007Hz with a 10.08 nm vibration amplitude of the ac-

tuator stage (described in section 5.2). As can be seen in Figure 7.2 this was determined

measuring the position signal using a second PSV from aside and calculating the FFT of

it. Figure 7.1 a) displays the microscopy image of the cantilever F and a ROI, which was

further investigated using the TM-method. Figure 7.1 b) shows the qualitative results of

the OFEPIS-algorithm on the measured image sequence of the cantilever F, which clearly

indicates that the complete cantilever oscillates together with the actuator stage in y-

direction. Calculating the in-plane vibration of the cantilever at the given ROI using the

TM-method of the analysis software described in section 6.3 leads to the following re-

sults shown in Figure 7.3. The two graphs indicate a clearly measurable oscillation in

y-direction of≈ 10.5 nm amplitude and no oscillation in x-direction, since the signal of the

optimal shift positions of each frame is noisy with a total fluctuation of≈ 1.4 nm. In order

to test the accuracy and stability of the implemented TM-method 42 different ROIs at 9

different positions on the cantilever were investigated and the results are shown in the

Table 7.2.
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7.1. BRUKER MLCT-O10 CANTILEVER F

Figure 7.3: Optimal matching positions from TM which are fitted sinusoidally. a)
Since there was no movement in x-direction, the measured movements are due to noise,

which is below 1 nm. b) In y-direction the sinusoidal fit suits very well and reveals a oscil-
lation of the sample with a semi-amplitude of ≈ 10.5 nm.

ROI - POSITION Y-Amplitude X-Amplitude Total Amplitude Direction α

TOP µ 11.21 nm 0.43 nm 11.22 nm 2.2◦

σ 0.21 nm 0.11 nm 0.21 nm 0.5◦

N = 9 σ [%] 1.8 % 25 % 1.8 % 0.15 %

CENTER µ 10.40 nm 0.22 nm 10.41 nm 1.2◦

σ 0.13 nm 0.12 nm 0.13 nm 0.7◦

N = 15 σ [%] 1.2 % 55 % 1.2 % 0.19 %

FOOT µ 10.36 nm 0.31 nm 10.36 nm 1.7◦

σ 0.12 nm 0.11 nm 0.12 nm 0.6◦

N = 9 σ [%] 1.2 % 35 % 1.2 % 0.16 %

ALL µ 10.62 nm 0.33 nm 10.63 nm 1.8◦

σ 0.42 nm 0.16 nm 0.42 nm 0.8◦

N = 42 σ [%] 4.0 % 47 % 4.0 % 0.22 %

Table 7.1: The TM-method is used on 42 different ROIs which were recorded on 9 differ-
ent positions. The three main positions are the top, the center and the left foot of the

cantilever. The mean and the STD and the amount of samples N they are based on are
stated. The STD is additionally calculated in percentage of the mean. For the direction

the percentage is related to 360◦ and α = 0◦ is set to be in y-direction. All results of the
TM-method are slightly higher than the measured reference amplitude, which could be

due to non-perfect alignment of the interferometer head of the reference device. Also,

the top of the cantilever was measured to oscillate more than the center and foot of the

cantilever, which could be possible, since the top is the thinnest and most outer part of

the cantilever.
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7.2 Femtotools FT-G60Microgripper

Figure 7.4: Opticalflowestimate determinedwithOFEPIS-algorithm. The plot reveals
the second lateral bending mode of the microgripper arms at 41 212Hz, whereby the red
vibration paths are amplified with the factor of 200. The increment of the x-,y-axis are

pixels, whereby one pixel corresponds to 6µm. The recorded image sequence does not
show the complete microgripper arms, but only the part, which is outside the driving

comb mechanisms.

The second evaluation measurement of the analysis software was performed by actuat-

ing the FT-G60 at fa = 41 212Hz, where the dynamic response, which was determined

with the KE-method, suggested a resonance frequency. The result from the OFEPIS-

algorithm is presented qualitatively in Figure 7.4 b). It reveals the second bending modes

of the two microgripper arms, with a vibrational node at around pixel 180 (corresponding

to 1080µm from the zero position). Figure 7.4 also indicates the starting ROI and the path

on which it is shifted to determine the vibration of the whole left microgripper arm (in

the figure it is the upper) using the TM-method. The results determined by the devel-

oped analysis program also clearly indicate the second bending mode of the microgrip-

per arm. Figure 7.5 shows the in-plane measurement IPm and the out-of-plane reference

measurementOPm, whereby additionally the Euler-Bernoulli beammodel is fitted to each

acquired data. The fit averages out the random noise of the accurate out-of-plane mea-

surement of the PSV so OPFit is used as most reliable vibration behavior to compare all

determination methods. Since the microgripper arm is not a homogeneous beam, but

rather varies in thickness, the Euler-Bernoulli beam model is a rough approximation with

gives still gives reasonable results.
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Figure 7.5: Deflection of 2nd bending mode of the left microgripper arm measuredwith different methods. Frequency: 41 212Hz. The clamped end of the cantilever is
approximately located at position −1200µm, thus it is not seen. a) The in-plane mea-
sured deflection IPm determined with the analysis software was fitted with the Euler-

Bernoulli model shown as IPFit. As reference the deflection OPm was measured with the

out-of-plane scanning mode from the PSV from aside and also fitted shown asOPFit. The

measured total length L ≈ 2847µm of the left microgripper arm determined from the
microscopy image was used to calculate the theory model of the deflection assuming an

amplitude of 38 nm. (Phase set to zero.) b) The amplitude error of all methods are given
by the difference to the fit of the out-of-plane measurement OPFit, which filters out the

noise from the accurate reference measurement. Additionally, the difference of the two

measured deflections is plotted.

The excursion at every position of the beam oscillating at its second bending mode does

only depend on its length and the actuated amplitude. Therefore, the length of the beam

was measured and used to plot the theoretical model with an amplitude estimated by

the other measurements. These three methods to determine the vibration behavior all

depend on the length of the beam L, which is also one of the fitting parameters. Table 7.2

compares the length and vibration amplitude determined by the three approaches.

Method Length L Semi-AmplitudeM
IPFit 2860µm± 33µm 38.33 nm± 0.55 nm
OPFit 2770µm± 8µm 38.28 nm± 0.12 nmMicroscopy 2847µm± 6µm

Table 7.2: Determined Length L and vibration amplitude M of the beam using three dif-

ferent methods. The error estimates of the fits are given by the 95% confidence intervals

and the error of the length determined by the microscopy image is given by the pixel

resolution of 6µm.
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Chapter 8
Discussion & Conclusion
8.1 Bruker MLCT-O10 Cantilever F
The measurement of the cantilever F from Bruker leads to resulting vibration amplitude

of ≈ 10 nm with an absolute accuracy of about 1.4 nm, which is about 14% of the vibration

amplitude, whereby the optical resolution is 5µm and the scanning resolution is 1µm.

The deviation is not of random nature since it is systematically higher than the reference

measurement. The inconsistency of the amplitudes measured at different positions of

the same image sequence could be real differences, whereby the referencemeasurement

was not sufficient, since it only measured the amplitude of the supporting actuator stage,

which would allow different parts of the cantilever to oscillate differently.

8.2 Femtotools FT-G60Microgripper
The PSV was able to clearly measure the 2nd bending mode of the microgripper arm. The

peak amplitude of ≈ 38 nm was determined with an error of below 1 nm as it was com-

pared to the reference measurement. The peak amplitude was about 150 times smaller

than the pixel and optical resolution and the error is at about a thousandth of the pixel

and optical resolution. The maximal deviation between the in-plane and the reference

measurement are only slightly above 6 nm. The determined length of the microgripper

arm with the different methods deviates only by about 4% around ≈ 2.8mm. These re-

sults could be reached with an optical resolution of 5µm and a scanning resolution of

6µm.
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8.3 Error Sources of Template Matching
Uncertainties originate from various sources:

• Mainly uncertainties rise from the fact that amplitudes are extracted, which are

about 100 times smaller than the optical and the scanning resolution.

• Vibrations induced by walking people in the room caused noise while the measure-

ment setup recorded its data.

• The pixel-by-pixel recording of the data allows spatial drifts of the sample to cause

huge deviations between different parts of the recorded images.

• The reference measurements are also noisy.

• The quality of the samples (in more detail below).

The quality of the samples strongly affects the accuracy of the TM-technique. Good qual-

ity is identified by the following characteristics:

• The microscopy image should show features of different reflection intensities, since

the TM-technique uses the variation of intensity to determine in-plane vibrations.

• If more features vibrate equally the ROI can be set around all those. Hereby more

information can be used to determine the in-plane vibration.

• The features of the sample need to be larger than the optical resolution of 5µm of

the PSV, because all structures below this threshold only appear blurry.

• The features should have a good contrast given by sharp edges and high reflection

intensity differences.

• The in-plane vibration information is mainly extracted from the edges of features.

Multiple edges orientated in different directions minimize the orientation error.

8.4 Conclusion
Altogether this work shows a proof of principle that lateral vibrations can be measured

and extracted with the PSV and the TM-method and OFEPIS-algorithm, which are imple-

mented in the described analysis software. These techniques allow the PSV to measure

56



8.5. COMPARISON OF METHODS & OUTLOOK

lateral vibrations down to 10 nm, which is about 100 times smaller than pixel resolution

and 500 times smaller than optical resolution. The good signal-to-noise ratio of the mea-

surement leads to the assumption that the real limit is still smaller than this. The post pro-

cessing software can in general also be used for image sequences recorded with other

devices. Altogether the aim could be achieved to extend the function of the PSV to 3D

measurements, whereby the resolution of the in-plane vibrations does not fully reach the

one of the out-of-plane vibrations but comes adequately close to be sufficient for sam-

ples in the micrometer range. Different approaches of optical flow analysis were tested

and compared to choose the best promising to be implemented in the resulting analysis

software.

8.5 Comparison of Methods & Outlook
The Lucas-Kanade algorithm was implemented in order to compare it with other meth-

ods. The very noise results indicate, that this algorithm is not suitable to unveil very

small vibrations of the tested samples. The OFEPIS-algorithm provides vibration values

for every pixel of the image sequence, which is a big advantage. The time didn’t reach to

optimize and calibrate this algorithm to an extent that quantitative measurements were

possible. However, it is still a helpful tool to provide a qualitative overview of the dynamic

behavior of a sample. The TM-technique shows the best accuracy for small regions of

the sample under the assumption that the investigated region vibrations uniformly. The

reached resolution of in-plane vibration measurements compares to the ≈ 25 nm reso-

lution of measuring the displacement of scattering surfaces described by Hercher et al.

[25]. Using a charge-coupled device (CCD) camera with a resolution of 450 nm and an

algorithm based on the shift Fourier theorem enabled Teyssieux et al. [26] to get to a

resolution of down to 100 pm, whereby the ratio between optical resolution and vibra-

tion amplitude is about 10 times larger than the ratio of the here presented TM-method.

In order to increase performance of the presented techniques to measure in-plane vi-

brations more kinds of samples need to be tested to show the general stability of the

method. The whole procedure involves many different parameters, which still can be op-

timized. One of areas where an increase of performance could perhaps be achieved is

the OFEPIS-algorithm, which still needs to be quantified. Also it is possible to build on the

KE-techniques and develop methods to quantify them. Another new approach to unveil
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lateral vibrations is described by Wadhwa et al. [27] in their paper about phase-based

motion magnification. This could magnify the motion in the recorded image sequence of

the sample in a first step and in a second step TM-methods could be performed on the

magnified image sequence to extract quantitative information with increased resolution.

However, the first test of this technique did not look very promising, since the motion

magnification distorted the image, due to its unequal magnification of different features.

Due to this issues the TM-method could not be used properly.
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Appendix A
Femtotools FT-G60Microgripper

Figure A.1: Confocal microscopy image of FT-G60 Microgripper with one megapixelresolution. Scanning area: 4mm x 4mm.

63







APPENDIX A. FEMTOTOOLS FT-G60MICROGRIPPER

66



Appendix B
PICOSCAN Specifications
The content of the following datasheet is also found on SmarAct’s webpage [28].

Figure B.1: SmarAct’s PICOSCAN Vibrometer [29].
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PICOSCAN 
Megapixel Laser-Scanning Vibrometer

 
The PICOSCAN Vibrometer addresses the need for 
R&D and QC instrumentation that keeps pace with 
the ever increasing complexity of micromechani-
cal systems. SmarAct’s vibrometer is designed for 
megapixel imaging of vibrational modes of micro-
scopic structures. This is achieved by raster-scan-
ning a tightly focused laser beam of a Michelson  
interferometer over the sample to measure the vibra-
tions for each pixel of the microscopic image. The PI-
COSCAN Vibrometer is equipped with a piezo-based 
sample shaker and a configurable digital lock-in am-
plifier to measure amplitude and phase of the vibra-
tions from which bending modes of up to 2.5 MHz can 
be reconstructed.

The use of SmarAct’s linear piezo positioners makes it 
possible to image structures with sizes from just a few 
µm up to 20 mm. A unique feature of the PICOSCAN 
Vibrometer is that the interferometer laser beam is 
used simultaneously to record a reflection image of 
the sample with a lateral resolution of 5 µm. This mi-
croscopic image is thus intrinsically aligned with the 
vibration measurements and a separate microscope 
imaging system is not required. The confocal mea-
surement principle ensures that only light reflected 
from the focal plane will be detected while all out-
of-focus light is suppressed. In combination with the  
infrared laser source this allows to image and to mea-
sure vibrations of a silicon structure even through a 
silicon enclosure.

KEY FEATURES 

• Contactless measurement of vibrations of mi-
croscopic structures with pm resolution

• Imaging of  vibrational modes of up to 2.5 MHz

• Megapixel imaging at 5 µm optical resolution, 
maximum field of view of 20 x 20 mm (larger 
ranges available on request)

• Integrated digital dual-phase lock-in amplifier

• Piezo based shaker stage for the actuation of 
vibrations plus the possibility to drive custom 
actuators

• Compact scanner (5.5 x 11.0 x 7.5 cm) that 
can be easily integrated into custom set-ups 
through a 25 mm diameter post mount (UHV 
compatible scanner on request) 

• Delivered as a turnkey system including a gran-
ite base plate and software for data acquisition 
and analysis



Scanning motion system

Working principle: 3 axes linear piezo drive, closed loop

Resolution: 1 nm

Repeatability: 30 nm

Max. travel: 20 mm (others on request)

Vibration measurement 

Working principle: Michelson interferometer, single mode fiber coupled

Measurement laser: 1550 nm DFB laser diode, stabilized (NIST traceable). Power output 
< 1 mW (laser class 1)

Laser spot diameter at focus: 7 µm

Resolution: 1 pm for single point measurements, 0.1 nm in imaging mode 

Imaging mode: Amplitude and phase images can be analyzed with the included 
software or exported

Single point mode: FFT spectrum from 1 Hz - 2.5 MHz with max. 2.5 million points

Digital lock-in amplifier 

Frequency range: 500 Hz - 2.5 MHz

Reference signal: Available through standard shaker stage and as output signal to 
drive custom actuators

Time constant: Adjustable from 1 µs to 0.5 ms

Dynamic reserve: > 100 dB

Optical microscope

Working principle: Confocal laser scanning using the interferometer’s measurement 
laser

Focusing adjustment: Manual or automatic with closed loop piezo drive 

Lateral resolution: 5 µm

Min. pixel size: 1 µm

Max. image size: 20 x 20 mm

Max. number of pixels: 1000 x 1000

Typical acquisition time: 50 s for 128 x 128 pixels, 500 s for 1000 x 1000 pixels

Large scan range: 
Dynamics of a transparent 
membrane of a mobile phone  
loudspeaker at 12 kHz

Picometer resolution: 
Single point measurement 
showing sub-pm thermal fluc-
tuations of a microcantilever

High bandwidth: 
Complex higher order 
bending mode of a trian-
gular AFM cantilever at  
2.1 MHz

Measuring through silicon:
The confocal measurement 
principle makes it possible to 
measure vibrations through 
enclosures even if these are 
made from silicon

Dimension and weight

Controller: 2 units of each 33.0 x 27.0 x 7.0 cm (W x L x H), combined weight of 
7.7 kg

Scanner mount: Granite stone 15.0 x 20.0 x 4.0 cm (W x L x H) with stainless steel 
post 2.5 x 15.0 cm (Ø x H), 4.3 kg

Scanning stage: 5.5 x 11.0 x 7.5 cm (W x L x H), 0.3 kg

Shaker stage: Stainless steel 8.0 x 1.5 cm (Ø x H), 0.5 kg
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Appendix C

Fourier transform of knife edging
intensity signal
The Fourier transform of the KE intensity signal I(t) from Equation 6.5 is derived in the

following. Since the interest lies only within the amplitudes of the positive frequencies,

the phase offset is set to zero ϕ0 = 0, all DC offset terms ( Ī,O1 andO2) are omitted directly

and all negative frequency components δ(mωa + ω) are omitted in the end, resulting in

the one sided Fourier transform F+ {I(t)} (ω).

F {I(t)} (ω) =
∫ ∞

−∞
I(t)e−iωtdt (C.1)

Substitution of I(t) using Equation 6.5:

F {I(t)} (ω) =
∫ ∞

−∞

(
∆I · erf

(
A⊥ · cos (ωat) + d

σ
√

2

)
+ Ī
)

e−iωtdt with ωa = 2π fa

(C.2)

Taylor expansion of the error function:

erf(x) =
2√
π

∞

∑
k=0

(−1)kx1+2k

(1 + 2k)k!
(C.3)

Omitting the DC offset term Ī and inserting Equation 3 into Equation 2with x = A⊥·cos(ωat)+d
σ
√

2
:

F {I(t)} (ω) =
∫ ∞

−∞

2∆I√
π

∞

∑
k=0

(−1)k
(

A⊥·cos(ωat)+d
σ
√

2

)1+2k

(1 + 2k)k!
e−iωtdt (C.4)
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APPENDIX C. FOURIER TRANSFORM OF KNIFE EDGING INTENSITY SIGNAL

Rearranging the order of the sum over k and the integral and moving all time constant

terms out of the integral:

F {I(t)} (ω) =

2∆I√
π

∞

∑
k=0

(−1)k

(1 + 2k)k!

(
A⊥

σ
√

2

)1+2k ∫ ∞

−∞

(
cos (ωat) +

σ
√

2
A⊥

d

)1+2k

e−iωtdt
(C.5)

The binomial formula states:

(a + b)c =
c

∑
l=0

(
c
l

)
albc−l

(C.6)

Inserting Equation 6 into Equation 5 with a = cos(ωat), b = σ
√

2
A⊥

d and c = 1 + 2k:

F {I(t)} (ω) =
2∆I√

π

∞

∑
k=0

(−1)k

(1 + 2k)k!

(
A⊥

σ
√

2

)1+2k

∫ ∞

−∞

O1 +
1+2k

∑
l=1

(
1 + 2k

l

)
cos (ωat)l

(
σd
√

2
A⊥

)1+2k−l
 e−iωtdt with O1 =

(
σd
√

2
A⊥

)1+2k

(C.7)

Omitting the DC offset term O1, rearranging the order of the sum over l and the integral,

moving all time constant terms out of the integral and moving all terms, which do not

depend on l, out of the sum over l:

F {I(t)} (ω) =

2∆I√
π

∞

∑
k=0

(−1)k

(1 + 2k)k!

1+2k

∑
l=1

(
1 + 2k

l

)(
A⊥

σ
√

2

)l

d1+2k−l
∫ ∞

−∞
cos (ωat)l e−iωtdt

(C.8)

Introducing mathematical boolean switch functions, which give 0 or 1 depending on the

parity of their arguments:

se(x) =
1 + (−1)x

2
and so(x) =

1 + (−1)x+1

2
for x ∈N (C.9)

Series representation of the cosine function raised to the power l. The boolean switch

function is used to distinguish even and odd harmonic components within the sum over
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m. The even components contain DC offset terms, which are given in O2:

cos(x)a =
1

2a−1

(
O2(a) +

a

∑
m=1

se(a + m)

(
a

a−m
2

)
cos (mx)

)
with O2(a) = se(a)

(
a− 1
a
2 − 1

)
(C.10)

Inserting Equation 10 into Equation 8 with a = l and x = ωat and omitting the DC offset

term O2:

F {I(t)} (ω) =
2∆I√

π

∞

∑
k=0

(−1)k

(1 + 2k)k!

1+2k

∑
l=1

(
1 + 2k

l

)(
A⊥

σ
√

2

)l

d1+2k−l

∫ ∞

−∞

1
2l−1

l

∑
m=1

se(l + m)

(
l

l−m
2

)
cos (mωat) e−iωtdt

(C.11)

Rearranging the order of the sum overm and the integral, moving all time constant terms

out of the integral and moving all terms, which do not depend on m, out of the sum over

m:

F {I(t)} (ω) =
4∆I√

π

∞

∑
k=0

(−1)k

(1 + 2k)k!

1+2k

∑
l=1

(
1 + 2k

l

)(√
2A⊥
4σ

)l

d1+2k−l

l

∑
m=1

se(l + m)

(
l

l−m
2

) ∫ ∞

−∞
cos (mωat) e−iωtdt

(C.12)

The Fourier transform of the cosine is given by:

F {cos(ax)} (ω) =
∫ ∞

−∞
cos(ax)e−iωtdt = π(δ(a−ω) + δ(a + ω)) (C.13)

Resolving the integral by inserting Equation 13 into Equation 12:

F {I(t)} (ω) = 4∆I
√

π
∞

∑
k=0

(−1)k

(1 + 2k)k!

1+2k

∑
l=1

(
1 + 2k

l

)(√
2A⊥
4σ

)l

d1+2k−l

l

∑
m=1

se(l + m)

(
l

l−m
2

)
(δ(mωa −ω) + δ(mωa + ω))

(C.14)
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APPENDIX C. FOURIER TRANSFORM OF KNIFE EDGING INTENSITY SIGNAL

Omitting the negative frequencies to result in the one sided Fourier transform of the KE-

intensity signal and rearranging results in:

F+ {I(t)} (ω) =

4∆I
√

π
∞

∑
k=0

(−1)k(2k)!
k!

1+2k

∑
l=1

(√
2A⊥
4σ

)l
d1+2k−l

(1 + 2k− l)!

l

∑
m=1

se(l + m)(
l−m

2

)
!
(

l+m
2

)
!
δ(mωa −ω)

(C.15)

74



Appendix D
Analysis Software GUI

Figure D.1: Load data and build frames of image sequence.

Figure D.2: Image derivatives and corner detection
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APPENDIX D. ANALYSIS SOFTWARE GUI

Figure D.3: Selecting ROI

Figure D.4: Error Correlation of selected ROI

Figure D.5: Line measurement using EC on a defined path of ROIs
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Figure D.6: OFEPIS-algorithm results
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Appendix E
Eidesstattliche Erklärung
Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem versichere ich, dass

ich die allgemeinen Prinzipiem wissenschaftlicher Arbeit und Veröffentlichung, wie sie in

den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Olden-

burg festgelegt sind, befolgt habe.

I hereby certify that I have written this work independently and have used no other than

the specified sources and aids. I also assure that I have followed the general principles of

scientific work and publication as declared in the guidelines of good scientific practice of

the Carl von Ossietzky university of Oldenburg.
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