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Introduction
Reverberation and noise degrades speech quality.
The weighted power minimization distortionless response (WPD) beamformer
unifies weighted prediction error (WPE) dereverberation and the minimum
power distortionless response (MPDR) beamformer [1, 2].
In the STFT-domain reverberation and noise lead to a less sparse
representation of a signal compared to its clean version.

IN THIS POSTER
Similar as in [3] for WPE we introduce a shape parameter p to control the
sparsity of the cost function for WPD.
Additionally we investigate the effect of single- and multi-channel
initialization of the iterative optimization.

Convolutional Beamformer
Convolutional Signal Model (multi-frame) in STFT-domain

yt =
La−1∑
l=0

alst−l + nt =
τ−1∑
l=0

alst−l︸ ︷︷ ︸
direct/early dt

+
La−1∑
l=τ

alst−l︸ ︷︷ ︸
late reverb rt

+ nt︸︷︷︸
noise

Prediction delay τ separates early reflections and late reverberation
Desired component dt can be approximated by: dt ≈ vst = ṽmdm,t
with the relative transfer function (RTF) vector ṽm

Convolutional Filter (multi-frame) h̄m

zm,t = h̄H
mȳt with ȳt =

[
yT

t | yT
t−τ · · · yT

t−Lh+1
]T ∈ CM(Lh−τ+1)×1

Stacked signal vector ȳt contains the current frame and the past frames
corresponding to late reverberation → Gap of τ − 1 frames to keep early
reflections

Iterative WPD algorithm unifying WPE dereverberation and MPDR beam-
former [2]
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Dereverberate

wMPDR
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Estimate
weights w t,i

ȳt zm,t
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Filter Optimization
Distortionless Constraint
Distortionless constraint for desired component using RTF vector

h̄H
mv̄m = 1 with v̄m =

[
ṽT

m 0T]T
Conventional WPD uses time-varying circular Gaussian model for STFT
coefficients as objective function
Proposed generalization: `p-norm reformulation of the generalized Gaussian
prior from [3], which introduces a shape parameter p.

Conventional Objective Function
Time-varying Gaussian model

Variances λt = E
[
|dm,t|2

]
Λ = diag

([
λ1 · · · λT

]T)
L
(
h̄m,Λ

)
∝
(
tr (ln Λ) + zmΛ−1zH

m
)

→ iterative optimization scheme

Proposed Objective Function
`p-norm cost function

L
(
h̄m
)
∝ ‖zm‖p

p ∝
T∑

t=1
|zm,t|p

→ iterative reweighted optimization
scheme using `2-norm

L
(
h̄m,i ,Wi

)
∝
∑T

t=1 w t,i |zm,t|2 ∝ zm,iWizH
m,i

Iterative Algorithms
1 Optimize and update the beamformer h̄m,i (iteration index i)
2 Optimize and update the variances Λi and weights Wi

Conventional

h̄opt
m,i =

R̄−1y ,i v̄m

v̄H
mR̄−1y ,i v̄m

with noisy power-weighted multi-frame
covariance matrix

R̄y ,i = 1/TȲΛ−1i ȲH

Variance update

λt,i+1 = |zm,t,i |2 =
∣∣∣h̄opt,H

m,i ȳt

∣∣∣2

Proposed

h̄opt
m,i =

(
R̄W

y ,i
)−1 v̄m

v̄H
m
(
R̄W

y ,i
)−1 v̄m

with noisy reweighted multi-frame co-
variance matrix

R̄W
y ,i = 1/TȲWiȲH

Weight update

w−1t,i+1 = |zm,t,i |2−p =
∣∣∣h̄opt,H

m,i ȳt

∣∣∣2−p

−→ Proposed method equals conventional method for p = 0

Initialization of Variances/Weights
No output signal power available in first iteration → Use input signal power

Single-channel initialization: λt,1 = |ym,t|2 and w−1t,1 = |ym,t|2−p

Multi-channel initialization: λt,1 = ‖yt‖22
M and w−1t,1 = ‖yt‖2−p

2
M

Experimental Evaluation
Reverb Challenge development dataset [4]

Reverberation time T60 ∈ {0.3 s, 0.6 s, 0.7 s}, SNR of about 20 dB
Circular array with 8 microphone channels (speaker-to-mic distance 50 cm or 200 cm)

Algorithm parameters
STFT: 32 ms frame length with 25% overlap and square-root-Hann window
Prediction delay τ = 4 and prediction filter length Lh = 12

RTF estimation
RTF vector ṽm is estimated using covariance whitening
Assuming only-noise period in the first 225ms → noise covariance matrix

Results
Influence of shape parameter p, initialization and number of iterations
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X Multi-channel initialization outperforms single-channel initialization
(higher performance and faster convergence)

X Proposed beamformer with sparse priors outperforms conventional
WPD beamformer (only slightly if multi-channel initialization is used)

X We extended the proposed method towards a weighted LCMP
beamformer and participated in the Clarity Challenge [5, 6]
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